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Abstract. Given S ⊂ N, let Ŝ be the set of all positive integers m for which hm

is hermitian whenever h is an element of a complex unital Banach algebra A with hn

hermitian for each n ∈ S. We attempt to characterize when (i) Ŝ = N, or (ii) Ŝ = S.
A key tool is a Müntz-type theorem which gives remarkable conclusions when 1 ∈ S and∑{1/n : n ∈ S} diverges. The set Ŝ is determined by a single extremal Banach algebra
Ea(S). We describe this extremal algebra for various S.

0. Introduction. Let A be a complex unital Banach algebra generated
by an element h and let S be a subset of the positive integers N. We aim
to make a general study of what can be said about A given that hn is
hermitian (that is, ‖exp(iαhn)‖ = 1 for all real α) for n ∈ S. When S = N,
the Vidav–Palmer Theorem gives immediately that A is a C∗-algebra with
Gelfand space Sp(h), the spectrum of h. We show that the same conclusion
holds under much weaker assumptions for S. We prove in fact the following
Müntz-type theorem. If h is hermitian and if hn is hermitian for a large
enough subset of odds (resp. evens) to give divergence for the corresponding
series

∑
1/n, then hn is hermitian for all odds (resp. evens). In particular,

if S = 3N− 2, then it follows that hn is hermitian for all n ∈ N.
Given that hn is hermitian for n ∈ S in a unital Banach algebra A

generated by h, it is natural to ask if there is a largest subset Ŝ such that
hn is hermitian for n ∈ Ŝ for every such unital Banach algebra A. This
question is readily answered in the context of extremal Banach algebras. We
discuss these in §3, but it is enough to note here that one definition of the
extremal norm for polynomials in h is given by the pointwise supremum of
all algebra seminorms | · | such that |h| ≤ 1 and hn is hermitian for all n ∈ S.
If a polynomial is hermitian for the extremal norm, then it is hermitian
for any of these algebra seminorms. Thus we may define Ŝ to be the set of
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positive integers for which hn is hermitian in the extremal norm. To prove
that m 6∈ Ŝ it is sufficient to produce any algebra seminorm for which hm is
not hermitian.

It is natural to ask which subsets of N have the following properties:
(i) Ŝ = N, (ii) Ŝ = S. The Müntz Theorem, which we prove in §1, enables
us to identify many subsets with the first property. We conjecture that the
Müntz Theorem essentially characterizes all subsets with the first property.
The odds and the evens provide examples with the second property (see
[CDM2]). We shed light on these two questions in §2 by constructing a
series of pathological examples and thereby we determine Ŝ for many S. In
particular, we show that Ŝ = S for any finite subset of N.

In §3 we consider the extremal algebra Ea(S) for various sets S. When
S is a finite set F, we have a generalization of the much studied extremal
algebra Ea({1}) (see, for example, [CDM1], [CM1], [CM2]). The function
theory questions associated with the general Ea(F) are rather delicate and
our description is less complete than in [CDM1]. We identify the dual space
as a space of entire functions in several variables with exponential growth
and satisfying systems of linear complex partial differential equations. We
also identify Ea(F) concretely as an algebra of operators on this space of
entire functions. The brief §4 lists several open questions.

For elementary properties of hermitian elements we refer the reader to
[BD].

1. A Müntz theorem for hermitian elements

Theorem 1.1. Let S be a subset of N such that 1 ∈ S.

(i) If
∑{1/n : n ∈ S ∩ 2N} =∞, then Ŝ ⊃ 2N.

(ii) If
∑{1/n : n ∈ S ∩ (2N− 1)} =∞, then Ŝ ⊃ 2N− 1.

The proof of this theorem uses two lemmas. The first is a C1-functional
calculus for hermitian elements. It is less precise but a little easier to handle
than König’s functional calculus [K]. Indeed, it is possible to derive it via
König’s calculus, but we shall give a direct proof. In what follows, C1[a, b]
denotes the set of functions f : [a, b] → C of class C1, which is a Banach
algebra with respect to the norm

‖f‖C1[a,b] := ‖f‖∞ + ‖f ′‖∞.
Also, we write u for the function u(t) = t (t ∈ [a, b]).

