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Measure of weak noncompactness
under complex interpolation

by

Andrzej Kryczka and Stanisław Prus (Lublin)

Abstract. Logarithmic convexity of a measure of weak noncompactness for bounded
linear operators under Calderón’s complex interpolation is proved. This is a quantitative
version for weakly noncompact operators of the following: if T : A0 → B0 or T : A1 → B1
is weakly compact, then so is T : A[θ] → B[θ] for all 0 < θ < 1, where A[θ] and B[θ]
are interpolation spaces with respect to the pairs (A0, A1) and (B0, B1). Some formulae
for this measure and relations to other quantities measuring weak noncompactness are
established.

1. Introduction. Measures of noncompactness or weak noncompact-
ness have been successfully applied in operator theory, differential equations,
and integral equations (see [1], [5], and [6]). In particular, they enabled sev-
eral authors to develop quantitative methods in interpolation of operators
(see [2], [11]–[15], [28]). One of the main aims of these investigations is to es-
tablish a kind of logarithmic convexity of the measures under interpolation.
Most results in this direction were obtained for real interpolation. Some
of them generalize the following Beauzamy theorem [9]: if the embedding
I : A0∩A1 → A0 +A1 is weakly compact then the interpolation spaces Aθ,p
are reflexive for all 0 < θ < 1 and 1 < p < ∞. In this paper we consider
Calderón’s complex interpolation. The counterpart of Beauzamy’s result is
false for this interpolation method (see [25]). Nevertheless, Calderón [10]
proved that if one of the Banach spaces A0, A1 is reflexive then so is the
interpolation space A[θ] for every 0 < θ < 1.

In [24], a measure of weak noncompactness γ for sets and a corresponding
measure Γ for operators were introduced. The measure Γ was applied to the
Lions–Peetre real interpolation method (in a discrete form). Namely, for all
0 < θ < 1 and 1 < p <∞ the following estimate was established:

(1.1) Γθ,p(T ) ≤ cθΓ0(T )1−θΓ1(T )θ,

where cθ = 2θ(1−θ) and Γθ,p(T ), Γj(T ), j = 0, 1, are values of Γ for the
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operators T : Aθ,p → Bθ,p and T : Aj → Bj , j = 0, 1 respectively. In
this paper we obtain an analogous estimate for complex interpolation, but
with cθ = 1. This generalizes Calderón’s above-mentioned result. We also
show that Γ is equivalent to a quantity measuring the deviation from weak
compactness of an operator, which was studied by González, Saksman and
Tylli in [21]. Consequently, an estimate of type (1.1) holds for this quantity
as well.

Our notation and terminology are standard. Given a Banach space X
the open unit ball of X will be denoted by BX and its closure by BX . The
family of all nonempty bounded subsets of X will be denoted by MX . We
write convA for the convex hull of a set A ⊂ X and ConvA for the closure
of convA. Throughout this paper elements of X are identified with their
canonical images in the second dual X∗∗. Abbreviations and symbols begin-
ning with w∗ refer to the weak-star topology. The space of all bounded linear
operators between Banach spaces X and Y will be denoted by L(X,Y ).

2. Measures of weak noncompactness. For simplicity, in the first
three sections of this paper we restrict our attention to real Banach spaces.
However, all proofs can be easily extended to complex Banach spaces, so the
results can be applied in the last section where we consider complex spaces.

Let X be a Banach space and let (xn) be a sequence in X. We say
that (yn) is a sequence of successive convex combinations (scc for short)
for (xn) if there exists a sequence of integers 0 = p1 < p2 < . . . such that
yn ∈ conv{xi}pn+1

i=pn+1 for each n. Of course, the relation scc is reflexive and
transitive. Similarly, vectors u1, u2 are said to be a pair of scc for (xn) if
u1 ∈ conv{xi}pi=1 and u2 ∈ conv{xi}∞i=p+1 for some integer p ≥ 1. From
our point of view, the crucial fact about sequences of scc is the following
theorem based on an idea of Milman [26]. For the convenience of the reader
we repeat the proofs of the next two theorems from [24].

Theorem 2.1. Let (xn) be a bounded sequence in a Banach space X. For
every ε > 0 there exists a sequence (yn) of scc for (xn) such that if u1, u2

and v1, v2 are any pairs of scc for (yn), then |‖u1 − u2‖ − ‖v1 − v2‖| ≤ ε.

Proof. Let An = Conv{xi}∞i=n for n ∈ N. Assume first that
⋂∞
n=1An 6= ∅.

