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Local integrated C-semigroups
by

Miao L1 (Wuhan), FA-LUN HUANG (Chengdu) and
QUAN ZHENG (Wuhan)

Abstract. We introduce the notion of a local n-times integrated C-semigroup, which
unifies the classes of local C-semigroups, local integrated semigroups and local C-cosine
functions. We then study its relations to the C-wellposedness of the (n+1)-times integrated
Cauchy problem and second order abstract Cauchy problem. Finally, a generation theorem
for local n-times integrated C-semigroups is given.

1. Introduction. The first systematic local theory for illposed abstract
Cauchy problems appeared in 1990. Tanaka and Okazawa [TO] defined local
C-semigroups and local integrated semigroups, and a real characterization
was obtained under the assumption that D(A) and R(C) are dense. A gener-
ation theorem for local C-semigroups with nondensely defined generator was
given by Zou [Zo]. Sun [Su] proved some properties of local C-semigroups
and (once) integrated semigroups. In [LZ] and [ZL], Liu and Zhao discussed
some properties of local integrated C-semigroups and their applications to
the abstract Cauchy problem. Local C-cosine functions were introduced and
investigated by F. Huang and T. Huang [HH] in the case when R(C) is dense.
Furthermore, a generation theorem giving a sufficient condition for a densely
defined operator A to be the generator of a local C-semigroup or C-cosine
function appeared in [Gal.

On the other hand, W. Arendt et al. [AEK] proceeded in a different
way. They defined the wellposedness of the (n + 1)-times integrated Cauchy
problem (see Cp41(7) below with Cx replaced by z), and then characterized
it by the resolvent of A ([AEK, Theorems 2.1, 2.2]). The operator-valued
function which governs the problem there was called the n-times integrated
semigroup generates by A. Moreover, an interesting extension property of
the solution was given.
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In this paper, we define local n-times integrated C-semigroups which
unify the classes of local C-semigroups, local integrated semigroups and
local C-cosine functions. We then study the relations between local n-times
integrated C-semigroups and C-wellposedness of the (n+1)-times integrated
Cauchy problem

C([0,7); D(A)) N ([0, 7); X),

v E
tn
Cn+1(7) V'(t) = Av(t) + —Cx, tel0,7),
n!
v(0) = 0.
(See Section 2 for definitions.) A generation theorem for local integrated
C-semigroups is also given.
Section 2 clarifies the relations between the local n-times integrated C-
semigroups and the C-wellposedness of C,,1(7). We show in Theorem 2.5

that the C-wellposedness of Cy,4+1(7) implies that A generates a local n-times
integrated C-semigroup. Moreover, if C),+1(7) is C-wellposed, then

ue C((0,7); D(A)) N C1([0,7); X),
Co(7) u'(t) = Au(t), tel0,71),
u(0) = Cx,

has a unique solution for each x € D(A™T1).

In Section 3 we consider second order Cauchy problems. Proposition 3.1
gives some properties of local C-cosine functions and their generators. It
was shown in [WW] that a second order Cauchy problem is C-wellposed if
and only if A generates a local C-cosine function. In terms of local inte-
grated C-semigroups, we show in Theorem 3.3 that the second order prob-
lem is C-wellposed if and only if the reduced first order Cauchy problem
is C := (g g)-wellposed. So the example in [HH] can be modified to show
that the generator of a local integrated C-semigroup can have empty C-
resolvent. This is different from local integrated semigroups since it was
proved in [AEK] that the generator of a local integrated semigroup always
has nonempty resolvent.

In [AEK, Theorem 4.1] it is proved that if C,41(7) is wellposed, then
Con+1(27) is wellposed as well. That is, the solution can be extended if one
is ready to give up regularity. Wang and Gao [WG] have generalized it to
local regularized semigroups and local regularized cosine functions. For local
integrated C-semigroups, we also have analogous extensions (Theorem 4.1).

Section 5 is devoted to the generation of local integrated C-semigroups.
First we prove that if Ciyq(7) is C-wellposed then A has an asymptotic
C-resolvent. Then, by using the Arendt—Widder theorem on the Laplace
transforms of vector-valued functions, we show that if A has an asymptotic
C-resolvent, then Cj42(7) is C-wellposed (Theorem 5.2); when A is densely
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defined, we get in fact the C-wellposedness of Cy.1(7) (Corollary 5.3). Our
proof simplifies those for local C-semigroups and local C-cosine functions
(see [TO], [HH], [Zo], [Ga]).