Lemma 1.1. Let A be a Banach algebra and let h be a hermitian element
of A with ‖h‖ ≤ 1. Then there exists a unique continuous homomorphism
θ : C1[−1, 1]→ A such that θ(u) = h.
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Proof. Uniqueness is clear, since polynomials are dense in C1[−1, 1]. For
existence, it is enough to show that there exists a constant C such that, for
every polynomial p,

(1) ‖p(h)‖ ≤ C‖p‖C1[−1,1].

Indeed, if (1) holds, then θ, defined on polynomials by θ(p) = p(h), is con-
tinuous with respect to ‖ · ‖C1[−1,1], and so it extends by continuity to the
whole of C1[−1, 1].

We shall prove that (1) holds with C =
√

7/3. Let ϕ be a continuous
linear functional on A such that ‖ϕ‖ = 1. Define F (z) = ϕ(eizh) (z ∈ C).
Then F is an entire function of exponential type, in fact,

|F (z)| ≤ ‖ϕ‖ · ‖ei(Re z)h‖ · ‖e−(Im z)h‖ ≤ e|Im z| (z ∈ C).

Define G(z) = (F (z) − F (0))/z (z ∈ C). Then G is also an entire function
of exponential type and |G(x)| ≤ 2/|x| for x ∈ R, x 6= 0. Thus G ∈ L2(R).
By the Paley–Wiener Theorem, there exists g ∈ L2[−1, 1] such that

G(z) =
1�

−1

g(t)eitz dt (z ∈ C),

and by Parseval’s theorem
1�

−1

|g(t)|2 dt =
1
2

∑

n∈Z
|G(nπ)|2.

Since |G(0)| = |F ′(0)| ≤ 1 and |G(nπ)| ≤ 2/nπ for n 6= 0, it follows that

1�

−1

|g(t)|2 dt ≤ 1
2

+
4
π2

∞∑

n=1

1
n2 =

1
2

+
2
3

=
7
6
.

Rewriting in terms of F , we have

F (z) = F (0) + z

1�

−1

g(t)eitz dt (z ∈ C).

It follows that, for n ≥ 1,

F (n)(0) =
1�

−1

g(t)n(it)n−1 dt.

Now let p be a polynomial, say p(t) =
∑N

n=0 ant
n. Then

ϕ(p(h)− p(0)) =
N∑

n=1

anϕ(hn) =
N∑

n=1

ani
−nF (n)(0) =

1�

−1

i−1g(t)p′(t) dt.
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Therefore, by Schwarz’s inequality,

|ϕ(p(h)− p(0))| ≤
( 1�

−1

|g(t)|2 dt
)1/2( 1�

−1

|p′(t)|2 dt
)1/2

≤
√

7/6
√

2 ‖p′‖∞.

Since ϕ is an arbitrary linear functional on A of norm 1, this implies that

‖p(h)− p(0)‖ ≤
√

7/3 ‖p′‖∞,
and this in turn implies that (1) holds with C =

√
7/3.

The second lemma is a mild generalization of the classical Müntz Theo-
rem.

Lemma 1.2 (Müntz for C1[0, 1]). Let S ⊂ N be such that 1 ∈ S and∑
n∈S 1/n =∞. Then the span of {1, tn (n ∈ S)} is dense in C1[0, 1].

Proof. Let ϕ be a continuous linear functional on C1[0, 1] that annihi-
lates {1, tn (n ∈ S)}. Consider F (z) = ϕ(tz)/z (Re z > 1). This is bounded
and analytic and vanishes on S. Transfer to a bounded analytic function on
the open unit disk by taking G(z) = F (2/(1 − z)). Then G has zeros at
1−2/n for n ∈ S. It follows from [R], Theorem 15.23, that G ≡ 0, and hence
also F ≡ 0. This gives ϕ(tz) = 0 (Re z > 1) and so ϕ = 0. The Hahn–Banach
Theorem completes the proof.

