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Sums of commuting operators with maximal regularity

by

Christian Le Merdy and Arnaud Simard (Besançon)

Abstract. Let Y be a Banach space and let S ⊂ Lp be a subspace of an Lp space,
for some p ∈ (1,∞). We consider two operators B and C acting on S and Y respectively
and satisfying the so-called maximal regularity property. Let B and C be their natural
extensions to S(Y ) ⊂ Lp(Y ). We investigate conditions that imply that B + C is closed
and has the maximal regularity property. Extending theorems of Lamberton and Weis,
we show in particular that this holds if Y is a UMD Banach lattice and e−tB is a positive
contraction on Lp for any t ≥ 0.

1. Introduction. Let X be a Banach space. Given any p ∈ (1,∞)
we consider the vector-valued Lp space Lp(R;X) and we let AX be the
derivation operator on Lp(R;X), defined on its natural domain W 1,p(R;X).
Let −B be the generator of a bounded analytic semigroup on X, with do-
main D(B). We denote by B the operator on Lp(R;X) defined by D(B) =
Lp(R;D(B)) and Bu(t) = B(u(t)) for all u in D(B) and t in R. By definition
we say that B has the maximal regularity property (MR∞ for short) if there
exists a constant K > 0 such that

∀u ∈ D(AX) ∩D(B), ‖AXu‖p ≤ K‖AXu+ Bu‖p.(1.1)

This property implies that for any T > 0 and any f ∈ Lp(0, T ;X), the
Cauchy problem

(CP)T

{
u′(t) +Bu(t) = f(t), t ∈ (0, T ),
u(0) = 0,

(1.2)

admits a (necessarily unique) solution u ∈ W 1,p
0 (0, T ;X) ∩ Lp(0, T ;D(B)).

It follows e.g. from [4] or [8] that the maximal regularity property MR∞ for
B does not depend on p ∈ (1,∞). In 1964, de Simon [33] showed that if X
is a Hilbert space then MR∞ is satisfied by every negative generator of a
bounded analytic semigroup. Then in 1987, Dore and Venni [12] showed that
B satisfies MR∞ if X is a UMD Banach space and if B has bounded imag-
inary powers, with an estimate ‖Bis‖ ≤ Keθ|s| for some θ ∈ (0, π/2). Very
recently, Kalton and Lancien [15] showed that the latter result does not hold
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true if we remove the assumption on imaginary powers. They proved that if
X is a separable Banach lattice and if every negative generator of a bounded
analytic semigroup on X satisfies MR∞, then X is isomorphic to a Hilbert
space. We refer to [4], [8], [11], and [21] for some background on MR∞ and
its variants, and to [31] for general information on UMD Banach spaces.

We are interested in the following general problem. Let −B and −C be
the generators of two commuting bounded analytic semigroups on X, and
assume that B and C satisfy MR∞. Which additional conditions ensure that
the sum B+C is closed and in that case, does it satisfy MR∞ as well? Our
motivation for this problem lies in results from [13], [30], and [18] which
show that in many natural situations, sufficient conditions for MR∞, such
as having bounded imaginary powers or a bounded H∞ functional calculus,
are preserved by taking sums of commuting operators. In this paper, we shall
obtain positive results in cases when X is a tensor product of two Banach
spaces and the operators B and C act on one of the components of the
tensor product. A typical situation is that of vector-valued Lp spaces. Let Y
be a Banach space, let (Ω,µ) be a measure space, and let X = Lp(Ω;Y ) for
some p ∈ (1,∞). Let B and C be negative generators of bounded analytic
semigroups on Lp(Ω, dµ) and Y respectively. It is not hard to see that B⊗IY
and ILp ⊗ C admit closures B and C on X. In Section 4 (Theorem 4.3), we
will show that if e−tB is contractively regular for any t ≥ 0 (see below for
a definition), if Y is a UMD Banach lattice, and if C satisfies MR∞, then
B + C is closed and satisfies MR∞. This result extends a well known result
of Lamberton [17] (see also [8, Section 5]), corresponding to the case when
C = 0, and complements some recent work of Weis ([34], [35]). In Section
5 (Theorem 5.2), we will show that if Y is a Hilbert space, if C admits a
bounded H∞ functional calculus, and if B satisfies MR∞, then B + C is
closed and satisfies MR∞. This result complements [18, Theorem 1.4].

We will work in the more general context of the so-called vector-valued
SLp spaces, and will establish a general result (Theorem 4.1) from which
the two theorems presented above will be deduced. For any closed subspace
S ⊂ Lp(Ω, dµ), called an SLp space, and any Banach space Y , we will
consider the Banach space X = S(Y ), defined as the closure of S ⊗ Y in
Lp(Ω;Y ), and consider operators B and C acting on S and Y respectively.
Theorem 4.1 will provide a general sufficient condition ensuring that the
sum B + C of the extensions of B and C to X is closed and satisfies MR∞.
Its proof requires several preparatory results of independent interest which
are established in the next two sections.

All Banach spaces considered here, including Banach lattices, are com-
plex. Given a Banach space X, we denote by B(X) the Banach algebra of
all bounded linear operators on X.



