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Abstract. Let X be a Banach space and (Ω,Σ, µ) be a σ-finite measure space. Let
L be a Banach space of X-valued strongly measurable functions on (Ω,Σ, µ). We consider
a strongly continuous d-dimensional semigroup T = {T (u) : u = (u1, . . . , ud), ui > 0,
1 ≤ i ≤ d} of linear contractions on L. We assume that each T (u) has, in a sense, a
contraction majorant and that the strong limit T (0) = strong-limu→0T (u) exists. Then we
prove, under some suitable norm conditions on the Banach space L, that a differentiation
theorem holds for d-dimensional bounded processes in L which are additive with respect
to the semigroup T . This generalizes a differentiation theorem obtained previously by the
author under the assumption that L is an X-valued Lp-space, with 1 ≤ p <∞.

1. Introduction. Let (X, ‖ · ‖) be a Banach space and (Ω,Σ, µ) be a
σ-finite measure space. Let (L, ‖ · ‖L) denote a Banach space of X-valued
strongly measurable functions on (Ω,Σ, µ) under pointwise operations. Two
functions f and g in L are not distinguished provided that f(ω) = g(ω) for
almost all ω ∈ Ω. Thus all statements and relations are assumed to hold
modulo sets of measure zero. In this paper we will also assume that the
norm ‖ · ‖L of L has the following properties:

(I) If f, g ∈ L and ‖f(ω)‖ ≤ ‖g(ω)‖ for almost all ω ∈ Ω, then ‖f‖L ≤
‖g‖L.

(II) If g is an X-valued strongly measurable function on Ω and if there
exists an f ∈ L such that ‖g(ω)‖ ≤ ‖f(ω)‖ for almost all ω ∈ Ω, then g ∈ L.

(III) If En ∈ Σ, En ⊃ En+1 for each n ≥ 1, and
⋂∞
n=1En = ∅, then for

any f ∈ L we have limn→∞ ‖χEnf‖L = 0, where χEn denotes the charac-
teristic function of En.
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(IV) If f and g are in L, ‖f(ω)‖ ≤ ‖g(ω)‖ for almost all ω ∈ Ω, and
‖f‖L = ‖g‖L, then ‖f(ω)‖ = ‖g(ω)‖ for almost all ω ∈ Ω.

(V) If (fn, n ≥ 1) is a sequence of functions in L such that ‖fn(ω)‖ ≤
‖fn+1(ω)‖ for almost all ω ∈ Ω, for each n ≥ 1, and also such that
supn≥1 ‖fn‖L <∞, then there exists an f ∈ L such that ‖fn(ω)‖ ≤ ‖f(ω)‖
for almost all ω ∈ Ω, for every n ≥ 1.

It is worth noting that in addition to the usual X-valued Lp-spaces,
with 1 ≤ p <∞, there are many interesting X-valued function spaces with
properties (I) to (V). Examples are some (X-valued) Lorentz spaces and
Orlicz spaces, etc. (see, for example, [8] and [9]). By simple examples we
observe that properties (III), (IV) and (V) are independent of each other.

Fix x1 ∈ X with ‖x1‖ = 1. We denote by L(R) the set of all real-valued
measurable functions f̃ on (Ω,Σ, µ) such that the function

(1) f(ω) = f̃(ω)x1

is in L. Define

(2) ‖f̃‖L(R) = ‖f‖L for f̃ ∈ L(R).

It follows that (L(R), ‖ · ‖L(R)) becomes a Banach space. In an obvious
manner (L(R), ‖ · ‖L(R)) can be regarded as a closed subspace of (L, ‖ · ‖L).

We call a positive linear operator P defined on L(R) a majorant of a
linear operator U defined on L if

(3) ‖Uf(ω)‖ ≤ [P‖f(·)‖](ω)

for almost all ω ∈ Ω, for every f ∈ L. We call U a contraction if the operator
norm ‖U‖ of U is less than or equal to one.

For an integer d, with d ≥ 1, we put Pd = {u = (u1, . . . , ud) : ui > 0,
1 ≤ i ≤ d} and R+

d = {u = (u1, . . . , ud) : ui ≥ 0, 1 ≤ i ≤ d}. Further, Id
denotes the class of all bounded intervals in Pd, and λd is the d-dimensional
Lebesgue measure. We will consider a strongly continuous d-dimensional
semigroup T = {T (u) : u ∈ Pd} of linear contractions on L. This means
that T satisfies:

(a) ‖T (u)‖ ≤ 1 for u ∈ Pd,
(b) T (u+ v) = T (u)T (v) for u, v ∈ Pd, and
(c) limu→v ‖T (u)f − T (v)f‖L = 0 for v ∈ Pd and f ∈ L.