Then we can find a convergent sequence of scc for (xn) and, by ignoring a
finite number of terms if necessary, we get a sequence as required. Suppose
now that

⋂∞
n=1An = ∅. A reasoning similar to that in the proof of the

corollary of Theorem 2 in [26] (see also [27]) gives a constant d > 0 such
that for any ε > 0 there exists a sequence (yn) of scc for (xn) such that
d− ε ≤ ‖u1−u2‖ ≤ d for any pair u1, u2 of scc for (yn). Clearly, (yn) fulfills
the assertion of the theorem.
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The notion of scc was used in [24] to define a measure of weak noncom-
pactness γ which is a counterpart for the weak topology of the separation
measure of noncompactness (see [1], [5]). By the convex separation of (xn)
we mean

csep(xn) = inf{‖u1 − u2‖ : u1, u2 is a pair of scc for (xn)}.
For each A ∈ MX we put

γ(A) = sup{csep(xn) : (xn) ⊂ convA}.
The function γ is a measure of weak noncompactness in the sense of the
axiomatic definition given in [7]. Namely, for all sets A,B ∈ MX and scalars
λ we have

(1) γ(A) = 0 if and only if A is a relatively weakly compact set;
(2) γ(ConvA) = γ(A);
(3) γ(A ∪B) = max{γ(A), γ(B)};
(4) γ(A+B) ≤ γ(A) + γ(B);
(5) γ(λA) = |λ|γ(A)

(see [24]). Condition (1) is a consequence of James’ criterion of weak com-
pactness (see [22]). Using an idea from [22] one can also obtain the following
formulae [24].

Theorem 2.2. Let X be a Banach space and A ∈ MX . Then

(2.1) γ(A) = sup{lim
n

lim
k
Fn(xk)− lim

k
lim
n
Fn(xk) :

(xk) ⊂ convA, (Fn) ⊂ BX∗ and the limits exist}
(2.2) = sup dist(x∗∗, conv{xn}),
where the second supremum is taken over all sequences (xn) in convA and
all w∗-cluster points x∗∗ ∈ X∗∗ of (xn).

Proof. We first prove (2.2). Denote by γ′(A) the right-hand side of (2.2).
In order to show that γ′(A) ≥ γ(A) we argue as in the proof of Lemma 2.1
of [27]. Indeed, for ε > 0 take a sequence (xn) in convA such that γ(A) −
ε ≤ csep(xn) and fix x ∈ conv{xn}. There exists m ∈ N such that if y ∈
conv{xi}∞i=m, then x, y is a pair of scc for (xn) and therefore ‖x − y‖ ≥
csep(xn) ≥ γ(A) − ε. By applying a separation theorem, we can find a
functional x∗ ∈ X∗ such that ‖x∗‖ ≤ 1 and x∗(y − x) ≥ γ(A) − ε for
all y ∈ conv{xi}∞i=m. Let x∗∗ ∈ X∗∗ be a w∗-cluster point of (xn). Then
x∗∗(x∗) = limk→∞ x∗(xnk) for some subsequence (xnk) and consequently
‖x∗∗ − x‖ ≥ (x∗∗ − x)(x∗) = limk→∞ x∗(xnk − x) ≥ γ(A) − ε. This gives
dist(x∗∗, conv{xn}) ≥ γ(A)− ε and finally γ′(A) ≥ γ(A).

The proof of the opposite inequality is a modification of a reasoning
in [22] (see also [18]). For each ε > 0 there exists a sequence (xn) in convA
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and its w∗-cluster point x∗∗ ∈ X∗∗ such that dist(x∗∗, conv{xn}) ≥ γ′(A)−ε.
By a separation theorem we obtain a functional x∗∗∗ ∈ X∗∗∗ such that
‖x∗∗∗‖ ≤ 1 and x∗∗∗(x∗∗ − x) ≥ γ′(A) − ε for all x ∈ conv{xn}. We now
choose by induction a sequence of functionals (x∗k) ⊂ X∗ and a subsequence
(xnk) with ‖x∗k‖ ≤ 1 + ε for all k ∈ N, x∗k(xni) ≥ x∗∗∗(x∗∗)− ε if k ≤ i and
x∗k(xni) = x∗∗∗(xni) if i < k. By the principle of local reflexivity [18, p. 33],
there exists x∗1 ∈ X∗ such that ‖x∗1‖ ≤ 1 + ε and x∗∗(x∗1) = x∗∗∗(x∗∗).
Since x∗∗ is a w∗-cluster point of (xn) we can find n1 ∈ N satisfying
|x∗1(xn1)− x∗∗(x∗1)| ≤ ε.