Sums of commuting operators 105

2. A domination principle for contractively regular semigroups.
Let 1 ≤ p ≤ ∞, let (Ω,µ) be a measure space, and let S be a closed subspace
of Lp(Ω, dµ). It is plain that for any Banach spaces Y1, Y2 and any bounded
operator b : Y1 → Y2, the tensor product mapping IS ⊗ b extends to a
bounded operator from S(Y1) into S(Y2), with

‖IS ⊗ b : S(Y1)→ S(Y2)‖ = ‖b‖.(2.1)

In particular, given a Banach space Y , the tensorization by IS yields an
isometric embedding

B(Y ) ⊂ B(S(Y )).(2.2)

The tensorization of a bounded operator on S by IY requires some special
assumptions. We say that a bounded operator T : S → S is regular if there
exists a constant K > 0 such that

∀n ∈ N∗ ∀x1, . . . , xn ∈ S, ‖ sup
1≤i≤n

|Txi|‖p ≤ K‖ sup
1≤i≤n

|xi|‖p.(2.3)

We denote by ‖T‖r the smallest constant K which satisfies (2.3). Clearly
‖ ‖r is a norm on the vector space of regular operators on S. When ‖T‖r
≤ 1 we say that T is contractively regular and by extension a contractively
regular semigroup (Tt)t≥0 on S is a c0-semigroup such that for all t ≥ 0,
Tt is contractively regular. We refer to [29] for some information on regular
operators on SLp spaces. This notion extends the well known one of regular
operators on Lp spaces. We recall that any bounded operator on L1(Ω, dµ)
or on L∞(Ω, dµ) is regular and that if p ∈ (1,∞), a bounded operator
T : Lp(Ω, dµ)→ Lp(Ω, dµ) is regular if and only if T is a linear combination
of positive operators on Lp(Ω, dµ) (see e.g. [24] or [32]). In particular we
mention that a positive operator T on Lp(Ω, dµ) satisfies ‖T‖r = ‖T‖. More
generally, T is contractively regular if and only if there exists a positive
contraction T̂ : Lp(Ω, dµ) → Lp(Ω, dµ) such that |T (f)| ≤ T̂ (|f |) for every
f ∈ Lp(Ω, dµ). The following reformulation of regularity will be useful.

Lemma 2.1. Let T : S → S be a bounded operator. Then T is regular if
and only if for any Banach space Y , the tensor product T ⊗ IY extends to a
bounded operator on S(Y ). Furthermore, we have

‖T ⊗ IY : S(Y )→ S(Y )‖ ≤ ‖T‖r.(2.4)

Proof. Note that (2.3) means that ‖T ⊗ I`∞n : S(`∞n )→ S(`∞n )‖ ≤ K for
any integer n ≥ 1. Assume that T is regular and let Y be a finite-dimensional
Banach space. For any ε > 0, there exist an integer n ≥ 1, a subspace
E ⊂ `∞n , and an isomorphism b : Y → E such that ‖b‖ · ‖b−1‖ ≤ 1 + ε.
Using (2.1) twice, we obtain ‖T ⊗ IY ‖ ≤ ‖T‖r(1 + ε). Since ε is arbitrary,
we obtain (2.4) for any finite-dimensional Y . The inequality for arbitrary Y
follows at once because S ⊗ Y is dense in S(Y ) by definition. Conversely,
the boundedness of T ⊗ Ic0 on S(c0) implies (2.3).
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If T : S ⊂ Lp(Ω, dµ) → S is regular and b : Y → Y is bounded, then
T ⊗ b = (T ⊗ IY )(IS ⊗ b) extends to a bounded operator on S(Y ) that we
denote by T ⊗ b. By (2.1) and (2.4), we have

‖T ⊗ b : S(Y )→ S(Y )‖ ≤ ‖T‖r‖b‖.

If B (resp. C) is a closed operator on S (resp. Y ), then the tensor product
B⊗ IY (resp. IS⊗C), defined on D(B)⊗Y (resp. S⊗D(C)), is closable on
S(Y ) (see e.g. [19, Lemma 1]). These closures will be denoted by B and C.

If (Tt)t≥0 is a contractively regular semigroup on S, then (Tt⊗ IY )t≥0 is
obviously a contraction c0-semigroup on S(Y ). It is easy to check that if −B
is the generator of (Tt)t≥0, then −B is the generator of (Tt ⊗ IY )t≥0. Note
that similarly, if (Vt)t≥0 is a bounded c0-semigroup on Y with generator −C,
then (IS ⊗ Vt)t≥0 is a bounded c0-semigroup on S(Y ) with generator −C. It
should be noticed that if (Vt)t≥0 extends to a bounded analytic semigroup
on Y , then the same property holds for (IS ⊗ Vt)t≥0 on S(Y ).

We now wish to establish a domination principle for contractively regular
semigroups on S which will extend a famous inequality of Coifman–Weiss
[7, Corollary 4.17]. Our result is also clearly related to [5, Theorem 5.6], and
actually extends it. We start with the discrete counterpart of this principle.
Let us denote by σ the shift operator on `p(Z) defined by

∀(xn)n∈Z ∈ `p, σ[(xn)n∈Z] = (xn−1)n∈Z.

