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Operators on a Hilbert space similar to a part
of the backward shift of multiplicity one

by

Yoichi Uetake (Poznań)

Abstract. Let A : X → X be a bounded operator on a separable complex Hilbert
space X with an inner product 〈·, ·〉X . For b, c ∈ X, a weak resolvent of A is the complex
function of the form 〈(I − zA)−1b, c〉X . We will discuss an equivalent condition, in terms
of weak resolvents, for A to be similar to a restriction of the backward shift of multi-
plicity 1.

1. Introduction. We characterize an operator on a separable complex
Hilbert space which is similar to a part of the backward shift of multiplicity
1, in terms of cyclic vectors and weak resolvents belonging to the Hardy
spaceH∞. We base our development on the work of Fuhrmann [6], Helton [7],
Nikol’skĭı [10], and Radjavi and Rosenthal [12]. We hope that this note would
serve to unify and refine some results in the previous works mentioned above.
What plays the central role is the concept of weak resolvent introduced by
Fong, Nordgren, Radjavi and Rosenthal [5], [11], [13]. The weak resolvents
here correspond to a class of characteristic functions of the Sz.-Nagy–Foiaş
operator model theory [16]. Note that this operator model theory has been
related to the Lax–Phillips scattering theory by Adamjan and Arov [1]. See
also Helton [7] and Uetake [18].

For A : X → X a bounded operator on a complex Hilbert space X with
inner product 〈·, ·〉X and b, c ∈ X, we define a weak resolvent of A to be

〈(I − zA)−1b, c〉X .

Here I denotes the identity map on X. For this see also Mlak [9] and Uetake
[17], [18].

Let T = {z : |z| = 1}, the unit circle in the complex plane, and D = {z :
|z| < 1}, the open unit disc. We use the following two Hardy spaces:
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H2 =
{
f : f(z) =

∞∑

n=0

fnz
n, z ∈ D,

‖f‖2 = lim
r→1

{
1

2π

2π�

0

|f(reiθ)|2 dθ
}1/2

<∞
}
,

H∞ =
{
f : f(z) =

∞∑

n=0

fnz
n, z ∈ D,

‖f‖∞ = lim
r→1

max
0≤θ<2π

|f(reiθ)| <∞
}
⊂ H2.

Let L2 denote the Hilbert space of square integrable functions on T, equipped
with the inner product defined by

〈f, g〉 =
1

2π

2π�

0

f(eiθ)g(eiθ) dθ =
∞∑

n=−∞
fngn

for f(z) =
∑∞
n=−∞ fnz

n, g(z) =
∑∞
n=−∞ gnz

n, z ∈ T. Note that {zn :
z ∈ T, n ∈ Z} is an orthonormal basis of L2. Then H2 is isometrically
isomorphic to {f ∈ L2 : fn = 0, n < 0} ⊂ L2. Therefore we identify H2 with
this subspace of L2 in the natural way and denote the inner product of H2

also by 〈·, ·〉.
The unilateral shift of multiplicity 1, denoted by S : H2 → H2, is defined

by (Sf)(z) = zf(z), and its adjoint, the backward shift of multiplicity 1,
denoted by S∗ : H2 → H2, is defined by

(S∗f)(z) =
f(z)− f(0)

z
=
∞∑

n=0

fn+1z
n.

A subspaceK ⊆ H2 is said to be S-invariant (resp. S∗-invariant) if SK ⊆ K
(resp. S∗K ⊆ K). For an S∗-invariant subspace K ⊆ H2, S∗|K : K → K is
called a part (or restriction) of the backward shift of multiplicity 1.

To state the main theorem we need to define some notions of cyclicity.
Let T : H → H be a bounded operator on a separable complex Hilbert space
H. Let E0 = {(un)∞n=0 : un = 0 for all n ≥ N for some N} ⊂ l2 = l2(0,∞).
Given v ∈ H, define C : E0 → H by Cu =

∑∞
n=0 unT

nv for u = (un)∞n=0
∈ E0. Note that the sum is actually finite. Let us call C the cyclicity operator
for v and T . For this operator, see also Helton [7] and Fuhrmann [6]. Note
that C is not necessarily bounded.