Throughout this paper, C is an injective operator on a Banach space
X. For an operator A, we denote by D(A), R(A) its domain and range,
respectively.

2. Local n-times integrated C-semigroups and the C-wellposed-
ness of C,41(7). First we give the definition of local n-times integrated
C-semigroups. For details on n-times integrated C-semigroups defined on
[0,00), see [LS].

DEFINITION 2.1. Let 7 € (0,00] and n € N. A strongly continuous
family {T'(t) : 0 < t < 7} C B(X) is called a local n-times integrated
C-semigroup on X if it satisfies:

(i) T(0) =0 and T'(t)C = CT(t) fo

3 1 t+s )t
() TOT()r = =g ( §)

fora:EXandogs,t,s+t<T

rtel0,7).
S) s+t —r)" T (r)Cx dr
0

T(-) is said to be nondegenerate if T(t)x = 0 for all ¢ € [0,7) implies
x=0.

The generator, A, of a nondegenerate local n-times integrated C-semi-
group T'(-) is defined by

x€D(A) with Ax =y & T(t)r — =Cx = ST(s)y ds, Yt € [0,7).

The C-resolvent set of A, pc(A), is the set of all complex numbers A\ such
that A — A is injective and R(C) C R(A — A).

If ¢ = I, a local integrated C-semigroup is in fact a local integrated
semigroup. We also call a local C-semigroup a local 0-times integrated C-
semigroup.

DEFINITION 2.2. Letn € Ng := NU{0} and 7 > 0. The Cauchy problem
Cn+1(7) is C-wellposed if for every x € X there exists a unique solution of

Cn+1(T).

Now we demonstrate the relations between local n-times integrated C-
semigroups and the C-wellposedness of Cp41(7). To this end, we give a
result analogous to [AEK, Proposition 2.3]. The proof is also similar, so it
is omitted.

PROPOSITION 2.3. Let n € Ng and 0 < 7 € R. Assume that Cp41(7) is
C-wellposed. Then there exists a unique nondegenerate strongly continuous
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function S : [0,7) — B(X) such that for every z € X, So s)xds € D(A)

and
t

tTL
(1) ASS(s)x ds = S(t)r — ng, te[0,7).
5 !

PROPOSITION 2.4. Let {S(t) : t € [0,7)} be a nondegenerate strongly
continuous family of bounded operators such that S(t)A C AS(t) and CS(t)
= S(t)C. Suppose that for every x € X, Sf) S(s)xds € D(A) and satisfies
(1). Then:

(i) S(t) is a local n-times integrated C-semigroup whose generator is an
extension of A.

(ii) Cry1(7) is C-wellposed.

Proof. (i) Fix t € (0,7). For 0 < r < t, since A commutes with S(-), we
have

d T
%S(t —r) (S) S(o)xdo
‘ (t — 7)1 ‘
=-S(t-rA\S(o)xdo — ——=-|S(0)Cado + S(t —r)S(r)x
3 (n—1)! 3
n (t n—l r
= =St =Sz + St —r)~Co— =" D) | S(0)Cx do
! b
+S(t—r)S(r)x
ot (t— r)”_l .
= St —1)Cx D) (S)S(U)Cx do.
Integrating with respect to r from 0 to s, where 0 < s < t, gives
S(t — s) g S(o)z do = g "8t — r)Cxdr — g (=2 S S(o)Cx do dr
0 o n! 5 (n=1) 3 )

Thus,

n

S(o)rdo + S(t — S)S—Cm

S(t —s)S(s)z = S(t —s)A n!