Lemma 2.2. Let S be a closed subspace of Lp(Ω, dµ) for some p ∈
[1,∞). Let T be a contractively regular operator on S. Let Y be a Banach
space. Then for any sequence b ∈ `1(N;B(Y )) we have

∥∥∥
∑

k≥0

T k ⊗ b(k)
∥∥∥
B(S(Y ))

≤
∥∥∥
∑

k≥0

σk ⊗ b(k)
∥∥∥
B(`p(Z;Y ))

.(2.5)

Proof. Regard T : S → S ⊂ Lp(Ω, dµ) as having values in Lp(Ω, dµ).
Since T is contractively regular, it admits an extension T̃ : Lp(Ω, dµ) →
Lp(Ω, dµ) such that ‖T̃‖r = ‖T‖r. This extension property of regular opera-
tors is due to Pisier [29, Theorem 3]. Then for any sequence b ∈ `1(N;B(Y ))
we have ∥∥∥

∑

k≥0

T k ⊗ b(k)
∥∥∥
B(S(Y ))

≤
∥∥∥
∑

k≥0

T̃ k ⊗ b(k)
∥∥∥
B(Lp(Ω;Y ))

.(2.6)

We can now apply Akcoglu’s dilation theorem [1] and its generalizations
([6], [26]), which ensure that there exist a measure space (Ω ′, µ′), two con-
tractively regular operators

J : Lp(Ω, dµ)→ Lp(Ω′, dµ′) and P : Lp(Ω′, dµ′)→ Lp(Ω, dµ),
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and an invertible isometric operator U : Lp(Ω′, dµ′)→ Lp(Ω′, dµ′) such that
both U and U−1 are contractively regular, and

∀n ∈ N, T̃n = PUnJ.(2.7)

Note by Lemma 2.1 that ‖U‖r ≤ 1 and ‖U−1‖r ≤ 1 imply that ‖Un⊗IY ‖
= 1 for any n ∈ Z. The Coifman–Weiss transference principle [7] (in fact,
a vector-valued version of it) can therefore be applied to the sequence
(Un ⊗ IY )n∈Z and we find that for any sequence b ∈ `1(Z;B(Y )),

∥∥∥
∑

k∈Z
Uk ⊗ b(k)

∥∥∥
B(Lp(Ω′;Y ))

≤
∥∥∥
∑

k∈Z
σk ⊗ b(k)

∥∥∥
B(`p(Z;Y ))

.(2.8)

Assume that b is supported by N. From (2.7), we deduce
∑

k≥0

T̃ k ⊗ b(k) = (P ⊗ IY )
(∑

k≥0

Uk ⊗ b(k)
)

(J ⊗ IY )(2.9)

on Lp(Ω, dµ) ⊗ Y . Since P and J are contractively regular, Lemma 2.1
implies that

‖P ⊗ IY ‖B(Lp(Ω′;Y ),Lp(Ω;Y )) ≤ 1 and ‖J ⊗ IY ‖B(Lp(Ω;Y ),Lp(Ω′;Y )) ≤ 1.

Therefore (2.6), (2.8) and (2.9) give the desired inequality (2.5).

We shall denote by (Ut)t≥0 the translation semigroup on Lp(R) defined
for any f in Lp(R) by Ut(f)(s) = f(s− t), s ∈ R. Note that it is obviously
a contractively regular semigroup. The following result is a generalization
of [5, Theorem 5.6], which we recover when S = Lp(Ω, dµ), the Tt’s are
positive contractions, and b is scalar-valued.

Theorem 2.3. Let Y be a Banach space and S be a closed subspace
of Lp(Ω, dµ) for some p ∈ [1,∞). Let (Tt)t≥0 be a contractively regular
semigroup on S. Then for any b ∈ L1(R+;B(Y )) we have

∥∥∥
∞�

0

Tt ⊗ b(t) dt
∥∥∥
B(S(Y ))

≤
∥∥∥
∞�

0

Ut ⊗ b(t) dt
∥∥∥
B(Lp(R;Y ))

.(2.10)

Proof. We shall only outline the proof. Indeed we follow a well known
discretization principle introduced in [7], and whose details appear e.g. in [5,
Appendix]. First note that compactly supported functions in L1(R+;B(Y ))
are dense in L1(R+;B(Y )), hence we may assume that the support of b is
compact. Under this assumption, there exist sequences bN = (bN (k))k≥0 ∈
`1(N;B(Y )) such that for all x ∈ S(Y ),

∞�

0

(Tt ⊗ b(t))(x) dt = lim
N→∞

∑

k≥0

(T k1/N ⊗ bN (k))(x)(2.11)

and for any N ≥ 1,
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∥∥∥
∑

k≥0

σk ⊗ bN (k)
∥∥∥
B(`p(Z;Y ))

≤
∥∥∥
∞�

0

Ut ⊗ b(t) dt
∥∥∥
B(Lp(R;Y ))

.(2.12)

Since ‖T1/N‖r ≤ 1, we can apply Lemma 2.2 to obtain
∥∥∥
∑

k≥0

(T k1/N ⊗ bN (k))(x)
∥∥∥
S(Y )

≤
∥∥∥
∑

k≥0

σk ⊗ bN (k)
∥∥∥
B(`p(Z;Y ))

‖x‖S(Y ).(2.13)

The estimate (2.10) follows from (2.11)–(2.13).

3. Generalized H∞ functional calculus for generators of con-
tractively regular semigroups. H∞ functional calculus for generators
of bounded semigroups, or more generally for sectorial operators, was in-
troduced by McIntosh [23] on Hilbert spaces and then developed on general
Banach spaces in [10]. Its deep connections with maximal regularity are well
known; see e.g. [21] for a survey. Here we shall especially use the so-called
generalized H∞ functional calculus introduced in [2]. This approach was
already exploited in [18], [19], and [22]. We briefly recall the relevant defini-
tions and refer to the papers quoted above for complements.