Definition 1.1. v is cyclic for T if span{Tnv : n ≥ 0} = H, or, equiva-
lently, C(E0) = H.

Here span denotes the closure of the linear span.
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Definition 1.2. v is continuously cyclic for T if v is cyclic for T and C
is continuous (i.e. bounded).

Note that if C : E0 → H is continuous, then C extends to a continuous
operator from l2 to H in the natural way, since E0 is dense in l2. Therefore
C : E0 → H is continuous if and only if it has a continuous extension
C : l2 → H. If v is continuously cyclic for T , then for the extended C,
C(l2) = H.

Definition 1.3. v is strongly cyclic for T if v is continuously cyclic for
T and the extended C : l2 → H is surjective.

2. The main theorem. We can now state our main theorem.

Theorem 2.1 (Main Theorem). Let A : X → X be a bounded operator
on a separable complex Hilbert space equipped with an inner product 〈·, ·〉X .
There exists an S∗-invariant closed subspace K ⊆ H2 such that A : X → X
is similar to S∗|K : K → K, i.e. A = T−1(S∗|K)T for some bounded
bijection T : X → K, if and only if there exist b, c ∈ X such that b is
continuously cyclic for A, c is strongly cyclic for A∗ and the weak resolvent
ϕ(z) = 〈(I − zA)−1b, c〉X is in H∞.

The following corollary is an immediate consequence of the above theo-
rem.

Corollary 2.2. Let A be a bounded operator on a separable complex
Hilbert space X with an inner product 〈·, ·〉X . If there exist b, c ∈ X such
that b is continuously cyclic for A, c is strongly cyclic for A∗ and the weak
resolvent ϕ(z) = 〈(I − zA)−1b, c〉X is in H∞, then r(A) ≤ 1, where r(A)
denotes the spectral radius of A.

Proof. By Theorem 2.1, A is similar to S∗|K, a part of the backward
shift of multiplicity 1 for some K ⊆ H2. Since ‖S∗|K‖ ≤ 1, the assertion
readily follows.

The above theorem is an extension of the following theorem of Radjavi
and Rosenthal to separable infinite-dimensional Hilbert spaces.

Theorem 2.3 (Radjavi and Rosenthal [12, Theorem 3.27, p. 54]). Let
A be an operator on a finite-dimensional complex Hilbert space. Then A is
similar to a part of S∗ of multiplicity 1 if and only if A is cyclic (or , equiv-
alently , the characteristic and minimal polynomials coincide) and r(A) < 1.

Here A is said to be cyclic if there exists a cyclic vector for A. One can
use the following theorem to deduce Theorem 2.3 from Theorem 2.1.

Theorem 2.4 (Uetake [17, Theorem 2]). Let A be a bounded operator
on a separable complex Hilbert space X with an inner product 〈·, ·〉X . Let
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b ∈ X be cyclic for A and c ∈ X be cyclic for A∗. Suppose that (λI−A)−1 is
meromorphic in an open neighborhood of λ0. Then ψ(λ) = 〈(λI−A)−1b, c〉X
has a pole of order m at λ0 if and only if (λI −A)−1 has a pole of order m
at λ0.

Proof of Theorem 2.3. For A on a finite-dimensional space, A is cyclic if
and only if A∗ is cyclic. To see this consider their characteristic and minimal
polynomials. Since ϕ(z) = λψ(λ) with z = λ−1, it follows that ϕ(z) has no
pole in the closed unit disc D if and only if ψ(λ) has no pole in (C∪{∞})\D.
For a rational ϕ = ϕ(z), ϕ ∈ H∞ if and only if ϕ has no pole in D. From
these observations and Theorems 2.1 and 2.4, the assertion of the theorem
readily follows.

We should mention the following two pioneering theorems in operator
model theory. For these and further developments, see Radjavi and Rosen-
thal [12, §3.5] and Sz.-Nagy and Foiaş [16].

Theorem 2.5 (Rota [14]). Let A be a bounded operator on a complex
Hilbert space of dimension equal to the cardinal number α. If r(A) < 1, then
A is similar to a part of the backward shift S∗ of multiplicity α.