=AS(t —s)\S(o)zrdo+ S(t —s)—Cx

Ot & O e

n

o p (t—r)nt ‘
= A|=S(t—r)Czdr — A | S(0)Cado dr
on' 0 (n—1)! 0
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n

s
+ HS(L‘ —s5)Cx

a ! t—nr)" C(t—r)nt
(:)Atl( n!> S(T)der—[gﬁS(r)der

8 _ \n—1 n n
+ S (Uil iy "% dr + S—S(t —5)Cx
' nl n!

t—s t o
» s (t—o) !
0 t—s 0
f—n LU AP
S =1 S(T‘)Ca:dr+§) = 1)l n!C' xdr+n!S(t s)Cx
t S
© 5 (=" iyt
=~ " Cox + (txs §)> = 1)1 S(r)Cxdr
t s
(t—r)"t o (t—r)"t
tL (n—1)! n!C :Ed?"—{—(S) (n—1)! n!C vdr
1 t—s

ZWG_S_ i >(t—r)”_15’(r)C’:EdT,
0 0 0

where the identity (a) follows from (1) by our hypothesis, (b) holds by
integration by parts, and (c) holds by applying (1) twice: to the integrands
of SLS and Sg_s.

Hence {S(t) : t € [0,7)} is a local n-times integrated C-semigroup.
Obviously its generator is an extension of A.

(ii) We only need to show the solution of Cyi(7) is unique. Let v(-)

be a solution of Ck;(7) with initial value z. For r < ¢t < 7, define u(r) =
S(t — r)v(r); then

d B (t —r)nt
ES(t - 7’)’[1(7’) = —S(t - T’)A'U(T’) - WCU(T’)
+S(t —r)Av(r) — S(t — T)%Cl‘.
Integrating it from 0 to ¢, we have
t _ \n—1 t n
0 287@ ) Cv(r) dr+§r—‘5(t—r)0$dr

3

5 (n—1)! 3
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= —Si(t_r)nC'v’(r) dT+S
0 0

S(t —r)Cxdr

3%

() + S(r)Ca dr

The above equation holds for all ¢ € [0, 7), hence Cv'(t) = S(t)Cz, that is,
v(t) = SE S(s)xds for allt € [0,7). m

THEOREM 2.5. Suppose A is closed and CA C AC. Suppose that Cy41(7)
is C-wellposed, and S(-) is given by Proposition 2.3. Then:
(a) S(t)x =0 for allt € [0,7) implies x = 0.
(b) S(t)C = CS(t) for allt €]0,7).
(¢) For x € D(A), S(t)xr € D(A) and AS(t)x = S(t)Ax.
(d) S(t)S(s) = S(s)S(t) for all 0 < s,t < 7.
(e) Suppose A= C~LAC. Then v € D(A) and Az =y if and only if
t
tTL
S(t)z =\ 5(s)yds + —Cz,  Vte0,7).
0 !
(f) S(t) is a local n-times integrated C-semigroup generated by an ex-
tension of A, C"TAC.
(g) Suppose oc(A) # 0. Then for all X € pc(A),
A—A)7Cs@t) =St (N—A)~tc, telo,r).
Proof. (a) follows from the definition of C-wellposedness.
(b) holds since A commutes with C' and the solution is unique.
(c) Let x € D(A). To see S(t)x € D(A) with AS(t)x = S(t)Ax, define

t n
Stz =\ S(t)Azds + %Cm.

[e=]

Then

t S n+1
=\(A\S(r)Azdr) ds + CA

é(é()"’”)s(ﬂ)! v

t n+1 n+1
:éS(s)Amds ( 1)'C'Ax+( 1)'0 T
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by the uniqueness of the solution, we have S(t)z = S(t)z. So we also have
t t
AS S(s)xds = S S(s)Ax ds;
0 0

differentiating it with respect to ¢, and using the closedness of A, we obtain
S(t)x € D(A) with AS(t)x = S(t)Ax.
(d) Choose s € [0,7) and = € X. By (c) we have

A\ S(5)S(r)zdr = S(s) A\ S(r)z dr = S(s)S(t)x — gS(s)Cx,
0 0 )

sou(t) = Sg S(s)S(r)x dr is a solution of Cy,41(7) at C'S(s)z (since CS(s)r =
S(s)Cx by (b)). But Proposition 2.3 implies that so is S(t) S(r)S(s)zdr.
Hence, by uniqueness, Sg S(s)S(r)xdr = Sg S(r)S(s)zdr for all t € [0,7),
which implies that S(s)S(t)z = S(t)S(s)z.

(e) Necessity follows from the definition of S(¢) and (c).