Proof of Theorem 1.1. We prove the odd case; the even case is similar.
Let k be an odd positive integer. By Lemma 1.2 there exist polynomials
pn(t) with powers of t only from S∩ (2N−1) such that pn(t) converges to tk

in C1[0, 1]. Since all these functions are odd, we actually have convergence
in C1[−1, 1]. Moreover, replacing pn by Re pn, we can suppose that the pn
have real coefficients. Let A be a Banach algebra that contains the hermitian
element h. Without loss of generality we may suppose that |h| = 1. By
Lemma 1.1, pn(h) converges to hk in A. Since pn(h) is hermitian, it follows
that hk is hermitian.

2. Some determinations of Ŝ. The above Müntz Theorem has many
immediate consequences. We state some as a theorem.

Theorem 2.1. Let h be a hermitian element of a complex unital Banach
algebra A.

(i) If hn is hermitian for n in an arithmetic progression which is con-
tained within neither the evens nor the odds, then hn is hermitian for all
n ∈ N.

(ii) If hn is hermitian for n in a cofinite subset of N, then hn is hermi-
tian for all n ∈ N.

(iii) If hn is hermitian for every odd prime, then hn is hermitian for
every odd n.
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When S satisfies either (i) or (ii) in the above theorem, it is immediate
that Ŝ = N. Now let S = 2N − 1. It follows from [CDM2] that Ŝ = 2N − 1.
The same conclusion holds for S = 4N − 3, 6N − 5, . . . Now let S = 2N. It
follows from [CDM2] that Ŝ = S and we shall see in the next section that
the same conclusion holds for S = mN for any m ≥ 2.

From the viewpoint of the Müntz Theorem, there is not an exact parallel
between the odds and the evens. The natural analogue for the evens is given
by S = {1} ∪ 2N, and it is by no means immediate that Ŝ = S for this case.
We prove this by constructing an example in which hn is hermitian precisely
for such n. Let F be the real linear span of the functions tn for n ∈ S, and
let G = exp(iF). Let X = C[−1, 1] with the norm defined by

‖x‖ = sup
g∈G

∣∣∣
1�

−1

g(t)x(t) dt
∣∣∣

and let T be the linear operator given by Tx(t) = tx(t). The function t,
appropriately extended, has an absolutely convergent Fourier series repre-
sentation on [−2, 2]. It follows that T is a bounded operator.

Proposition 2.1. For the above operator T , we have T n hermitian for
n ∈ {1} ∪ 2N and not hermitian for n odd , n ≥ 3.

Proof. We easily check that, for n ∈ {1} ∪ 2N,

‖exp(iαTn)x‖ = ‖x‖ (α ∈ R)

and so Tn is hermitian. Suppose that T 2k+1 is hermitian for some k ∈ N.
Let v(t) = 1. Since ‖exp(iT 2k+1)v‖ = ‖v‖, we have

sup
g∈G

∣∣∣
1�

−1

exp(it2k+1)g(t) dt
∣∣∣ = 2.

By compactness, we get a sequence of functions g so that the integral con-
verges to some 2 exp(iβ). By absorbing β into g, we thus get sequences of
reals an and even real functions ξn(t) such that

lim
1�

−1

exp(i(t2k+1 + ant+ ξn(t))) dt = 2.

Conjugate this equation and replace t by −t to conclude that

lim
1�

−1

cos(t2k+1 + ant) cos(ξn(t)) dt = 2.
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It follows from the Cauchy–Schwarz inequality that limJ(an) = 2 where

J(a) =
1�

−1

cos2(t2k+1 + at) dt.

Clearly, |J(a)| < 2 for any real a. The Riemann–Lebesgue Lemma shows
that J(a)→ 1 as |a| → ∞. This contradiction completes the proof.

It is immediate that Ŝ = S for S = {1} ∪ 2N. The above example is, in a
sense, a universal example since we may replace dt by an arbitrary positive
measure dµ. By taking dµ to be a finite linear combination of point masses
we can produce finite-dimensional examples. The following example may be
the simplest possible with S = {1} ∪ 2N.

Proposition 2.2. Let T be the diagonal operator on C5 with entries
(−2,−1, 0, 1, 2) and let C5 have the norm

‖x‖ = max
z,w,t∈T

|zt−2x−2 + wt−1x−1 + x0 + wtx1 + zt2x2|.