It follows that for each f ∈ L the L-valued function u 7→ T (u)f is Bochner
integrable over every I ∈ Id.

By a (d-dimensional) process F in L we mean a set function F : Id → L.
It is bounded if

(4) K(F ) := sup
{‖F (I)‖L

λd(I)
: I ∈ Id, λd(I) > 0

}
<∞,
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and additive (with respect to T ) if it satisfies the following conditions:

(i) T (u)F (I) = F (u+ I) for all u ∈ Pd and I ∈ Id.
(ii) If I1, . . . , Ik ∈ Id are pairwise disjoint and I =

⋃k
i=1 Ii ∈ Id, then

F (I) =
∑k
i=1 F (Ii).

Thus if F (I) =
�
I
T (u)f du for all I ∈ Id, where f is a fixed function

in L, then F (I) defines a bounded additive process in L.
In this paper we study the almost everywhere convergence of the averages

(5) α−dF ((0, α]d)

as α approaches zero. But this is meaningless when the averages denote
equivalence classes and not actual functions and α ranges through all pos-
itive numbers. Therefore in this paper we let α range through a countable
dense subset D of the positive numbers. It may be assumed that D includes
all positive rational numbers. We use the following notations:

(6) q-lim
α→0

and q-lim sup
α→0

,

which mean that these limits are taken as α tends to zero through the set
D (cf. [2], [3]).

We are now in a position to state our differentiation theorem:

Theorem. Assume that each T (u), u ∈ Pd, has a contraction majorant
P (u) defined on L(R) and that the strong limit T (0) = strong-limu→0 T (u)
exists. Then for each f ∈ L, we have

(7) T (0)f(ω) = q-lim
α→0

α−d
( �

(0,α]d

T (u)f du
)

(ω)

for almost all ω ∈ Ω. Further , if X is assumed to be a reflexive Banach
space, then to each bounded additive process F : Id → L there corresponds
a function f ∈ L, with T (0)f = f , for which

(8) f(ω) = q-lim
α→0

α−dF ((0, α]d)(ω)

for almost all ω ∈ Ω.

We remark that in [11] such differentiation theorems have been exam-
ined within the framework of X-valued Lp-spaces, with 1 ≤ p < ∞. Since
the existence of the strong limit T (0) = strong-limu→0 T (u) was essentially
assumed there, the above theorem may be considered a generalization of the
main result of [11]. It is also interesting to remark that in [11] a brief dis-
cussion was presented about the condition on the existence of a contraction
majorant P (u) for each T (u).

The idea of the proof is as follows. First we show, as in [11], that there
exists a strongly measurable subsemigroup {τ(u) : u ∈ Pd} of positive linear
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contractions defined on L(R) which dominates the semigroup T = {T (u) :
u ∈ Pd} in the sense that for each u ∈ Pd and f ∈ L,

(9) ‖T (u)f(ω)‖ ≤ [τ(u)‖f(·)‖](ω)

for almost all ω ∈ Ω. By using this, we then combine a reduction method on
the dimension d of the semigroup T and the process F , due to Emilion [6]
(see also [2], [5] and [13]), with the recent results of [12] in order to adapt the
arguments of [11] to the present situation. This is an outline. In Section 2 we
develop these in detail and provide some necessary lemmas. The proof of the
theorem is given in Section 3, and in Section 4 we first construct an example
showing that the theorem fails to hold when property (IV) is not assumed,
and then we remark that in spite of this example the theorem holds without
assuming property (IV) if the strong limit operator T (0) of the theorem
satisfies ‖T (0)f‖L 6= 0 whenever ‖f‖L 6= 0. Hence, in particular, if T (0) = I
(the identity operator), then the theorem holds without property (IV).

2. Preliminaries and lemmas. The next four lemmas clarify proper-
ties of the Banach space (L, ‖ · ‖L). Since proofs can be found in [12], we
omit them.

Lemma 1. If (fn, n ≥ 1) is a sequence of functions in L such that∑∞
n=1 ‖fn‖L < ∞, then

∑∞
n=1 ‖fn(ω)‖ < ∞ for almost all ω ∈ Ω, and the

function f(ω) =
∑∞
n=1 fn(ω) is in L and satisfies

lim
k→∞

∥∥∥f −
k∑

n=1

fn

∥∥∥
L

= 0.

Lemma 2. Let (fn, n ≥ 1) be a sequence of functions in L. If

lim
n→∞

‖f − fn‖L = 0 for some f ∈ L,

then there exists a subsequence (fn′) of (fn) such that limn′→∞ fn′(ω) =
f(ω) for almost all ω ∈ Ω.