For any ω ∈ (0, π), let Σω be the set of all z ∈ C∗ such that |Arg(z)| < ω.
Given a linear operator A on a Banach space X, we denote by D(A), R(A),
and N(A) the domain, range and kernel of A respectively. We denote by
σ(A) the spectrum of A and we let %(A) be the resolvent set of A. For any
λ ∈ %(A), we denote by R(λ,A) = (λIX − A)−1 ∈ B(X) the corresponding
resolvent operator. We say that A is sectorial of type ω ∈ (0, π) if A is
closed, densely defined, with the property that σ(A) ⊂ Σω and

∀θ ∈ (ω, π) ∃C > 0 ∀z ∈ (Σθ)c, ‖zR(z,A)‖ ≤ C.
We recall that the negative generator of a bounded c0-semigroup is sectorial
of type π/2 and that an operator −A is the generator of a bounded analytic
semigroup if and only if A is sectorial of type strictly less than π/2.

Given a sectorial operator A of type ω∈(0, π) we define its commutant by

EA = {T ∈ B(X) : ∀λ ∈ %(A), TR(λ,A) = R(λ,A)T}.
For any θ ∈ (ω, π), we let H∞(Σθ;EA) be the space of all bounded analytic
functions F : Σθ → EA. This is a Banach algebra for the norm

‖F‖H∞(Σθ;EA) = sup{‖F (z)‖B(X) : z ∈ Σθ}.
We then define the (non-closed) subalgebra

H∞0 (Σθ;EA) =
{
F ∈ H∞(Σθ;EA) : there are s, C > 0 such that

‖F (z)‖B(X) ≤ C
|z|s

(1 + |z|)2s for z ∈ Σθ
}
.
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Let ω < ω′ < θ < π, and let Γω′ be the path defined by

Γω′(t) =
{
−teiω′ , t ∈ R−,
te−iω

′
, t ∈ R+.

Then for any function F ∈ H∞0 (Σθ;EA) we set

uA(F ) =
1

2πi

�

Γω′

F (λ)R(λ,A) dλ.(3.1)

Since A is sectorial and F ∈ H∞0 (Σθ;EA), uA(F ) is well defined and belongs
to B(X). Furthermore, the definition (3.1) does not depend on the choice of
ω′ ∈ (ω, θ) and the mapping uA : H∞0 (Σθ;EA)→ B(X) is an algebra homo-
morphism. Note that uA is not bounded in general. If we moreover assume
that N(A) = {0} and R(A) is dense in X, then for any F ∈ H∞(Σθ;EA)
we may define a possibly unbounded operator uA(F ) as follows. We let ϕ
be the scalar-valued function defined by ϕ(z) = z/(1 + z)2. Then for F ∈
H∞(Σθ;EA), the product function Fϕ belongs to H∞0 (Σθ;EA) and we set

uA(F ) = ϕ(A)−1uA(Fϕ),

with domain equal to

D(uA(F )) = {x ∈ X : uA(Fϕ)(x) ∈ D(A) ∩R(A)}.
The point here is that the range of ϕ(A) is equal to D(A) ∩R(A) and that
the latter space is dense in X. Consequently, the operator uA(F ) is a closed
and densely defined operator, with D(A) ∩ R(A) ⊂ D(uA(F )). Note that
uA(F ) is unbounded in general. If F is scalar-valued (i.e. with values in
Span{IX}), then the operator uA(F ) is simply denoted by F (A).

Let Y be a Banach space. Let p ∈ [1,∞), let S ⊂ Lp(Ω, dµ) and let
−B be the generator of a contractively regular semigroup (Tt)t≥0 on S.
We consider the Banach space X = S(Y ). Recall that we denote by B the
negative generator of (Tt ⊗ IY )t≥0 on X. This operator is then sectorial of
type π/2. Via the isometric embedding (2.2), we may consider B(Y ) as a
(closed) subalgebra of the commutant EB; hence for any θ > π/2, we may
regard H∞0 (Σθ;B(Y )) as a subalgebra of H∞0 (Σθ;EB), which allows us to
define uB(F ) for any F ∈ H∞0 (Σθ;B(Y )). Likewise we may regard B(Y )
as a subspace of B(Lp(R;Y )), which is actually included in the commutant
algebra EAY of the derivation operator AY , and we will therefore consider
operators uAY (F ) for F ∈ H∞0 (Σθ;B(Y )). Note that AY is 1-1 with a dense
range.

Theorem 3.1. Let Y be a Banach space. Let S ⊂ Lp(Ω, dµ) for some
p ∈ [1,∞), and let −B be the generator of a contractively regular semigroup
on S.
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(i) For any θ ∈ (π/2, π) and any F ∈ H∞0 (Σθ;B(Y )),

‖uB(F )‖B(S(Y )) ≤ ‖uAY (F )‖B(Lp(R;Y )).(3.2)

(ii) Assume that B is 1-1 with dense range, and let F ∈ H∞(Σθ;B(Y ))
for some θ ∈ (π/2, π). If uAY (F ) is bounded on Lp(R;Y ), then uB(F ) is
bounded on S(Y ).