Assume now that we have obtained the required x∗1, . . . , x
∗
k−1 and

xn1 , . . . , xnk−1 . There exists x∗k ∈ X∗ such that ‖x∗k‖ ≤ 1 + ε, x∗k(xni) =
x∗∗∗(xni) for i = 1, . . . , k − 1 and x∗∗(x∗k) = x∗∗∗(x∗∗). Choose nk > nk−1

satisfying |x∗i (xnk) − x∗∗(x∗i )| ≤ ε for i = 1, . . . , k. Consider now a pair
u, v of scc for (xni). There exists k > 1 such that u ∈ conv{xni}k−1

i=1 and
v ∈ conv{xni}∞i=k. Of course x∗k(u) = x∗∗∗(u) and x∗k(v) ≥ x∗∗∗(x∗∗) − ε,
and hence (1 + ε)‖u− v‖ ≥ x∗k(v − u) ≥ x∗∗∗(x∗∗ − u)− ε ≥ γ′(A)− 2ε. It
follows that

csep(xni) ≥
γ′(A)− 2ε

1 + ε
,

which gives

γ(A) ≥ γ′(A)− 2ε
1 + ε

.

Letting ε→ 0 we obtain γ(A) ≥ γ′(A), and the proof of (2.2) is complete.
Denote by e(A) the right-hand side of (2.1). From the proof of (2.2) it

follows that there exists a such that for every ε > 0 one can find sequences
(xk) ⊂ convA and (Fn) ⊂ BX∗ with Fn(xk) ≥ a−ε for n ≤ k and Fn(xk) ≤
a − γ(A) + ε for n > k. By passing to a subsequence if necessary, we can
assume that the limits α1 = limn limk Fn(xk) and α2 = limk limn Fn(xk)
both exist. Of course, γ(A) − 2ε ≤ α1 − α2. Hence γ(A) − 2ε ≤ e(A) and
γ(A) ≤ e(A).

Let (xk) ⊂ convA and (Fn) ⊂ BX∗ be any sequences for which the lim-
its β1 = limn limk Fn(xk) and β2 = limk limn Fn(xk) exist. By Theorem 2.1
for every ε > 0 we can find a sequence (zk) of scc for (xk) such that
‖zi − zj‖ − csep(zk) ≤ ε for every i 6= j. Then β1 = limn limk Fn(zk) and
β2 = limk limn Fn(zk). Therefore β1 − β2 ≤ lim infj lim infi ‖zi − zj‖. Con-
sequently, β1 − β2 ≤ csep(zk) + ε ≤ γ(A) + ε. Hence γ(A) + ε ≥ e(A) and
finally γ(A) ≥ e(A).

Formula (2.2) suggests another way of measuring weak noncompactness.

Definition 2.3. For each A ∈ MX let

γ(A) = sup dist(x∗∗,X)
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where the supremum is taken over all w∗-cluster points x∗∗ ∈ X∗∗ of se-
quences in convA.

It is easy to check that γ is a measure of weak noncompactness. We shall
show that γ is equivalent to γ.

Theorem 2.4. Let X be a Banach space and A ∈ MX . Then

(2.3) γ(A) ≤ γ(A) ≤ 2γ(A).

Proof. Of course, γ(A) ≤ γ(A). Fix ε > 0. There exist a sequence (xn) ⊂
convA and its w∗-cluster point x∗∗ such that γ(A)−ε ≤ dist(x∗∗, conv{xn})
= δ. We write δ0 = dist(x∗∗,X). There is x ∈ X such that ‖x∗∗−x‖ < δ0+ε.
Taking δ1 = dist(x, conv{xn}) we choose x∗ ∈ BX∗ so that x∗(x−y) ≥ δ1 for
every y ∈ conv{xn}. Then δ1 ≤ x∗(x)− x∗∗(x∗) ≤ ‖x− x∗∗‖ < δ0 + ε. Since
δ ≤ δ1+‖x∗∗−x‖ < 2(δ0+ε), we conclude that γ(A) < 2δ0+3ε ≤ 2γ(A)+3ε.
Finally, γ(A) ≤ 2γ(A).

The measures γ and γ are equal in the space c0 (see [24]), but in general
inequalities (2.3) cannot be improved. Indeed, consider c0 as a subspace
of the space c. Then γ(Bc0) = γ(Bc0) = 1 (see [24]). On the other hand,
considering elements of type (1, . . . , 1,−1, . . .) one can see that 2 = γ(Bc) =
2γ(Bc).