Lemma 3. Let (fn, n ≥ 1) be a sequence of functions in L. If

lim
n→∞

fn(ω) = 0 for almost all ω ∈ Ω

and if there exists an f ∈ L such that ‖fn(ω)‖ ≤ ‖f(ω)‖ for almost all
ω ∈ Ω, for every n ≥ 1, then limn→∞ ‖fn‖L = 0.

Lemma 4. There exists a real-valued measurable function w on Ω, with
w(ω) > 0 on Ω, such that

�
‖f(ω)‖w(ω) dµ <∞

for all f ∈ L.
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Hereafter we may and do assume d = 2m with m ≥ 1, where d is the
dimension of the semigroup T = {T (u)}. This is done because if 2m−1 ≤
d < 2m, then by setting T̂ (u, v) = T (u) for (u, v) ∈ P2m , where u ∈ Pd, we
have a 2m-dimensional semigroup T̂ = {T̂ (û) : û ∈ P2m}, and if R : Id → L
is a bounded additive process in L with respect to T = {T (u) : u ∈ Pd},
then by setting

F̂ (I × I ′) = λ2m−d(I ′)F (I) for I × I ′ ∈ I2m ,

where I ∈ Id, we have a 2m-dimensional bounded process F̂ : I2m → L
which is additive with respect to T̂ . By an obvious argument it suffices to
prove the theorem for T̂ and F̂ instead of T and F , respectively.

Lemma 5 (cf. Lemma 1 of [11]). Assume that each T (u), u ∈ Pd, has
a contraction majorant P (u) defined on L(R). Then there exists a positive
linear contraction τ(u) on L(R), called the linear modulus of T (u), such
that

(i) ‖T (u)f(ω)‖ ≤ [τ(u)‖f(·)‖](ω) ≤ [P (u)‖f(·)‖](ω) for almost all ω ∈
Ω, for every f ∈ L,

(ii) τ(u)g̃ = ess sup{∑k
i=1 ‖[T (u)fi](·)‖ : fi ∈ L,

∑k
i=1 ‖fi(ω)‖ ≤

g̃(ω) on Ω} for all g̃ ∈ L(R)+, where L(R)+ = {h̃ ∈ L(R) : h̃(ω) ≥ 0 on Ω},
(iii) τ(s+ t) ≤ τ(s)τ(t) for s, t ∈ Pd,
(iv) limt→u ‖[τ(t)g̃− τ(u)g̃]−‖L(R) = 0 for every u ∈ Pd and g̃ ∈ L(R)+.

Proof. If g̃ ∈ L(R)+ and u ∈ Pd, then define a nonnegative measurable
function τ(u)g̃ on Ω by the relation

τ(u)g̃ = ess sup
{ k∑

i=1

‖[T (u)fi](·)‖ :

fi ∈ L,
k∑

i=1

‖fi(ω)‖ ≤ g̃(ω) on Ω, 1 ≤ k <∞
}
.

Since
k∑

i=1

‖[T (u)fi](ω)‖ ≤
k∑

i=1

[P (u)‖fi(·)‖](ω) ≤ P (u)g̃(ω)

for almost all ω ∈ Ω, it follows that τ(u)g̃(ω) ≤ P (u)g̃(ω) for almost all
ω ∈ Ω. Hence from properties (I) and (II) we get τ(u)g̃ ∈ L(R)+ and
‖τ(u)g̃‖L(R) ≤ ‖P (u)g̃‖L(R) ≤ ‖g̃‖L(R). Thus (i) follows. Since τ(u) is linear
on L(R)+, it uniquely extends to a linear contraction on L(R), and (iii)
follows from the semigroup property T (s+ t) = T (s)T (t).
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To prove (iv), let g̃ ∈ L(R)+ and ε > 0. Then we can choose functions
gj in L, 1 ≤ j ≤ n, so that each gj has the form

gj =
k∑

i=1

fij with
k∑

i=1

‖fij(ω)‖ ≤ g̃(ω) on Ω,

where fij ∈ L for each i with 1 ≤ i ≤ k, and so that

∥∥∥[τ(u)g̃ ](·)− max
1≤j≤n

k∑

i=1

‖[T (u)fij ](·)‖
∥∥∥
L(R)

< ε.

Since the strong continuity of T = {T (u)} and properties (I) and (II) imply

lim
t→u

∥∥‖[T (t)fij ](·)‖ − ‖[T (u)fij ](·)‖
∥∥
L(R) = 0,

and since ε > 0 was arbitrary, it follows from the definition of τ(u)g̃ that

lim
t→u
‖[τ(t)g̃ − τ(u)g̃ ]−‖L(R) = 0,

whence (iv) follows, and the proof is complete.