Sufficiency. Since

n

(2) Stz =\ S(s)yds + %C’x
) !

and
t i
S(t)x = AS S(s)xds + EC.Z‘,
5 !

we have ASS S(s)xds = Sé S(s)yds, which means that S(t)z € D(A) and
AS(t)x = S(t)y as A is closed; also, from (2) we know that Cx € D(A), and

\ t
ACz = :‘—n (AS(t)a: — A(S(s)y ds) = Oy e R(C),
0

thus z € D(A).

(f) It follows from (b), (c), and Propositions 2.3 and 2.4 that S(¢) is an
n-times integrated C-semigroup generated by an extension, B, of A. From
the proof of (e), we see that B C C~1AC. Conversely, if Cx € D(A) and
ACz = Cy € R(C), then

t i
S(t)Cx = SS(S)Cy ds + ECQJJ;
3 !
since C' is injective and commutes with S(t), it follows that x € D(B) and
Bx =y.
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(g) Let X\ € pc(A) and x € X. Then

t

ASS(S)LE ds = S(t)xr — t—‘CSL',
0 n!
so that
3 n
(A= A)'CA[S(s)zds = (A — A)"LCS(t)a %()\ _ A

0

Since (A — A)~1C commutes with A, we have
‘ -1 -1 " —1,2
Af A= A)7'CS(s)zds = (A= A)T'CS(t)x — —(A =),
) !

and thus (g) follows from the uniqueness of the solution. =

REMARKS 2.6. Recall that we assumed in Section 1 that C' is injective.
(a) If CA C AC, then

i n
(3) x€D(A), Az =y & S(t):c:SS(s)yds—i—%Cx
0
implies A = C~TAC.

(b) If C commutes with all S(¢), then (3) also implies CA C AC.

(c) By Theorem 2.5(d), if {S(¢) : t € [0, 7)} gives the solution of Cy,11(7),
then S(t)S(s) = S(s)S(t) for all s,t € [0, 7). On the other hand, if {S(¢) :
t € [0,7)} is a local n-times integrated semigroup then S(t)S(s) = S(s)S(¢)
for all s,t € [0,7) with s+t < 7; we do not know whether this identity holds
for all s,t € [0, 7).

(d) If Cp41(7) is C-wellposed, then for every x € D(A™+!),

t k
T(t)x := S S(s)AF e ds + %AkC’x +...+tACx + Cx
0
gives the solution of Cy(7) at Cz, where S(t) is given by Proposition 2.3.

(e) We will see in the next section that there exists a local integrated

C-semigroup whose generator has empty C-resolvent.

3. Relations to second order Cauchy problems. Consider the sec-
ond order Cauchy problem

u'(t) = Au(t) (-7 <t<T),

(ACP2,7) { w(0) =z, W(0)=y.



Local integrated C-semigroups 273

Let x,y € X. A function u(t) is called a mild solution of (ACP2,7) at (z,y)
if
t
w(t) == | (t - s)u(s) ds € D(A)
0
and
d2
dt?
(ACPg, 1) is called C-wellposed if it has a unique mild solution for every
pair of z,y € R(C).
A strongly continuous family {C(t)},c(_r ) of operators is called a local
C'-cosine function if C(0) = C and
(4) Ct+s)C+C(t—s)C=2C(s)C(t), Vs,t, t+s,t—se(—7,7).

C(t) is called nondegenerate if C(t)x =0 for all t € (—7,7) implies x = 0.
If C(t) is nondegenerate, then the generator, A, is defined by

w(t) =Aw(t)+z+ty, —-T<t<T

x € D(A)and Ax =y & C(t)x = S (t—s)C(s)yds+ Cz, t € (—7,7).
0

We collect the properties of local C-cosine functions in the following.

PrOPOSITION 3.1. Let {C(t)}te(—rr) be a local C-cosine function gen-
erated by A. Then:

(a) C(t)C =CC(t) for allt € (—7,7).
(

(b) C(—t) =C(t) forallt € (—7 )

(c) C(t)C(s) = C(s)C(t) for all t,s € (—71,7).

(d) C(t)A C AC(t) for allt € (—T,7).

(e) C71AC = A.

(f)y x € D(A) & j—;C’(t):dt:o exists and is in R(C) and C"(0)x =
ACx = CAz and C'(0)z = 0.

g) Sg(t —s$)C(s)xds € D(A) and AS (t—s)C(s)xds = C(t)x — Cx.

Proof. (a) and (b) are obvious from the definition of a local C-cosine
function.