Then T has the same property as the operator in Proposition 2.1.

Proof. Note that exp(iαTn) is also diagonal with entries exp(iαjn)
where j = −2,−1, 0, 1, 2. It follows easily that T n is hermitian for n = 1
and for any even positive integer. Suppose that T 3 is hermitian and let
v = (1, 1, 1, 1, 1). Then ‖exp(iαT 3)v‖ = ‖v‖ = 5 for all real α. It follows
that, for each real α, there exist z, w, t ∈ T such that

zt−2e−8iα = wt−1e−iα = wteiα = zt2e8iα = 1.

Eliminate z, w to give e16iα = t−4 and e2iα = t−2. It follows that e16iα = e4iα

for all real α. This contradiction shows that T 3 is not hermitian, and a similar
argument gives Tn not hermitian for any odd n ≥ 3.

To get a finite-dimensional example for which T n is hermitian if and only
if n = 1, 3, 2m (m ∈ N), we take the diagonal operator with entries

(−3,−2,−1, 0, 1, 2, 3)

and norm

‖x‖ = max
u,v,w,s,t∈T

|us−27t−3x−3 + vs−8t−2x−2 + ws−1t−1x−1 + x0 + . . . |.

An elaboration handles the case S = F ∪ 2N where F is a finite subset of
the odds which contains 1. It is instructive to consider a slightly simpler
construction for which we obtain a slightly stronger conclusion for S = F.
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Proposition 2.3. Let S = {mj : j = 1, . . . , q} with m1 < . . . < mq. Let
N ≥ mq + 1, and let X = C2N+1 with norm defined by

‖x‖ = max
zk∈T

∣∣∣x−N
q∏

k=1

z
(−N)mk
k + . . .+ x0 + . . .+ xN

q∏

k=1

zN
mk

k

∣∣∣.

Let T be the diagonal operator on X with entries

(−N, . . . ,−1, 0, 1, . . . , N).

Then Tm is hermitian for m ∈ S and the space of hermitians in the subal-
gebra generated by T is just the real linear span of I and Tm for m ∈ S.

Proof. Note that exp(iαTmk) is also diagonal, with entries

(exp(iα(−N)mk), . . . , 1, . . . , exp(iα(N)mk)).

It follows from the definition of the norm that

‖exp(iαTmk)x‖ = ‖x‖
for all real α, and so Tmk is hermitian for k = 1, . . . , q. The algebra generated
by T consists of polynomials of degree at most 2N . Let P (T ) =

∑ν
j=1 cjT

nj

be such a polynomial with nj 6= mk for any j, k, and suppose that P (T )
is hermitian. Then P (T ) has real spectrum and so P (j) is real for j =
−N, . . . , N . Hence the coefficients cj are all real. Let

U = exp(iαP (T )) =
∏

j

exp(iαcjTnj )

and let v = (1, . . . , 1) so that ‖v‖ = 2N + 1. We show that ‖Uv‖ = 2N + 1
leads to a contradiction unless P (T ) = 0. Since U is diagonal with entries
from T, there must exist zj ∈ T so that each term in the norm expression
for Uv has value 1. Thus

zj
m1

1 . . . zj
mq

q exp(iαc1jn1) . . . exp(iαcνjnν ) = 1

for j = ±1, . . . ,±N . Write zj = exp(iθj) to get

θ1j
m1 + . . .+ θqj

mq + αc1j
n1 + . . .+ αcνj

nν ∈ 2πZ

for j = ±1, . . . ,±N . But this contains an invertible Vandermonde sys-
tem of linear equations and the inverse matrix has rational entries. Hence
αcj ∈ 2πQ for all real α. This forces all cj = 0 and then P (T ) is the zero
polynomial, as required.

Theorem 2.2. We have F̂ = F for any finite subset of N.

We also observe that pathological behaviour can occur even for finite-
dimensional Hilbert space operators when the generator is not hermitian.
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Example 2.1. Let T be the operator on three-dimensional Hilbert space
given by

T =




1 0 0
0 0 c
0 0 0


 .