Theorem 2.6 (Foiaş [4] and de Branges and Rovnyak [2]). Let A be a
bounded operator on a complex Hilbert space X such that ‖A‖ ≤ 1 and
Anx→ 0 for all x ∈ X, and α be the dimension of the closure of the range
of I − A∗A. Then A is a part of the backward shift S∗ of multiplicity α.

3. Proof of the main theorem. To prove the main theorem, we need
some theorems of Nikol’skĭı and Helton. The following theorem is taken from
Nikol’skĭı [10]. We include the proof for the sake of completeness.

Theorem 3.1 (Nikol’skĭı [10, p. 37]). Every S∗-invariant closed proper
subspace K ⊂ H2 (i.e. K 6= H2) has a vector f ∈ K that is cyclic for S∗|K.

Proof. Since K⊥ = H2	K 6= {0} is closed and S-invariant, there exists
an inner Θ (i.e. Θ ∈ H∞, |Θ(z)| = 1 a.e. on T) such that K⊥ = ΘH2 by
the celebrated Beurling Theorem (see e.g. [15, p. 376]). Thus K = (ΘH2)⊥.
Set f = S∗Θ. Then for any h ∈ H2, 〈S∗Θ,Θh〉 = 〈Θ,SΘh〉 = 〈Θ, zΘh〉 =
〈1, ΘΘzh〉 = 〈1, zh〉 = 0. Thus f ∈ K.

Now suppose that for some k ∈ K, 〈(S∗|K)nf, k〉 = 〈S∗n+1Θ, k〉 = 0
for all n ≥ 0. Note that z−(n+1) = zn+1 ∈ L2. Since 〈z−(n+1), Θk〉 =
〈zn+1, Θk〉 = 〈Θ, zn+1k〉 = 〈Θ,Sn+1k〉 = 〈S∗n+1Θ, k〉 = 0 for all n ≥ 0
for this k, we have Θk ∈ H2. However, since 〈Θh, k〉 = 0 for any h ∈ H2,
substituting h = Θk, we have 〈ΘΘk, k〉 = 〈k, k〉 = 0. Therefore k = 0. This
means that f is cyclic for S∗|K.
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To proceed to Lemma 3.2, recall that

BMO =
{
f ∈ L1 : sup

I

1
|I|

�

I

|f(eiθ)− fI | dθ <∞, fI =
1
|I|

�

I

f(eiθ) dθ
}
.

For BMO, see e.g. [10, p. 376].

Lemma 3.2. For an S∗-invariant closed subspace K ⊆ H2, suppose that
f ∈ K is cyclic for S∗|K. If f ∈ H∞, then f is continuously cyclic for S∗|K.

Proof. Since H∞ ⊂ BMO as is easy to check, f ∈ BMO. Let f =∑∞
n=0 fnz

n. Then the cyclicity operator C can be represented by the infinite
Hankel matrix (fm+n) if one regards H2 as l2 under the natural correspon-
dence H2 3 ∑∞n=0 hnz

n 7→ (hn)∞n=0 ∈ l2. Note that this correspondence
gives an isometrical isomorphism between H2 and l2. The lemma follows
from Nehari’s theorem that (fm+n) is bounded if and only if f ∈ BMO (see
e.g. [10, p. 376, p. 408]).

Throughout let e0 = 1 ∈ H2. For a closed subspace K ⊆ H2, let PK
denote the orthogonal projection of H2 onto K.

Lemma 3.3. For an S∗-invariant closed subspace K ⊆ H2, set g =
PKe0. Then g is strongly cyclic for (S∗|K)∗.

Proof. Define the cyclicity operator O : l2 → K for g and (S∗|K)∗ by

Oy =
∞∑

n=0

yn(S∗|K)∗ng

for y = (yn)∞n=0 ∈ l2. We show that O is continuous and surjective.
For any k ∈ K,

∑∞
n=0〈k, Sne0〉Sne0 = k. Note that Sne0 = zn ∈ H2.