Another example of a measure of weak noncompactness was introduced
by De Blasi [16]. It is given by the formula

ω(A) = inf{t > 0 : A ⊂ C + tBX , C ⊂ X is weakly compact}
for each A ∈ MX . This measure can be regarded as a counterpart for the
weak topology of the classical Hausdorff measure of noncompactness. We
have

(2.4) ξ(A) ≤ ξ(BX)ω(A)

for any measure of weak noncompactness ξ and every A ∈MX (see [8]).
From Theorem 2.2 and a result in [4] we see that γ is not equivalent to ω.

On the other hand, these measures coincide in the space c0 (see [24]). We
shall establish relations between γ, γ and ω in the Lebesgue space L1(µ).
This space is especially important for the applications of measures of weak
noncompactness in differential and integral equations (see [6] and the refer-
ences given there). Let µ be a finite measure. Then

(2.5) ω(A) = inf
δ>0

sup
µ(D)≤δ

sup
x∈A

�

D

|x(t)| dµ(t)

for every A ∈ML1(µ) (see [3]).

Theorem 2.5. Let µ be a finite measure and A ∈ML1(µ). Then γ(A) =
2ω(A) and γ(A) = ω(A).
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Proof. From (2.4) we see that γ(A) ≤ 2ω(A) and γ(A) ≤ ω(A) for each
A ∈ ML1(µ). It is therefore enough to prove the opposite inequalities. We
take A ∈ ML1(µ) with ω(A) > 0 and a number η with 0 < 2η < ω(A).
Formula (2.5) shows that for every n there exist a measurable set Dn with
µ(Dn) ≤ 1/2n and xn ∈ A such that

�

Dn

|xn(t)| dµ(t) > ω(A)− η.

We set n1 = 1 and choose n2 > n1 so that if µ(E) ≤ 1/2n2−1 then
�

E

|xn1(t)| dµ(t) < η.

Let F =
⋃
k≥n2

Dk and E1 = Dn1\F . Clearly, µ(F ) ≤ ∑
k≥n2

1/2k =
1/2n2−1. Hence

ω(A)− η <
�

Dn1

|xn1(t)| dµ(t) ≤
�

E1

|xn1(t)| dµ(t) +
�

F

|xn1(t)| dµ(t)

<
�

E1

|xn1(t)| dµ(t) + η

and thus �
E1
|xn1(t)| dµ(t) > ω(A)− 2η. Proceeding in this way we obtain a

subsequence (xnk) and a sequence (Ek) of pairwise disjoint sets such that

(2.6)
�

Ek

|xnk(t)| dµ(t) > ω(A)− 2η

for every k. In what follows, χG will denote the characteristic function of
the set G. We put E =

⋃∞
k=1 Ek and yk = xnkχE for k = 1, 2, . . . Following

the reasoning in [17, p. 93] (see also [23]) we can assume that

(2.7)
�

E\Ek
|xnk(t)| dµ(t) < η

for all k and then
∥∥∥

n∑

k=1

αkxnk

∥∥∥ ≥
∥∥∥

n∑

k=1

αkyk

∥∥∥ > (ω(A)− 3η)
n∑

k=1

|αk|

for all scalars α1, . . . , αn. This shows in particular that γ(A) ≥ csep(xnk) >
2(ω(A) − 3η). Consequently, γ(A) ≥ 2ω(A), which completes the proof of
the first formula.

Now consider the functions zk = xnkχEk . From (2.6) and (2.7) it follows
that ‖zk‖ > ω(A)− 2η and ‖zk − xnk‖ < η for every k. Let Z be the closed
linear subspace spanned by the vectors zk. Since the sets Ek are pairwise
disjoint, there exists a linear isometry T : Z → l1 such that T (zk/‖zk‖) is
the kth vector of the standard basis of l1. Moreover, Z is complemented in
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L1(µ) by means of a norm-one projection P . Given x ∈ L1(µ) we find m so
that ‖Tz − T (Px)‖ ≥ ‖Tz‖ − η for each z in the linear span of {zk}k≥m.
Let u belong to Km = conv{xnk}k≥m, i.e. u =

∑s
k=m λkxnk where s > m,

λm, . . . , λs ≥ 0 and
∑s
k=m λk = 1. We set z =

∑s
k=m λkzk. Then ‖z−u‖ < η

and

‖x− z‖ ≥ ‖Px− z‖ ≥ ‖Tz‖ − η =
s∑

k=m

λk‖zk‖ − η > ω(A)− 3η,

which gives ‖x − u‖ > ω(A) − 4η. Consequently, dist(x,Km) ≥ ω(A) − 4η
for each m. We can now apply a reasoning similar to that in the proof of
Lemma 2.1 in [26]. It shows that ‖x∗∗−x‖ ≥ ω(A)−4η for every w∗-cluster
point x∗∗ ∈ X∗∗ of (xnk). It follows that γ(A) ≥ dist(x∗∗,X) ≥ ω(A)− 4η.
This finally yields γ(A) ≥ ω(A).