Then, for any c ∈ C, Tn is hermitian for n ≥ 2 but the algebra generated
by T is not semisimple. Note also that there is no uniform bound on |T |
even though all these hermitian powers have numerical range equal to [0, 1].

3. Some determinations of Ea(S). There are several ways to define
extremality, but the most convenient is in terms of the polynomial functional
calculus. We restrict attention here to algebras with a single generator h
and to the property τ that hn be hermitian for every n ∈ S. Let C[h] be
the algebra of all complex polynomials in h. We say that a unital singly
generated Banach algebra (A, ‖ · ‖) is extremal for τ if A has property τ
and if |P (h)| ≤ ‖P (h)‖ (P ∈ C[h]) for every unital singly generated Banach
algebra (B, |·|) with property τ . The existence of an extremal Banach algebra
immediately forces uniqueness. We cannot have existence without a uniform
bound on |h|. In [CDM1] this uniform bound was guaranteed by imposing
the condition that the generator have numerical range within the closed
unit disk. In the present context, it might seem natural to require that the
numerical range of each hermitian hn lie within the unit interval [−1, 1].
When 1 6∈ S, this does not guarantee a uniform bound on |h| (see Example
2.1). Accordingly, we shall always require that the generator have norm at
most 1.

Suppose now that σ is the property that |h| ≤ 1 and hn is hermitian for
n ∈ S for a singly generated Banach algebra (B, | · |). We can guarantee the
existence of the corresponding extremal algebra Ea(S) by construction. For
|k| ≤ 1, we have k hermitian if and only if

|cos θ + i sin θ k| ≤ 1 (θ ∈ R).

(This follows easily from the characterization, |1 + itk| = 1 + o(t) and Sin-
clair’s theorem |cos θ + i sin θ k| = r(cos θ + i sin θ k) for hermitian k.)
Let S be the semigroup in C[h] generated by all expressions of the form
cos θ + i sin θ hn for θ ∈ R and n ∈ S. Define a unital algebra seminorm on
C[h] by

‖P (h)‖ = inf
{ N∑

j=1

|αj | : N ∈ N, αj ∈ C, sj ∈ S,
N∑

j=1

αjsj = P (h)
}
.

It is immediate that |P (h)| ≤ ‖P (h)‖ for any singly generated Banach alge-
bra (B, | · |) with property σ. This holds in particular when

|P (h)| = sup{|P (t)| : t ∈ [−1, 1]}
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and so ‖ · ‖ is an algebra norm. Then Ea(S) is the completion of C[h] with
respect to ‖·‖. Also, Ŝ = {n ∈ N : hn is hermitian in Ea(S)} gives the largest
set of hermitian powers of h given that hn is hermitian for all n ∈ S. The
constraint that hn be hermitian for all n ∈ S gives a condition on the norm
only for elements in the subalgebra generated by 1 and hn for n ∈ S. In
general, this subalgebra is not all of C[h]. The only constraint on all of C[h]
is that ‖h‖ ≤ 1.

There is an alternative construction of the norm ‖ · ‖ by taking the
pointwise supremum of all unital algebra seminorms on C[h] such that
|h| ≤ 1 and hn is hermitian for all n ∈ S. We need to work with seminorms
to include the case when h satisfies a polynomial identity; fortunately, the
elementary ideas of numerical ranges work just as well for seminorms. Every
such seminorm is dominated by the `1 norm on C[h] and so the supremum
exists. For ‖·‖ to be a norm, it is sufficient to have one norm with property σ.

We need discuss Ea(S) only for subsets of N which are an Ŝ. We shall
do so for the cases S = N, 2N − 1,mN, {1} ∪ 2N and F, where F is a finite
set. We have no information for subsets of the odds, or the evens, for which
the corresponding harmonic series converges, for example, S = {(2n− 1)2 :
n ∈ N}.

Evidently, Ea(N) is isometrically isomorphic to C[−1, 1]. It is shown in
[CDM3] that Ea(2N − 1) is bicontinuously isomorphic to C[−1, 1]. There
is thus a surprisingly large collection of subsets S of N for which Ea(S) is
C∗-equivalent.