(c) By (b), we can assume that ¢, s > 0.

If t + s < 7, we have C(t)C(s) = C(s)C(t) from (4).

If t+s > 7 while t/2+s < 7, then from 2C(t/2)C(t/2) = C(t)C+C?, we
get C(t)C = 2C(t/2)C(t/2) — C?; since C is injective, we only need to show
C(t/2)C(t/2)C(s) = C(s)C(t/2)C(t/2). But this holds since t/2+s < 7, so
C(t/2) commutes with C(s).

Iterating this process proves (c) for all ¢t,s € (=7, 7).
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(d) Let z € D(A). Then C(t)x = Sé(t — 5)C(s)Az ds + Cz, which com-
bined with (a) and (c) gives
t
CHC(r)z = (t - s)C(s)C(r)Axds + CC(r)x
0
and hence C(r)r € D(A) with AC(r)x = C(r)Axz.
(e) can be shown similarly to Theorem 2.5(e) and Remark 2.6(a).
(f) We only need to prove the sufficiency. Suppose C”(0)z = Cy and
C'(0)z =0,t e (—7,7), and h is small enough. Then
1 1
Hence C(t)Cz is twice differentiable and

C"(t)Cz = C(t)C"(0)z = C(t)Cy.
Integrating it with respect to ¢ twice, we have
t
C(t)Cx = | (t — 5)C(s)Cyds + C?x,
0
which implies that € D(A) since C is injective.
The proof of (g) is contained in that of [WW, Proposition 2.4]. =

C(t)(C(2h) — O)a.

We need the following relations between second order Cauchy problems
and cosine functions.

LEMMA 3.2 ([WW]). Suppose A is closed, C € B(X) is injective and
C~YAC = A. Then the following statements are equivalent:

(a) (ACPq,7) is C-wellposed.
(b) There exists a family {C(t) }1e(—r,r) satisfying:

(i) Sg(t —'s)(C(s):L")ds € D(A) andt — A Sg(t —s)C(s)x ds is contin-
(ii)) A Sg(t - 5)07(5):1: ds =C(t)xr — Cx for allt € (—7,7).
(iii) C(t)A C AC(t).

(c) A generates a local C-cosine function {C(t)}re(—r7)-

Now we are in a position to clarify the relations between the second
Cauchy problem (ACPs, 7) and the twice integrated Cauchy problem

T
~ U't)=AuU(t) +t ,
Cs(7) ®) ®) <y>
Uu) =0,
where A = (2 (1)) on F=X xX.
THEOREM 3.3. (ACPg,7) is C-wellposed if and only if 52(7') is C-



Local integrated C-semigroups 275

wellposed, where C := (g (5)

Proof. Suppose (ACPy, 1) is C-wellposed and C(t) is given by Lemma
3.2. For z,y € X, let

(t—s)?

Ul (t) 5

(t—s)C(s)zds+

C(s)yds,

’u,g(t)

O ey o O e

(C(s) = C)xds+\(t—s)C(s)yds.

O ) O ey -

Then U(t) = (Z;Eg) gives the solution of 52(7-) at (gz)

Suppose U(t) = (Z;Eg) is the solution of

U't) = Aut), uU)=0.

Then u)(t) = ua(t), uhH(t) = Aui(t) with u1(0) = uz(0) = 0, which means
that uf(t) = Aui(t) and u1(0) = w}(0) = 0. Hence wu;(t) gives a solution of
(ACPq9, 7) at x = 0. Since the solution is unique, we have u;(t) = ua(t) = 0.

Conversely, let Cy(7) be C-wellposed, and suppose U (t) = (u1(t) ua(t))T
is the solution of U'(t) = AU(t) + t(0 Cx)", U(0) = 0. Then u/(t) =
Auy (t) + Cx gives a mild solution of (ACP3, 7). The uniqueness of the so-
lution can be proved as above. =

From this theorem we can derive a local twice integrated C-semigroup
from every local C-cosine function. So the examples in [HH] can serve as ex-
amples of local twice integrated C-semigroups. Therefore, we have examples
of local integrated C-semigroups whose generator has empty C-resolvent.
This is different from the generators of local integrated semigroups as it was
shown in [AEK] that every such generator has nonempty resolvent.