Proof. Let θ ∈ (π/2, π) and let F ∈ H∞0 (Σθ;B(Y )). We choose ω′ ∈
(π/2, θ). By the definition of H∞0 (Σθ;B(Y )), the integral � Γω′ ‖F (λ)‖

∣∣dλ
λ

∣∣ is
finite and hence

�

Γω′

∞�

0

‖F (λ)‖ · |eλt| |dλ| dt <∞.

By Fubini’s Theorem, we may therefore define b ∈ L1(R+;B(Y )) by letting

b(t) = − 1
2πi

�

Γω′

F (λ)eλt dλ

and for any f ∈ S and any y ∈ Y we have
∞�

0

(Tt ⊗ b(t))(f ⊗ y) dt = − 1
2πi

∞�

0

�

Γω′

Tt(f)⊗ F (λ)(y)eλt dλ dt

=
1

2πi

�

Γω′

(
−
∞�

0

Tt(f)eλt dt
)
⊗ F (λ)(y) dλ

=
1

2πi

�

Γω′

(R(λ,B)⊗ F (λ))(f ⊗ y) dλ.

Applying formula (3.1), we deduce that for any x ∈ S ⊗ Y ,

uB(F )(x) =
∞�

0

(Tt ⊗ b(t))(x) dt.

Similarly,

uAY (F )(x) =
∞�

0

(Ut ⊗ b(t))(x) dt.

Indeed, AY is the negative generator of (Ut ⊗ IY )t≥0 on Lp(R;Y ). The
inequality (3.2) therefore follows from (2.10).

Let us show (ii). We assume that B (hence B) is 1-1 with dense range.
We let θ ∈ (π/2, π) and F ∈ H∞(Σθ;B(Y )) and we assume that uAY (F ) is
bounded. We introduce the sequence (ϕn)n≥1 of rational functions defined by

ϕn(z) =
n2z

(n+ z)(1 + nz)
.
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Let x ∈ X = S(Y ). Each Fϕn belongs to H∞0 (Σθ;B(Y )), hence by (i) we
have

‖uB(Fϕn)(x)‖S(Y ) ≤ ‖uAY (Fϕn)‖B(Lp(R;Y ))‖x‖S(Y ).

For any n ≥ 1, ϕn(B)(x) belongs to R(B) ∩D(B), hence to D(uB(F )), and
since uB is a homomorphism on H∞0 (Σθ;B(Y )), we see that uB(Fϕn)(x) =
uB(F )[ϕn(B)(x)]. Similarly, uAY (Fϕn) = uAY (F )ϕn(AY ). Consequently,

(3.3) ‖uB(F )[ϕn(B)(x)]‖S(Y )

≤ ‖uAY (F )‖B(Lp(R;Y ))‖ϕn(AY )‖B(Lp(R;Y ))‖x‖S(Y ).

By the sectoriality of B, the sequence ϕn(B) strongly converges to the iden-
tity on X (see e.g. [21]). Again the sectoriality of AY implies that the se-
quence (ϕn(AY ))n≥0 is bounded. Hence the boundedness of uB(F ) follows
from (3.3).

We shall deduce two corollaries from Theorem 3.1. If A is a sectorial
operator of type ω ∈ (0, π) on a Banach space X, and if θ ∈ (ω, π), we
say that A admits a bounded H∞(Σθ) functional calculus if there exists a
constant K > 0 such that

∀F ∈ H∞0 (Σθ), ‖F (A)‖B(X) ≤ K‖F‖H∞(Σθ).

We recall (see [23], [10]) that if A is 1-1 with dense range, then this is equiv-
alent to the property that F (A) is a bounded operator for any F ∈ H∞(Σθ).
It was proved in [9] and [14] that negative generators of contractively regu-
lar semigroups on Lp spaces (1 < p < ∞) admit a bounded H∞ functional
calculus. We provide a generalization to subspaces of Lp spaces.

Corollary 3.2. Let p ∈ (1,∞), let S ⊂ Lp(Ω, dµ) be an SLp space, and
let −B be the generator of a contractively regular semigroup on S. Then for
any θ > π/2, B admits a bounded H∞(Σθ) functional calculus.

Proof. We fix θ > π/2 and apply Theorem 3.1 with Y = C. For any
F ∈ H∞0 (Σθ), we have ‖F (B)‖ ≤ ‖F (A)‖, where A = AC is the derivation
on Lp(R). This operator admits a bounded H∞(Σθ) functional calculus (see
[9]), hence the result follows at once.

Remark 3.3. If Y is UMD, the operator AY admits a bounded H∞(Σθ)
functional calculus, hence for any B as in Corollary 3.2 and any UMD Ba-
nach space Y , the operator B admits a bounded H∞(Σθ) functional calculus
on S(Y ).