The extremal algebra Ea(2N) is not C∗-equivalent. To see this, recall
from [CDM2] that the Gelfand space of Ea(2N) is the cross K = [−1, 1] ∪
[−i, i], and Ea(2N) separates the points of K. If Ea(2N) were C∗-equivalent,
then it would be all of C(K). One may complete the proof by showing
that not every f ∈ C(K) may be written in the form f(t) = f0(t) + tf1(t)
with f0, f1 even functions on K. It is instructive to give another proof.
The mapping f 7→ f1(0) is readily verified to be a non-zero bounded point
derivation (at t = 0) and hence Ea(2N) is not an amenable Banach algebra
and therefore not C∗-equivalent.

We now generalize to the case S = mN where m is an arbitrary positive
integer. Let ω be a primitive mth root of unity and let Km be the regular
star defined by

Km =
m−1⋃

j=0

ωj [−1, 1].

Now let A be any complex unital Banach algebra generated by h with ‖h‖
= 1 and hn hermitian for n ∈ mN. Let k = hm. Then kn is hermitian for
n ∈ N, and so the Vidav–Palmer Theorem gives 〈k〉 = C(Sp(k)), where 〈k〉
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is the closed subalgebra generated by k. In particular, any polynomial in
hm has norm equal to the spectral radius (denoted by r(·)). Any polynomial
P (h) may be written as

P (h) =
m−1∑

j=0

hjPj(hm)

for (unique) polynomials Pj . Since ‖h‖ = 1, we get

‖P (h)‖ ≤
m−1∑

j=0

‖Pj(hm)‖ =
m−1∑

j=0

r(Pj(hm)).

A routine calculation shows that the latter formula gives an algebra norm on
the polynomial algebra such that hn is hermitian for n ∈ mN. The extremal
algebra Ea(mN) is just the completion when Sp(h) = Km.

As in [CDM2], we may readily identify Ea(mN) with those continuous
functions f on the regular star, Km, such that, for j = 1, . . . ,m− 1,

lim
t→0

1
tm−j

[f(t) + ωjf(ωt) + . . .+ ω(m−1)jf(ωm−1t)]

exists. Equivalently, we get the algebra Em of all continuous complex func-
tions on Km of the form

f(t) = f0(t) + tf1(t) + . . .+ tm−1fm−1(t)

where each fj is a continuous function on Km invariant under the cyclic
action on Km. The norm on Em is given by

‖f‖ =
m−1∑

j=0

r(fj).

As above, we get a non-zero bounded point derivation on Em defined by
f 7→ f1(0). In particular, Em is not an amenable Banach algebra and is
not C∗-equivalent (for m > 1). It is also straightforward to check that
V (hn) = D− (the closed unit disk) when n 6∈ mN. We summarize these facts
in a theorem.

Theorem 3.1. For m > 1, Ea(mN) is isometrically isomorphic to Em
and is not C∗-equivalent. We also have ̂(mN) = mN.

Note that the generator h for Ea(2N) is not hermitian. We make it
hermitian by taking S = {1} ∪ 2N. Since h is hermitian, we have Sp(h) ⊂
[−1, 1]. It is tempting to think that Ea(S) might be the algebra of functions
E2 restricted from the cross K to the interval [−1, 1]. This cannot be so,
since the element h is not hermitian for the E2 norm. But the argument in
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Theorem 4.2 of [CDM2] shows that the norm in Ea(S) is dominated by this
restricted E2 norm.

We turn finally to the case of a finite subset F of N, beginning with the
case in which F is a singleton, say, F = {m}. For m = 1, we have, of course,
Ea(F) = Ea[−1, 1] (in the notation of [CDM1]). For arbitrary m, let k = hm

and clearly 〈k〉 = Ea[−1, 1]. Decompose an arbitrary polynomial P (h) as
above to define

‖P (h)‖ =
m−1∑

j=0

‖Pj(hm)‖0

where ‖ · ‖0 is the norm from Ea[−1, 1] transferred by k = hm. Again, it
is easy to check that this gives a norm and the completion is the required
extremal algebra. As before, we have Sp(h) = Km, and we may represent
Ea(F) as an algebra of continuous functions on Km. The `1 nature of the
norm gives that V (hn) = D− when n 6∈ mN and it follows that hm is the
only positive power of h which is hermitian in the extremal algebra, that is,
F̂ = F (as already proved by a different method in Theorem 2.2).