Since PKk = k, we have 〈k, Sne0〉 = 〈PKk, Sne0〉 = 〈k, PKSne0〉 and so
∞∑

n=0

〈k, PKSne0〉PKSne0 = k.

Recall that K is S∗-invariant and hence is (S∗|K)∗-invariant as well. So for
any h ∈ H2 we have

〈PKSne0, h〉 = 〈Sne0, PKh〉 = 〈e0, S
∗nPKh〉 = 〈e0, PK(S∗|K)nPKh〉

= 〈PKe0, (S∗|K)nPKh〉 = 〈g, (S∗|K)nPKh〉
= 〈(S∗|K)∗ng, PKh〉 = 〈PK(S∗|K)∗ng, h〉 = 〈(S∗|K)∗ng, h〉.

Therefore we have
(S∗|K)∗ng = PKS

ne0.

Now take an arbitrary y = (yn)∞n=0 ∈ l2. Then h = h(z) =
∑∞
n=0 ynz

n ∈
H2. Recall that this correspondence gives the natural isometrical isomor-
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phism between l2 and H2. Recall also that Sne0 = zn ∈ H2. Since
∞∑

n=0

ynS
ne0 =

∞∑

n=0

ynz
n = h,

we have
∞∑

n=0

yn(S∗|K)∗ng =
∞∑

n=0

ynPKS
ne0 = PKh ∈ K.

From this we see thatO is continuous and surjective. Therefore by definition,
g is strongly cyclic for (S∗|K)∗.

Lemma 3.4. Let K be an S∗-invariant closed subspace of H2. For f ∈ K
and g = PKe0, we have 〈(IK − z(S∗|K))−1f, g〉 = f(z), z ∈ D. Here IK
denotes the identity map on K.

Proof. Let f(z) =
∑∞
n=0 fnz

n. Since S∗|K is a contraction, for z ∈ D
we have

〈(IK − z(S∗|K))−1f, g〉 =
〈 ∞∑

n=0

(zS∗|K)nf, PKe0

〉
=
〈
PK

∞∑

n=0

(zS∗|K)nf, e0

〉

=
〈 ∞∑

n=0

(zS∗|K)nf, e0

〉
=
∞∑

n=0

〈(S∗|K)nf, e0〉zn

=
∞∑

n=0

fnz
n = f(z).

Here we view (IK − z(S∗|K))−1f =
∑∞
n=0(zS∗|K)nf as an element of K ⊆

H2 which depends on the parameter z.

To give the proof of the main theorem, we need the following theorem of
Helton. Again for the sake of completeness, we give a detailed proof, focusing
on the construction of the similarity operator.

Theorem 3.5 (Helton [7]). For i = 1, 2, let Xi be a separable complex
Hilbert space with an inner product 〈·, ·〉Xi. Let bounded operators Ai : Xi →
Xi and vectors bi, ci ∈ Xi, i = 1, 2, be such that bi is continuously cyclic
for Ai, ci is strongly cyclic for A∗i and 〈An1 b1, c1〉X1 = 〈An2 b2, c2〉X2 for all
n ≥ 0. Then A2 is similar to A1.

Proof. Throughout this proof let i = 1 or 2. Let Ciu =
∑∞
n=0 unA

n
i bi

for u = (un)∞n=0 ∈ l2 and Oiy =
∑∞
n=0 ynA

∗n
i ci for y = (yn)∞n=0 ∈ l2. Note

that Ci and Oi are continuous by assumption. Thus O∗i : Xi → l2 is also
continuous (see e.g. [3, p. 31]). It is easy to see thatO∗i xi = (〈Ani xi, ci〉Xi)∞n=0
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for xi ∈ Xi. Thus it is easy to check that

O∗i Ciu =
(〈
Ani

∞∑

m=0

umA
m
i bi, ci

〉
Xi

)∞
n=0

=
( ∞∑

m=0

〈An+m
i bi, ci〉Xium

)∞
n=0

.

Therefore O∗1C1 = O∗2C2. Note that imO∗1C1 = imO∗2C2 ⊆ imO∗1 ∩ imO∗2
⊆ imO∗i .