Corollary 3.4. Let p ∈ (1,∞) and let −B be the generator of a con-
tractively regular semigroup on some SLp space S ⊂ Lp(Ω, dµ). Let C be
an operator on a Banach space Y which satisfies MR∞. Then the operator
B + C : D(B) ∩D(C) → S(Y ) is closed , and there exists a constant K > 0
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such that

∀u ∈ D(B) ∩D(C), ‖Cu‖S(Y ) ≤ K‖(B + C)u‖S(Y ).(3.4)

Proof. Here we denote by C the closure of IS ⊗C on S(Y ) and to avoid
confusion, we denote by C1 the closure of ILp(R) ⊗ C on Lp(R;Y ). Since C
is sectorial of type ω < π/2, the function FC : z 7→ z(z + C)−1 belongs to
H∞(Σθ;B(Y )) for some θ > π/2. We assume that C satisfies MR∞, hence
applying (1.1), there is a constant K > 0 such that

∀v ∈ D(AY ) ∩D(C1), ‖AY v‖Lp(R;Y ) ≤ K‖(AY + C1)v‖Lp(R;Y ).

By [18, Proposition 2.6], this implies that uAY (FC) is bounded. Assume for
simplicity that B is 1-1 with dense range. Then Theorem 3.1(ii) implies
that uB(FC) is bounded, hence again by [18, Proposition 2.6], we see that
B + C is closed and that (3.4) holds. When B is not 1-1 with dense range
we can consider the operators B + εIS for ε > 0, which are invertible and
are negative generators of contractively regular semigroups. Then it is easy
to check that they satisfy (3.4) with a constant K not depending on ε > 0.
We conclude by letting ε tend to 0.

Remark 3.5. Let S ⊂ Lp(Ω, dµ), Y , B, and C be as in Corollary 3.4.
Then let (Tt)t≥0 and (Vt)t≥0 be the semigroups generated by −B and −C on
S and Y respectively. It follows from [25, A-I, 3.7] that B+C is the negative
generator of the semigroup (Tt⊗Vt)t≥0. We may derive two simple properties
from this fact. First, if B is sectorial of type < π/2, then the operator B+C is
sectorial of type < π/2 as well. Second, assume that Y ⊂ Lp(Ω′, µ′) is also an
SLp space. Then using Fubini, we may regard S(Y ) ⊂ Lp(Ω×Ω′, µ⊗µ′) as an
SLp space in an obvious way. Assume moreover that (Vt)t≥0 is contractively
regular. Using the identity S(Y )(`∞n ) = S(Y (`∞n )) = Y (S(`∞n )) for any
n ≥ 1, it is easy to check that (Tt ⊗ Vt)t≥0 is also contractively regular. Thus
the assumption that −B and −C generate contractively regular semigroups
implies that the same is true for −(B + C).

4. A generalization of theorems of Lamberton and Weis on
maximal regularity. For operators B and C as in Corollary 3.4, the next
general result gives a sufficient condition under which the sum B+C satisfies
MR∞.

Theorem 4.1. Let p ∈ (1,∞), let S be a closed subspace of some
Lp(Ω, dµ) and let Y be a Banach space. Let −B be the generator of a con-
tractively regular semigroup on S and assume that B is sectorial of type
strictly less than π/2 and satisfies MR∞ on S(Y ). Then for any operator C
on Y satisfying MR∞, the sum B+ C is closed and satisfies MR∞ on S(Y ).
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Proof. We let X = S(Y ). We know from Corollary 3.4 and Remark 3.5
that C +B is closed and sectorial of type strictly less than π/2 on X. Let A
be the derivation operator on Lp(R), and let ∆ = D(A)⊗D(B)⊗D(C) ⊂
Lp(R)⊗S⊗Y ⊂ Lp(R;X). Using the bounded net of mappings nR(−n,A)⊗
n′R(−n′, B) ⊗ n′′R(−n′′, C) : Lp(R;X) → ∆ ⊂ Lp(R;X), for n, n′, n′′ ≥ 1,
it is not hard to see that B + C satisfies MR∞ provided that there exists a
constant K > 0 such that for any u ∈ ∆,

(4.1) ‖(A⊗ IS ⊗ IY )u‖
≤ K‖(A⊗ IS ⊗ IY + ILp ⊗B ⊗ IY + ILp ⊗ IS ⊗ C)u‖.

Let B0 be the closure of ILp⊗B on Lp(R;S). Our assumption that B satisfies
MR∞ implies that B satisfies MR∞, hence by Corollary 3.4 and Remark 3.5,
B0 + AS is the negative generator of a contractively regular semigroup on
Lp(R;S). Using the identification Lp(R;S)(Y ) = Lp(R;X) and applying
Corollary 3.4, we deduce that there is a constant K1 > 0 such that for any
u ∈ ∆,

‖(A⊗ IS ⊗ IY + ILp ⊗B ⊗ IY )u‖
≤ K1‖(A⊗ IS ⊗ IY + ILp ⊗B ⊗ IY + ILp ⊗ IS ⊗ C)u‖.

We assumed that B satisfies MR∞ on X, hence we have an estimate
‖(A ⊗ IS ⊗ IY )u‖ ≤ K2‖(A ⊗ IS ⊗ IY + ILp ⊗ B ⊗ IY )u‖ on ∆, whence
(4.1) with K = K1K2.

Remark 4.2. Let S, Y , B, C, (Tt)t≥0 and (Vt)t≥0 be as in Theorem 4.1
and Remark 3.5. Then our Theorem 4.1 says that if (Tt⊗ IY )t≥0 extends to
a bounded analytic semigroup on S(Y ) whose negative generator satisfies
MR∞, and if that of (IS⊗Vt)t≥0 satisfies MR∞, then the negative generator
of the product semigroup (Tt ⊗ Vt)t≥0 satisfies MR∞ as well.