While it is possible to give an (inelegant) description of Ea(F) for general
F with 1 6∈ F, for simplicity we shall restrict attention to the case in which
1 ∈ F.

Suppose then that 1 ∈ F. We shall give an explicit description of the dual
space, ΦF, of Ea(F) and this will lead to an explicit representation of Ea(F)
as an algebra of operators on ΦF. Since the argument is a little complicated,
we shall begin with the simplest possible example, namely F = {1, 2}, and
then we shall discuss how to modify the argument for the general case.

Recall from above that S is the multiplicative subsemigroup of C[h]
consisting of all finite products of elements of the form cos θ + i sin θ hj

where j ∈ S and θ ∈ R. For P (h) ∈ C[h] we have

‖P (h)‖ = inf
{∑

|αn| : P (h) =
∑

αnπn, αn ∈ C, πn ∈ S
}
.

This gives the norm on C[h] whose completion is Ea(S).
For the case F = {1, 2}, we write Φ for the set of all entire functions ϕ

in two complex variables such that, for some Mϕ,

|ϕ(z, w)| ≤Mϕ$(z)$(w),
∂ϕ

∂w
=
∂2ϕ

∂z2

where $(z) = exp |Re z|, and let

‖ϕ‖ = sup
{ |ϕ(z, w)|
$(z)$(w)

: z, w ∈ C
}
.

It is routine to show that Φ is a Banach space.
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Theorem 3.2. The dual space of Ea(F) is isometrically isomorphic to Φ.

Proof. Given ϕ ∈ Φ, let Fϕ be the linear functional defined on C[h] by

Fϕ(hn) =
∂a+bϕ

∂za∂wb
(0, 0)

where n = a + 2b. This is well defined because of the partial differential
equation satisfied by ϕ. To prove that Fϕ is continuous with ‖Fϕ‖ ≤ ‖ϕ‖ it
is enough to prove that |Fϕ(π(h))| ≤ ‖ϕ‖ for each π ∈ S. We have

Fϕ(cos θ + i sin θ h) = cos θ ϕ(0, 0) + i sin θ
∂ϕ

∂z
(0, 0)

and

Fϕ(cos θ + i sin θ h2) = cos θ ϕ(0, 0) + i sin θ
∂ϕ

∂w
(0, 0)

and the required inequalities are immediate by the classical Bernstein the-
orem for entire functions of exponential type. Suppose now that the in-
equality holds when π(h) is the product of n factors. Now, for all n, define
G(hn) = Fϕ((cos θ+ i sin θ h)hn). An easy computation shows that G = Fψ
where ψ = cos θ ϕ+ i sin θ ∂ϕ/∂z. We now have

Fϕ((cos θ + i sin θ h)π(h)) = Fψ(π(h)).

The induction hypothesis and Bernstein’s theorem now extend the required
inequality to the above n+ 1 factors. A similar argument applies when the
new factor is of the form cos θ+ i sin θ h2 when we use the partial derivative
with respect to w. We now see that ϕ 7→ Fϕ is a monomorphism from Φ
into Ea(S)′. Suppose now that F ∈ Ea(S)′. Since h, h2 are hermitian and
‖h‖ ≤ 1, we know that ‖exp(zh+ wh2)‖ ≤ $(z)$(w). We define ϕ by

ϕ(z, w) = F (exp(zh+ wh2))

and we readily verify that ϕ ∈ Φ and F = Fϕ. The above formula also gives
‖F‖ ≥ ‖ϕ‖ and so the isometric isomorphism is established. It is easy to
check that the Gelfand space of Ea(S) corresponds to the entire functions
exp(tz + t2w) indexed by t ∈ [−1, 1].