3. Weak noncompactness of operators. Let X and Y be Banach
spaces and T ∈ L(X,Y ). We set Γ (T ) = γ(T (BX)) and Γ (T ) = γ(T (BX)).
Clearly, each of the conditions Γ (T ) = 0, Γ (T ) = 0 is equivalent to weak
compactness of T . The functions Γ and Γ will therefore be called measures of
weak noncompactness for operators. They are also seminorms in L(X,Y ). A
different way of measuring weak noncompactness of operators was discussed
in [21] (see also [29]). Namely, to each T ∈ L(X,Y ) there corresponds the
operator R(T ) : X∗∗/X → Y ∗∗/Y given by the formula

R(T )(x∗∗ +X) = T ∗∗x∗∗ + Y

for every x∗∗ ∈ X∗∗. Then

‖R(T )‖ = sup{dist(T ∗∗x∗∗, Y ) : dist(x∗∗,X) ≤ 1},
and ‖R(T )‖ = 0 if and only if T is weakly compact (see [19, p. 482]). We
shall prove that Γ , Γ and ‖R( · )‖ are equivalent.

Lemma 3.1. Let X and Y be Banach spaces and T ∈ L(X,Y ). Then

‖R(T )‖ = sup{dist(T ∗∗x∗∗, Y ) : ‖x∗∗‖ ≤ 1}.
Proof. We write |R(T )| = sup{dist(T ∗∗x∗∗, Y ) : ‖x∗∗‖ ≤ 1}. Clearly,

|R(T )| ≤ ‖R(T )‖. Take x∗∗ ∈ X∗∗ such that dist(x∗∗,X) ≤ 1. For each
ε > 0 there exists x ∈ X such that ‖x∗∗−x‖ ≤ 1+ε. Then dist(T ∗∗x∗∗, Y ) =
dist(T ∗∗(x∗∗ − x), Y ) ≤ (1 + ε)|R(T )|. It follows that ‖R(T )‖ ≤ |R(T )|.

Theorem 3.2. Let X and Y be Banach spaces and T ∈ L(X,Y ). Then
1
2Γ (T ) ≤ Γ (T ) ≤ ‖R(T )‖ ≤ Γ (T ).

Proof. Theorem 2.4 gives the first inequality. Let y∗∗ ∈ Y ∗∗ be a
w∗-cluster point of a sequence in T (BX). Since BX∗∗ is w∗-compact and T ∗∗



96 A. Kryczka and S. Prus

is w∗-continuous, the set T ∗∗(BX∗∗) is w∗-closed in Y ∗∗. Hence y∗∗ = T ∗∗x∗∗

for some x∗∗ ∈ BX∗∗ . Consequently, dist(y∗∗, Y ) ≤ ‖R(T )‖. This shows
that γ(T (BX)) ≤ ‖R(T )‖, which gives the second inequality of the asser-
tion.

To prove the last inequality we modify a reasoning given in [22]. Namely,
we take x∗∗ ∈ BX∗∗ and write ϑ = dist(T ∗∗x∗∗, Y ). By a separation the-
orem there exists y∗∗∗ ∈ Y ∗∗∗ such that ‖y∗∗∗‖ = 1, y∗∗∗|Y = 0 and
y∗∗∗(T ∗∗(x∗∗)) = ϑ.

We now fix ε > 0 and apply the principle of local reflexivity (see
[18, p. 33]) to get y∗1 ∈ Y ∗ such that ‖y∗1‖ ≤ 1 + ε, x∗∗(T ∗y∗1) = ϑ, and
x1 ∈ BX such that |(T ∗y∗1)(x1)− ϑ| ≤ ε.

We next proceed by induction. Having x1, . . . , xn−1 ∈ BX and y∗1 , . . .
. . . , y∗n−1 ∈ Y ∗ we choose y∗n ∈ Y ∗ such that ‖y∗n‖ ≤ 1 + ε, x∗∗(T ∗y∗n) = ϑ

and y∗n(Txk) = y∗∗∗(T ∗∗xk) = 0 for every k < n. Then we find xn ∈ BX such
that |x∗∗(T ∗y∗k) − y∗k(Txn)| ≤ ε for every k ≤ n. Consequently, y∗k(Txn) ≥
ϑ− ε if k ≤ n and y∗k(Txn) = 0 if k > n. It follows that ϑ− ε ≤ csep(Txn),
which in view of Lemma 3.1 finally yields ‖R(T )‖ ≤ Γ (T ).