SinceO1 is a bounded surjection and kerO∗1 = (imO1)⊥ = {0}, it follows
that O∗1 : X1 → l2 is a bounded injection. Note that imO∗1 = (kerO1)⊥ and
so imO∗1 is closed. Therefore by the Inverse Mapping Theorem (see e.g.
[3, p. 94]), there exists a bounded bijection O∗L1 : imO∗1 → X1 such that
O∗L1 O∗1 = IX1 . Thus C1 = O∗L1 O∗2C2. There exists a bijection CR2 : im C2 →
(ker C2)⊥ such that C2CR2 = I : im C2 → im C2. Note that CR2 need not be
bounded. Since O∗2 : X2 → imO∗2 and O∗L1 : imO∗1 → X1 have bounded
inverses, it follows that C1CR2 = O∗L1 O∗2 : im C2 → O∗L1 O∗2(im C2) is bounded
and has a bounded inverse.

Since b1 is cyclic for A1, for every x1 ∈ X1 there exists a sequence u(n) ∈
l2 such that im C1 3 x(n)

1 = C1u(n) → x1. Since O∗1C1 = O∗2C2, by setting
x

(n)
2 = C2u(n) ∈ im C2 we have O∗1x(n)

1 = O∗2x(n)
2 . Thus x(n)

1 = O∗L1 O∗2x(n)
2 .

This means that O∗L1 O∗2(im C2) is dense in X1. Of course im C2 is also dense
in X2 by assumption. Therefore T = C1CR2 = O∗L1 O∗2 extends to an invertible
bounded bijection from X2 to X1 in the natural way.

It is also easily checked that O∗1A1C1 = O∗2A2C2. Thus A1T = TA2 and
so A2 = T−1A1T .

Now we can give the proof of the main theorem.

Proof of Theorem 2.1. (If ) Set f0 = ϕ ∈ H∞ and let K = span{S∗nf0 :
n ≥ 0} ⊆ H2. Here the closure is taken in the topology of H2. Obviously,K is
S∗-invariant and closed, and f0 is cyclic for S∗|K. Moreover, by Lemma 3.2,
f0 is continuously cyclic for S∗|K.

Set g = PKe0. By Lemma 3.3, g is strongly cyclic for (S∗|K)∗. By
Lemma 3.4, 〈(IK−z(S∗|K))−1f0, g〉 = f0(z) = ϕ(z). Thus all the conditions
in Theorem 3.5 are satisfied for A1 = S∗|K, b1 = f0 ∈ X1, c1 = g ∈ X1

where X1 = K and A2 = A, b2 = b ∈ X2, c2 = c ∈ X2 where X2 = X, and
so A can be recovered from S∗|K by T : X → K as constructed in the proof
of Theorem 3.5.

(Only if ) Let T : X → K be a bounded bijection such that K ⊆ H2 is
S∗-invariant and closed, and A = T−1(S∗|K)T .

If K = H2, then, for example, f = f(z) = e1/(z−2) ∈ H∞ is cyclic for
S∗ = S∗|H2, since f does not have a meromorphic pseudocontinuation into
(C ∪ {∞}) \D. See [10, pp. 30–32]. As f ∈ H∞, it is continuously cyclic for
S∗ by Lemma 3.2.
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If K 6= H2, then we can use Theorem 3.1 and set f = S∗Θ as in the proof
of that theorem. Since Θ ∈ H∞ and f(z) = (S∗Θ)(z) = (Θ(z)−Θ(0))/z,
we see that f ∈ H∞. Thus by Lemma 3.2, f is continuously cyclic for S∗|K.

In both cases, set g = PKe0. By Lemma 3.3, g is strongly cyclic for
(S∗|K)∗. Now let b = T−1f, c = T ∗g. Then it is clear that b is continuously
cyclic for A, and c is strongly cyclic for A∗. By Lemma 3.4, we have

〈(I − zA)−1b, c〉X = 〈(I − zT−1(S∗|K)T )−1T−1f, T ∗g〉X
= 〈(IK − z(S∗|K))−1f, g〉 = f(z) ∈ H∞.
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