4. Extension of solutions. In this section we show that a solution
given on a finite interval can always be extended if a loss of regularity is
accepted.

THEOREM 4.1. Let 7 > 0 and k € N. Assume that Cyy1(7) is C-
wellposed. Then Cayy1(27) is C?-wellposed. Thus, for all 7' > 0, there exist
k'l € N such that Cy (') is C'-wellposed.

Proof. Let 19 < 7. All that needs to be shown is that Cor11(27p) has a
unique solution. Define for ¢t € [0, 19),
k m—1

< <
= m—l S(S)Cds, 0<m<k,

t
Tok—m(t S
o (
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and for 1o <t < 27y,
k—1
Tor(t) = Sk(70)Sk(t = 70) + > _ (7" Tok—m(t — 70) + (t — 70) " Tax—m(70)).
m=1
Then Ty : [0,279) — B(X) is strongly continuous. Moreover, the function
v(t) = Sf) Tor(s)x ds is a solution of Cyyy1(279) at C?z. The verification is
analogous to that of [AEK, Theorem 4.1], so it is omitted.

We must show that the solution of Cori1(27) is unique. Although we
can deduce it from Proposition 2.4 and Theorem 2.5, it can also be de-
rived directly from the C-wellposedness of Cj11(7). Let v(¢) be a solution
of Coy41(27) with initial value x = 0, that is, v'(t) = Av(t),t € [0,27) and
v(0) = 0. Then the restriction of v(t) to [0,7) is also a solution of Cy1(T)
with initial value x = 0; by the wellposedness of Cj11(7), we have v(t) =0
on [0, 7). Since v(-) is continuous, v(7) = 0. Let w(t) = v(t + 1), t € [0, 7).
Then w is also a solution of Cii1(7) at x = 0, and the same reasoning
leads to w(t) = 0 on [0, 7), that is, v(¢) = 0 on [r,27). In sum, v(t) = 0 on
[0,27). m

5. Generation of local integrated C-semigroups. Suppose the Cau-
chy problem Cjy1(7) is C-wellposed, and the strongly continuous family
S(t) is given by Proposition 2.3. Let y € [0, 7), and define the local Laplace
transform of S by

Y
Se_ASS A\ ER.

Note that L-(X) can be Vlewed as the Laplace transform of
G(g) = 150s), <,
Ss) = {0, 5> 7.
For Ae C and t > 0, let

v A ) Sk—l )w
_ y—s
g-(N) —(S)e (k—l)!ds ~F +qy(N)
where ) -
1 _
(h()‘):_—k—ki—’y—— S
A Ae=1 9I\k—2 (k—1)IA
By the above definition
T k-1 k
s v
0) = ds = —.
PROPOSITION 5.1. Let v € [0,7) and XA > 0. Then L (\) satisfies
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(a) For every x € X, L (\)x is infinitely differentiable with respect to A,
and there exists M, > 0 such that

P dn— 1
(n—1)ldxn—1 L

(b) For every x € X, L (\)x € D(A) and
(A = A)Ly(Nz = e (g5 (\)Cz — S(7)a).

(¢) Ly(A)Ly(p) = Ly(p)Ly(A), Ly(A)C = CLy(A).
(d) For every x € D(A), ALy(X)x = L,(\)Az.

Proof. (a) Obviously L. () is infinitely differentiable with

YA >0, neN.

dn—1 7
WL,Y()\)x = (=1t S e 5" 1S (s)x ds,
0
hence
AT qn—1 AT ©0
Lo(\ < . —As n—ld
GO0 < g 1S 2 [ tas
= sup [IS(s)]| = M
0<s<y
(b) Since
L,(\) = | ESS dr ds
0 0
g v 5
=M SS( dr—l—)\Se As X (r)drds
0 0 0
by the closedness of A we have L (\)z € D(A) and

k
(A= A)L,(N)x = AL,(\)x — e [S(’y)x - FCCE]

~

k
- S e [S(s)m — %Cm} ds
0

k
= —e MS(y)x + e_’W%Cm + )\S —Xs 2 C’a: ds
’ 0

v k—
=—e Sz +\e N i

= —e MS(y)x + e Mg, (\)Cx.

(c) holds since S(t) commutes with S(s) for all s,¢ € [0,7) by Theo-
rem 2.95.