In [21, Prop. 1.3], ‖R( · )‖ was used to obtain a quantitative version of
Gantmacher’s duality theorem for weakly compact operators. This result
together with Theorem 3.2 shows that similar results hold for Γ and Γ as
well.

The next result will play a key role in the proof of our result on the
behaviour of Γ under Calderón’s complex interpolation. Let X and Y be
Banach spaces. By Cb

X we denote the Banach space of all continuous func-
tions x : R → X such that ‖x‖ = sup{‖x(t)‖ : t ∈ R} <∞. Let (R, Σ, ν)
be a measure space, where the measure ν is absolutely continuous with re-
spect to the Lebesgue measure µ on R and ν(R) = 1. The Banach space
of all (equivalence classes of) ν-measurable functions y : R → Y such
that ‖y‖ = � R ‖y(t)‖ dν(t) < ∞ will be denoted by L1

Y (ν). Next, ΛY ∗
denotes the space of all functions f : R → Y ∗ such that the function
t 7→ 〈y, f(t)〉 is ν-integrable for every y ∈ Y (here 〈y, f(t)〉 = f(t)(y)).
For a detailed characterization of (L1

Y (ν))∗ in terms of ΛY ∗ we refer
to [20].

Theorem 3.3. Let X, Y be Banach spaces and T ∈ L(X,Y ). Let T̂ ∈
L(Cb

X , L
1
Y (ν)) be given by the formula (T̂ f)(t) = T (f(t)) for every f ∈ Cb

X .
Then Γ (T̂ ) = Γ (T ).

Proof. Considering the subspace of all constant functions in Cb
X one

can easily see that Γ (T̂ ) ≥ Γ (T ). To prove that Γ (T̂ ) ≤ Γ (T ) we use
formula (2.1). We fix ε > 0 and choose sequences (yn) ⊂ T (BCb

X
) and
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(Fn) ⊂ (L1
Y (ν))∗ with ‖Fn‖ ≤ 1 for every n such that Γ (T̂ ) − ε ≤ ϑ1 − ϑ2

where ϑ1 = limn limk Fn(yk) and ϑ2 = limk limn Fn(yk). Since L1(ν) is
separable, for each n there exists fn ∈ ΛY ∗ such that ‖fn(t)‖ ≤ 1 for all
t ∈ R and

Fn(y) =
�

R
〈y(t), fn(t)〉 dν(t)

for every y ∈ L1
Y (ν) (see [20]). Let 〈yk, fn〉 denote the function t 7→

〈yk(t), fn(t)〉. Obviously, the functions 〈yk, fn〉, k, n ≥ 1, are equiintegrable,
so they form a relatively weakly compact set in L1(ν) (see [17, p. 93]). By
the Eberlein–Shmul’yan and Mazur theorems (see [17, pp. 11, 18]), for each
sequence in a relatively weakly compact set of a Banach space there exists a
convergent sequence of its scc. Next, each convergent sequence in L1(ν) has
a subsequence which converges ν-a.e. to the same limit (see [19, p. 150]).
Therefore we can find a sequence (y1

k) of scc for (yk) such that 〈y1
k, f1〉 tends

ν-a.e. to some g1 ∈ L1(ν).
We now proceed by induction. For n ≥ 2 choose a sequence (ynk ) of

scc for (yn−1
k ) such that 〈ynk , fn〉 tends ν-a.e. to gn ∈ L1(ν) as k → ∞.

Write y′k = ykk for every k. Then (y′k)k≥m is a sequence of scc for (ymk ) and
〈y′k, fn〉 also tends ν-a.e. to gn as k → ∞ for every n. We next choose a
sequence (g′n) of scc for (gn) convergent ν-a.e. to some g ∈ L1(ν). Then
g′n =

∑mn+1
i=mn+1 λ

(n)
i gi, where (mn) is an increasing sequence of positive

integers, λ(n)
i ≥ 0 and

∑mn+1
i=mn+1 λ

(n)
i = 1. We set

f ′n =
mn+1∑

i=mn+1

λ
(n)
i fi and F ′n =

mn+1∑

i=mn+1

λ
(n)
i Fi.