We now turn to the special case when S = Lp(Ω, dµ), with p ∈ (1,∞).
Let (Tt)t≥0 be a bounded analytic semigroup on Lp(Ω, dµ). It was proved
by Weis [35, Section 4] that if in addition, (Tt)t≥0 is a contractively regular
semigroup, then its negative generator satisfies MR∞. (In fact Weis only
stated this result in the case when the Tt’s are positive contractions but his
proof works as well in the general case.) Recall that Lamberton [17] had
obtained the same conclusion under the assumption that for any t ≥ 0, Tt
extends to contractions from L1(Ω, dµ) into itself and from L∞(Ω, dµ) into
itself. It should be noticed that Weis’s theorem contains Lamberton’s as a
special case. Indeed, using interpolation (see [3]), it is easy to see that if a
linear operator T : Lp(Ω, dµ)→ Lp(Ω, dµ) is both contractive on L1(Ω, dµ)
and on L∞(Ω, dµ), then ‖T‖r ≤ 1. It was observed in [8] that Lamberton’s
Theorem may be extended to Lp(Ω;Y ), provided that Y is any UMD Banach
lattice. Here is an extension of these results.
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Theorem 4.3. Let Y be a UMD Banach lattice, let (Ω,µ) be a measure
space, and let p ∈ (1,∞). Let (Tt)t≥0 and (Vt)t≥0 be two bounded analytic
semigroups on Lp(Ω, dµ) and Y respectively. Assume that ‖Tt‖r ≤ 1 for any
t ≥ 0.

(i) (Tt ⊗ IY )t≥0 extends to a bounded analytic semigroup on Lp(Ω;Y )
whose negative generator satisfies MR∞.

(ii) If the negative generator of (Vt)t≥0 satisfies MR∞, then the negative
generator of (Tt ⊗ Vt)t≥0 satisfies MR∞ as well on Lp(Ω;Y ).

Proof. Clearly (ii) follows from (i), Theorem 4.1, and Remark 4.2 hence
we only need to prove (i). We shall use complex interpolation, for which we
refer to [3]. Improving an earlier result of Pisier [27], Rubio de Francia [31,
Part IIIc] showed the following extrapolation result. Given a UMD Banach
lattice Y , there exist a Hilbert space H0 and a UMD Banach space Y0 such
that Y = [H0, Y0]α for some α ∈ (0, 1). We then have

Lp(Ω;Y ) = [Lp(Ω;H0), Lp(Ω;Y0)]α

by [3, Theorem 5.1.2]. We let B be the negative generator of (Tt)t≥0. Then we
denote by B0, Bα and B1 the negative generators of (Tt⊗IH0)t≥0, (Tt⊗IY )t≥0,
and (Tt ⊗ IY0)t≥0 respectively.

Assume for a while that these operators are invertible, so that we may
consider their imaginary powers. Our goal is to show that

∃K > 0 ∃θ < π/2 ∀s ∈ R, ‖Bisα ‖ ≤ Keθ|s|.(4.2)

Once it is proved, we can conclude as follows. By [30, Theorem 2], this esti-
mate shows that −Bα generates a bounded analytic semigroup on Lp(Ω;Y ).
Furthermore Y is a UMD Banach space, hence Lp(Ω;Y ) is UMD as well
and so by [12], (4.2) ensures that Bα satisfies MR∞.

We now proceed to the proof of (4.2). It follows from [16, Corollary
5.2] (and its proof) that B admits a bounded H∞(Σθ0) functional calculus
for some θ0 < π/2. In particular, there is a constant K0 > 0 such that
‖Bis‖ ≤ K0e

θ0|s| for any s ∈ R. Moreover the space H0 is a Hilbert space,
hence for any T ∈ B(Lp(Ω)), the operator T ⊗ IH0 extends to a bounded
operator of norm equal to ‖T‖ on Lp(Ω;H0). Since Bis0 is the closure of
Bis ⊗ IH0 for any s ∈ R, we obtain

∃K0 > 0 ∃θ0 < π/2 ∀s ∈ R, ‖Bis0 ‖ ≤ K0e
θ0|s|.(4.3)

On the other hand, since Y0 is UMD the operator B1 admits a bounded
H∞(Σθ) functional calculus for any θ > π/2. Indeed, this is implicit in [5];
see also Remark 3.3. In particular,

∀θ1 > π/2 ∃K1 > 0 ∀s ∈ R, ‖Bis1 ‖ ≤ K1e
θ1|s|.(4.4)



Sums of commuting operators 115

We then choose θ1 such that

θ = (1− α)θ0 + αθ1 < π/2.(4.5)

By construction, the imaginary powers Bis0 , Bisα and Bis1 are compatible,
hence by interpolation,

∀s ∈ R, ‖Bisα ‖ ≤ ‖Bis0 ‖1−α‖Bis1 ‖α.
The estimate (4.2) now follows from (4.3)–(4.5), with K = K1−α

0 Kα
1 .

The general case can be deduced as follows. For any ε > 0, replace (Tt)t≥0
by (e−εtTt)t≥0. Then B0, Bα and B1 are replaced by B0 + εI, Bα + εI and
B1 + εI. These operators are invertible, hence the preceding reasoning can
be applied to them. The point is that the constants K0 and K1 appearing
in (4.3) and (4.4) can be chosen to be independent of ε > 0. Indeed, this
follows from the boundedness of the H∞ functional calculi of B0 and B1.
Consequently, (4.2) is now replaced by

∃K > 0 ∃θ < π/2 ∀ε > 0 ∀s ∈ R, ‖(Bα + εI)is‖ ≤ Keθ|s|.
Applying [12], we obtain an estimate ‖AXu‖ ≤ K ′‖AXu+ ILp ⊗ Bαu+ εu‖
for some constant K ′ only depending on K, θ, p and Y . In particular K ′

does not depend on ε > 0, hence we finally get the desired inequality.