Cm ds
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(d) For x € D(A), by Theorem 2.5, we have S(t)z € D(A) with AS(t)z =
S(t)Az, so

v g
AL, (Nz=A S e S (s)xds = Xe_ASS(s)Am ds = Ly(\) Az,
0 0

which is (d). =
We call {L,(\) : v € [0,7), A >0} C B(X) an asymptotic C-resolvent
for A if there exists a strongly continuous family {V'(t) : t € [0,7)} C B(X)

such that (a), (c¢) and (d) hold and (b) holds with S(v) replaced by V().
Now we investigate the converse of Proposition 5.1.

THEOREM 5.2. Let A be a closed operator. Suppose that A has an asymp-
totic C-resolvent {L~(\) : v € [0,7), A > 0}. Then the Cauchy problem
Ciy2(1) is C-wellposed.

Proof. By (a) and the Arendt—Widder theorem [Ar], there exists a Lip-
schitz continuous operator-valued function S, (t) such that

(5) L,(\) = )\Osoe_’\tSW(t) dt, ~€(0,7), >0,
0
and Sy(0) =0, [|Sy(t+ h) — S, (t)|| < M,h.
For x € X, by (b), Ly(\)z € D(A),
AL,(N)zx = /\Aosoe_)‘tSﬂ,(t)x dt = /\QAOSOe_’\td S, (s)x ds) dt;
0 0 0
on the other hand, also by (b),

AL, (Na = —e (g, (NCz = V(7)) + AL, (\)a

00 v k—1
= \2 e*)‘tS )z dt — e % _Crds
§ Ve e
+A S e MV (y)zds
v
=X | e M8, (t)wdt — A | e f(t)C dt
0 0

where f(t) is the twofold integral of

k—1/(7.
fl(t):{é [k =)L, iiz
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and h(t) is the integral of
0, t<y,
hl(t) - {17 t> 7.
Combining the two identities, we have
00 t 00
A e M S (s)wdsdt = | e (S, ()x — f(H)Ca + h(t)V (y)z) dt.
0 0 0
By [XL, Chap. 1, Theorem 1.10], So s)xds € D(A) and
t
A\ S (s)zds = S, (t)x — f(£)Cz + h(E)V (7)x;
0
in particular, since f(t) = t**1/(k +1)! and h(t) = 0 on [0,7), for t € [0,~)
we have
t tk+l
which gives the solution of Cj12(y). Now let z € D(A). Since L,(\) com-
mutes with A by the assumption (d), we have S, (t)z € D(A) with AS,(t)z =
S,(t)Az by (5) and the uniqueness of the Laplace transform. So (3) implies
+k
(7) S’;(t):v = AS,(t)x + ECZL‘, Va € D(A);
also, by (d), S,(t)C = CS,(t).
We define S(t) on [0, 7) by
S(t)x =S8,(t)r forte[0,7), y€[0,7) and z € X.
Then S(t)z is well defined and {S(t)x : 0 < t < 7} gives a solution of
Clr42(7). Indeed, by (6) and (7), for 71,72 € [0,7),
d ‘s
ES’Yz (t—r) S SM (s)zds
0

Cx,

r Nk T
=—S,{t—r ASS&Y1 Jrds — (t k'r) C’SS,Yl(s)xds
0 ) 0
T k+1
ASS’Yl ZUdS ’YQ(t — T‘)mczﬂ

forx € X and 0 < r <t < min(~;, "}/2). Integrating both sides with respect
to r from 0 to ¢, we get

0 § (t_r)k+1

= O s (=CSy, (r)x + Sy, (r)Cx) dr
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for all ¢, which implies C'S,, (r)x = S,,(r)Cx. Since C is injective, we have
Sy, (t)r = Sy, (t)x for t < min(y,72). The uniqueness of the solution of
Cli+2(7) can be proved similarly. m

COROLLARY 5.3. Suppose A is a densely defined closed operator. Then
the Cauchy problem Ciy1(T) is C-wellposed if and only if A has an asymp-
totic C-resolvent {L~(\) : v € [0,7), A > 0}.

Proof. By (5), the Lipschitz continuity of S,(¢) and the denseness of
D(A), S!(t) can be extended to a bounded linear operator, T'(t), on X, such
that T'(t)x gives the unique solution of Cx11(7). m
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