We constructed Ea(S) as an abstract completion, but the method of
Browder (see [B1], [B2]) allows us to give a specific representation for Ea(S).
Let T be the differential operator on Φ defined by T = ∂/∂z. Then Ea(S) is
isometrically isomorphic to the closed subalgebra of B(Φ) generated by the
hermitian operator T .

Remarks. (1) Since V (h2) ⊂ [0, 1], we have the sharper inequality

‖exp(wh2)‖ ≤ $+(w)
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where $+(w) = max(exp(Rew), 1) and so each ϕ ∈ Φ satisfies the sharper
inequality

|ϕ(z, w)| ≤ $(z)$+(w).

A standard Phragmén–Lindelöf argument also shows that the norm of ϕ in
Φ is determined by taking the supremum over iR× iR.

(2) The exact computation of V (P (h)) now becomes a delicate coefficient
problem. We may illustrate this adequately by considering the case P (h)
= h3. A routine power series argument shows that any ϕ ∈ Φ is uniquely
determined by the entire function g(z) = ϕ(z, 0). In fact, we have

ϕ(z, w) = g(z) + g′′(z)w + g(4)(z)w2/2! + . . .

Since

Fϕ(h3) =
∂3ϕ

∂z3 (0, 0) = g′′′(0)

it follows that
V (h3) = {g′′′(0) : g(0) = 1 = ‖ϕ‖}.

Given any entire g(z) with g(0) = 1 and |g(z)| ≤ e|Re z|, Bernstein’s The-
orem gives the same growth condition for all derivatives of g. The power
series formula for ϕ(z, w) immediately satisfies |ϕ(z, w)| ≤ e|Re z|+|w|. By
Phragmén–Lindelöf, this ϕ gives a support functional at the identity of
Ea(S) if and only if |ϕ(iy, iv)| ≤ 1 for all real y, v. Herein lies the delicacy
in calculating V (hn). It is not even immediately obvious that hn fails to
be hermitian for n ≥ 3 in this case. This can be shown by the method of
[CDM1] and the theory of oscillatory integrals, but it was simpler to do so
by the method of Section 2.

(3) By analogy with [CDM1] we should expect to be able to identify
Ea(F) (for the present example) with all functions on [−1, 1] of the form

f(t) =
�

C2

exp(tz + t2w) dµ(z, w)

where µ is any regular Borel measure on C2 with
�

C2

$(z)$(w) d|µ| <∞.

The key step in the argument in [CDM1] was to prove that a natural pairing
was well defined. We have been unable to achieve this proof by any of the
arguments that are effective for the case F = {1}; it is not hard to see that
the problem is equivalent to showing that Ea(F) is semisimple.

Now we have to modify the argument to deal with the case of any finite
set F with 1 ∈ F. Suppose that F has N elements, 1, n2, . . . , nN . Let ΦF be
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the set of all entire functions in N complex variables such that

|ϕ(z1, . . . , zN )| ≤ $(z1) . . .$(zN )

and also ϕ satisfies the system of complex partial differential equations

∂ϕ

∂zj
=
∂njϕ

∂z
nj
1

(nj ∈ F).

An elaboration of the above argument gives the following theorem.

Theorem 3.3. Let F be a finite subset of N with 1 ∈ F. Then the ex-
tremal algebra Ea(F) has dual space ΦF and Ea(F) is isometrically isomor-
phic to the closed subalgebra of B(ΦF) generated by the hermitian operator
∂/∂z1.

4. Some questions. 1. Does the converse of the Müntz Theorem hold?
If S is a subset of the odds such that

∑{1/n : n ∈ S} < ∞, do we have
Ŝ 6= 2N− 1? Similarly for the evens (with a hermitian generator).

2. In all the examples we know, Ŝ is either S itself, or the union of S with
the evens or the odds (or both). Are these the only possibilities?

3. Is Ea(S) C∗-equivalent if and only if Ŝ ⊇ 2N− 1?
4. Is Ea(S) semisimple for every S?
5. Let F1,F2 be finite subsets of N. Do we have F1 = F2 given that Ea(F1)

is isometrically isomorphic to Ea(F2)? What if we have only a bicontinuous
isomorphism?

6. Characterize S such that Ea(S) is an amenable Banach algebra.
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