Remark 4.4. It is clear from the above proof that Theorem 4.3 remains
true if Y is any UMD Banach space with the property that Y = [H,Z]α for
some space H isomorphic to a quotient of a subspace of an Lp space (this
includes Hilbert spaces), some UMD Banach space Z, and some α ∈ (0, 1).
This holds in particular if Y is the Schatten p-class, for p ∈ (1,∞), or more
generally a non-commutative Lp space for p ∈ (1,∞). We do not know if
Theorem 4.3 is true for any UMD Banach space Y .

5. Maximal regularity on Hilbert-space-valued Lp spaces. Let H
be a Hilbert space, let p ∈ (1,∞), and let (Ω,µ) be a measure space. We let
B and C be two sectorial operators of type strictly less than π/2 on H and
Lp(Ω, dµ) respectively, and denote as usual by B and C their extensions to
Lp(Ω;H). We look for conditions under which the sum B + C on Lp(Ω;H)
is closed and satisfies MR∞. It was proved in [18] that this holds true if we
assume that C admits a bounded H∞(Σθ) functional calculus on Lp(Ω, dµ)
for some θ < π/2. In Theorem 5.2, we prove that the same result holds if
the assumption of bounded H∞ functional calculus is assigned to B (and C
satisfies MR∞).

We fix an orthonormal basis (ei)i∈I on H, for some index set I. Let
(gi)i∈I be a family of complex independent Gaussian normal variables on a
probability space (Ω′, µ′). Then we let S ⊂ Lp(Ω′, µ′) be the closed linear
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span of {gi : i ∈ I}. For any finitely supported family of complex numbers

(ti)i∈I , we have ‖∑i tigi‖p = αp
(∑

i |ti|2
)1/2, where αp is the Lp norm of

any gi. Thus the mapping ei 7→ α−1
p gi induces an isometric identification

H = S, whence
Lp(Ω;H) = S(Lp(Ω, dµ)).(5.1)

Lemma 5.1. Any bounded operator T : S → S is automatically regular ,
with ‖T‖ = ‖T‖r.

Proof. When I is finite, this follows from [28, Proposition 3.7] and Lem-
ma 2.1. The general case follows by a simple approximation argument.

Theorem 5.2. Assume that C satisfies MR∞ on Lp(Ω, dµ) with p ∈
(1,∞). Let B be the negative generator of a bounded analytic semigroup
on H, which admits a bounded H∞ functional calculus. Then B+C is closed
and satisfies MR∞ on Lp(Ω;H).

Proof. The operator B satisfies MR∞ (see [33]), hence using the identi-
fication Lp(R;Lp(Ω;H)) = Lp(Ω;Lp(R;H)), we see that B satisfies MR∞.
Let (Tt)t≥0 be generated by −B on H. Since B admits a bounded H∞

functional calculus, it follows from [20, Theorem 4.3] that there exists an
invertible operator R on H such that (RTtR−1)t≥0 is a contraction semi-
group. We let R = ILp(Ω,dµ) ⊗ R ∈ B(Lp(Ω;H)). Then RBR−1 clearly
satisfies MR∞. Let us identify H with S ⊂ Lp(Ω′, µ′) as explained above.
Then (RTtR−1)t≥0 is contractively regular thanks to Lemma 5.1. It therefore
follows from Theorem 4.1 and (5.1) that RBR−1 + C is closed and satisfies
MR∞ on S(Lp(Ω, dµ)), hence on Lp(Ω;H). Since

RBR−1 + C = R(B + C)R−1,

the result follows at once.

Remark 5.3. We wish to mention a result which essentially follows from
[34] and was indicated to us by Nigel Kalton (in June 2000). Let X be a
Banach space and let −B and −C be the generators of two commuting
bounded analytic semigroups (Tt)t≥0 and (Vt)t≥0 on X. Recall from [25,
A-I, 3.7] that the product semigroup (TtVt)t≥0 is bounded analytic and that
its generator is −(B + C). Kalton’s observation is that if B and C satisfy
MR∞ and if X is UMD, then B + C satisfies MR∞. Indeed, since X is
UMD, it follows from [34, Theorem 4.2] that there exists θ > 0 such that
the two sets {e−zB : z ∈ Σθ} and {e−zC : z ∈ Σθ} are R-bounded. Then
the “product set” {e−zBe−zC : z ∈ Σθ} is R-bounded as well. Hence ap-
plying [34, Theorem 4.2] again, we deduce that B + C satisfies MR∞. This
yields an alternate route to prove the second half of either Theorem 4.3 or
Theorem 5.2. We also refer to [16] for recent developments.
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25030 Besançon Cedex, France
E-mail: lemerdy@math.univ-fcomte.fr

simard@math.univ-fcomte.fr

Received February 14, 2000
Revised version March 26, 2001 (4475)