In this way we have obtained the sequences (y′k) ⊂ T (BCb
X

), (f ′n) ⊂ ΛY ∗ and
(F ′n) ⊂ (L1

Y (ν))∗ with the following properties: ‖F ′n‖ ≤ 1, limn limk F
′
n(y′k)

= ϑ1, limk limn F
′
n(y′k) = ϑ2,

F ′n(y) =
�

R
〈y(t), f ′n(t)〉 dν(t)

for all y ∈ L1
Y (ν), n ≥ 1, and limn limk〈y′k, f ′n〉 = g, ν-a.e.

Similarly, we can choose a sequence (f ′′n ) of scc for (f ′n) such that 〈y′k, f ′′n 〉
tends ν-a.e. to some hk ∈ L1(ν) for each k. Next, we take a sequence (y′′k ) of
scc for (y′k) and the corresponding sequence (F ′′n ) of scc for (F ′n) such that
the following limit exists:

lim
k

lim
n
〈y′′k , f ′′n 〉 = h, ν-a.e.

Then limn limk〈y′′k , f ′′n 〉 = g, ν-a.e.
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The Lebesgue dominated convergence theorem yields
�

R
(g(t)− h(t)) dν(t)

= lim
n

lim
k

�

R
〈y′′k (t), f ′′n(t)〉 dν(t)− lim

k
lim
n

�

R
〈y′′k (t), f ′′n (t)〉 dν(t)

= lim
n

lim
k
F ′′n (y′′k )− lim

k
lim
n
F ′′n (y′′k ) = ϑ1 − ϑ2 ≥ Γ (T̂ )− ε.

Since ν(R) = 1, there exists t0 such that

lim
n

lim
k
〈y′′k (t0), f ′′n (t0)〉 − lim

k
lim
n
〈y′′k (t0), f ′′n (t0)〉 ≥ Γ (T̂ )− ε,

which gives Γ (T ) ≥ Γ (T̂ )− ε. By the arbitrary choice of ε > 0 we conclude
that Γ (T ) ≥ Γ (T̂ ).

4. Complex interpolation and the measure Γ . Complex Banach
spaces A0 and A1 are compatible if they are continuously embedded in a
common Hausdorff complex topological vector space. Then A0∩A1, A0 +A1

with the norms

‖a‖A0∩A1 = max{‖a‖A0 , ‖a‖A1}, ‖a‖A0+A1 = inf
a=a0+a1

{‖a0‖A0 + ‖a1‖A1}

are Banach spaces as well. Let A = (A0, A1) denote a pair of compatible
Banach spaces A0 and A1. A Banach space A is said to be an intermediate
space with respect to A if

A0 ∩A1 ⊂ A ⊂ A0 + A1

and both inclusions are continuous. Let A = (A0, A1) and B = (B0, B1)
be two pairs of compatible Banach spaces and let T be a linear operator
from A0 + A1 into B0 + B1. We write T : A → B if T ∈ L(A0, B0) and
T ∈ L(A1, B1), viewed as the restrictions of T . If A and B are intermediate
spaces with respect to A and B respectively, and T : A → B implies that
T ∈ L(A,B), then A and B are said to be interpolation spaces with respect
to A and B .

We recall Calderón’s construction of interpolation spaces, i.e. the so-
called complex interpolation method (see [10]). Given a pair A = (A0, A1)
of compatible spaces we denote by F(A) the space of all functions f on the
strip S = {z : 0 ≤ Re z ≤ 1} with values in A0 +A1 which are bounded and
continuous on S and analytic on its interior, and moreover the functions
t 7→ f(j + it), j = 0, 1, from R into Aj are continuous and tend to zero as
|t| → ∞. The space F(A) becomes a Banach space if we provide it with the
norm

‖f‖F = max{sup
t
‖f(it)‖A0 , sup

t
‖f(1 + it)‖A1}.
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Given 0 < θ < 1 we consider the space

A[θ] = {a ∈ A0 + A1 : a = f(θ), f ∈ F(A)}
with the norm of a ∈ A[θ] given by

‖a‖[θ] = inf{‖f‖F : f(θ) = a, f ∈ F(A)}.
It is an intermediate space with respect to A. Moreover, if A = (A0, A1) and
B = (B0, B1) are pairs of compatible spaces and T : A→ B then

‖T‖[θ] ≤ ‖T‖1−θ0 ‖T‖θ1,
where ‖T‖[θ] and ‖T‖j , j = 0, 1, are the norms of the operators T : A[θ] →
B[θ] and T : Aj → Bj , j = 0, 1, respectively. This shows in particular that
A[θ] and B[θ] are interpolation spaces with respect to A and B .

We shall prove an analogous inequality for the measure of weak noncom-
pactness Γ for operators. Let Pj , j = 0, 1, be the Poisson kernels for the
strip S. Then � R P0(θ, t) dµ(t) = 1 − θ and � R P1(θ, t) dµ(t) = θ. Therefore,
the formulae

ν0(K) =
1

1− θ
�

K

P0(θ, t) dµ(t), ν1(K) =
1
θ

�

K

P1(θ, t) dµ(t),

for each µ-measurable set K in R, define probability measures ν0 and ν1

which are absolutely continuous with respect to the Lebesgue measure µ.
We put Xj = L1

Aj
(νj), j = 0, 1. Given f ∈ F(A) we denote by fj the

function t 7→ f(j + it) for j = 0, 1. Then

(4.1) ‖a‖[θ] ≤ ‖f0‖1−θX0
‖f1‖θX1

whenever f(θ) = a ∈ A[θ] and f ∈ F(A) (see [10]).

Theorem 4.1. Let A = (A0, A1) and B = (B0, B1) be pairs of compat-
ible Banach spaces, 0 < θ < 1 and T : A→ B . Then

Γ[θ](T ) ≤ Γ0(T )1−θΓ1(T )θ,

where Γ[θ](T ) and Γj(T ), j = 0, 1, are the measures of weak noncompactness
Γ for the operators T : A[θ] → B[θ] and T : Aj → Bj , j = 0, 1, respectively.

Proof. We fix ε > 0 and a sequence (bn) ⊂ T (BA[θ]). For each n there ex-

ist an ∈ BA[θ] with bn = Tan and a function fn ∈ F(A) such that ‖fn‖F < 1
and fn(θ) = an. Then T ◦ fn = gn ∈ F(B ) and gn(θ) = bn. Let gj,n denote
the function t 7→ gn(j + it) and let Yj = L1

Bj
(νj) for j = 0, 1. Of course,

gj,n ∈ Yj . By Theorem 2.1 we can find a sequence (g′0,n) of scc for (g0,n) such
that ‖h1−h2‖Y0 ≤ csep(g′0,n)+ε for every pair h1, h2 of scc for (g′0,n). Then

g′0,n =
∑mn+1
i=mn+1 α

(n)
i g0,i, where (mn) is an increasing sequence of positive

integers, the numbers α(n)
i are nonnegative and

∑mn+1
i=mn+1 α

(n)
i = 1.
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Let g′1,n =
∑mn+1
i=mn+1 α

(n)
i g1,i. Applying once again Theorem 2.1 we

choose a sequence (g′′1,n) of scc for (g′1,n) such that ‖g′′1,m−g′′1,k‖Y1 ≤ csep(g′′1,n)

+ ε for all m,k. Similarly, g′′1,n =
∑ln+1

i=ln+1 β
(n)
i g′1,i, where (ln) and β(n)

i sat-

isfy the same conditions as (mn) and α
(n)
i . We set g′′0,n =

∑ln+1
i=ln+1 β

(n)
i g′0,i.

In this way we have obtained the sequences (g′′j,n), j = 0, 1, for which

‖g′′j,m − g′′j,k‖Yj ≤ csep(g′′j,n) + ε.

Let g′′n =
∑ln+1

k=ln+1 β
(n)
k (

∑mk+1
i=mk+1 α

(k)
i gi) and T̂j : Cb

Aj
→ Yj , j = 0, 1, be

the operator derived from T as in Theorem 3.3. Then

csep(bn) ≤ csep(g′′n(θ)) ≤ ‖g′′1 (θ)− g′′2 (θ)‖[θ]
≤ ‖g′′0,1 − g′′0,2‖1−θY0

‖g′′1,1 − g′′1,2‖θY1

≤ (csep(g′′0,n) + ε)1−θ(csep(g′′1,n) + ε)θ

≤ (Γ (T̂0) + ε)1−θ(Γ (T̂1) + ε)θ,

where the third inequality is a consequence of (4.1). Theorem 3.3 and the
arbitrary choice of (bn) and ε > 0 yield the assertion of our theorem.

Combining the above result with Theorem 3.2 we obtain the following
corollary.

Corollary 4.2. Under the assumptions of Theorem 4.1,

‖R(T )‖[θ] ≤ 2‖R(T )‖1−θ0 ‖R(T )‖θ1,
where ‖R(T )‖[θ] and ‖R(T )‖j , j = 0, 1, are the norms of the operators
R(T |A[θ]) and R(T |Aj), j = 0, 1, respectively.

An analogous result holds for the measure Γ . Theorem 4.1 also gives the
next corollary.

Corollary 4.3. If an operator T : A0 → B0 or T : A1 → B1 is weakly
compact , then so is T : A[θ] → B[θ] for all 0 < θ < 1.

References
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