Lemma 6. For the proof of the theorem we may assume that L is sepa-
rable.

Proof. First we notice that 1 ∈ L(R) can be assumed without loss of
generality. In fact, since µ is σ-finite, we can apply Lemma 1 to take an
h ∈ L with {ω : h(ω) 6= 0} ⊃ {ω : f(ω) 6= 0} for every f ∈ L. Here obviously
we may assume without loss of generality that {ω : h(ω) 6= 0} = Ω. Then,
by defining

L(h) =
{

f

‖h(·)‖ : f ∈ L
}

and
∥∥∥∥

f

‖h(·)‖

∥∥∥∥
L(h)

= ‖f‖L,

(L(h), ‖ · ‖L(h)) becomes a Banach space which is isometrically isomorphic
to (L, ‖ · ‖L) via the mapping f/‖h(·)‖ 7→ f . Hence it follows that we may
consider (L(h), ‖ · ‖L(h)) instead of (L, ‖ · ‖L) for the proof of the theorem.
Thus 1 ∈ L(R) can be assumed from the beginning.

Let F : Id → L be a bounded additive process with respect to the
semigroup T = {T (u) : u ∈ Pd}. It follows from the boundedness of F that
the set {F (I) : I ∈ Id} is separable in L, and thus by the strong continuity
of the semigroup T = {T (u)} the set {T (u)F (I) : u ∈ Pd, I ∈ Id} is also
separable in L. Since T (u)F (I) is a µ-essentially separably valued function
for every u ∈ Pd and I ∈ Id, we then apply Lemma 2 to infer that there
exists a separable Banach subspace X1 of X for which

T (u)F (I)(ω) ∈ X1

for almost all ω ∈ Ω, for every u ∈ Pd and I ∈ Id. Further, there exists
a separable σ-subalgebra Σ1 of Σ such that T (u)F (I) becomes a strongly
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measurable function with respect to (Ω,Σ1) for every u ∈ Pd and I ∈ Id.
Thus the linear manifold M1 in L defined by

M1 = {g ∈ L : g is X1-valued and strongly measurable

with respect to (Ω,Σ1)}
includes the set {T (u)F (I) : u ∈ Pd, I ∈ Id}, and Lemma 2 implies that M1

is a closed subset of L. To see that it is separable, let g be a function in M1.
By a standard argument there exists a sequence (gn, n ≥ 1) of X1-valued
simple functions, strongly measurable with respect to (Ω,Σ1), such that
‖gn(ω)‖ ≤ ‖gn+1(ω)‖, ‖gn(ω) − g(ω)‖ ≤ 2‖g(ω)‖ and limn→∞ ‖gn(ω) −
g(ω)‖ = 0 for all n ≥ 1 and ω ∈ Ω. By Lemmas 2 and 3 we then have

lim
n→∞

‖gn − g‖L = 0.

On the other hand, since 1 ∈ L(R), Σ1 is separable, and µ is σ-finite, it
follows from Lemma 3 together with Theorem 13.D of [7] that the set of all
X1-valued simple functions in L that are strongly measurable with respect
to (Ω,Σ1) is separable in L. Hence it follows that M1 is separable.

Since the union M1 ∪ {T (u)g : u ∈ Pd, g ∈ M1} is separable, we can
continue this argument to obtain a separable Banach subspace X2 of X with
X1 ⊂ X2, and a separable σ-subalgebra Σ2 of Σ with Σ1 ⊂ Σ2. Then the
linear manifold M2 in L defined by

M2 = {g ∈ L : g is X2-valued and strongly measurable

with respect to (Ω,Σ2)}
becomes a separable Banach subspace of L such that M1 ⊂M2.

By repeating this process we obtain an infinite sequence ((Xn, Σn,Mn),
n ≥ 1). Finally, define

X∞ = the closed linear subspace of X generated by
∞⋃

n=1

Xn,

Σ∞ = the σ-subalgebra of Σ generated by
∞⋃

n=1

Σn, and

M∞ = {g ∈ L : g is X∞-valued and strongly measurable

with respect to (Ω,Σ∞)}.
Clearly, M∞ is a separable Banach subspace of L such that {F (I) : I∈Id}
⊂ M∞. Further, using an approximation argument and Lemma 3 together
with Theorem 13.D of [7], we observe that T (u)M∞ ⊂M∞ for every u ∈ Pd.
Hence we may consider M∞ instead of L for the proof of the theorem,
since M∞ inherits properties (I) to (V) from L. This completes the proof of
Lemma 6.
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From now on L will be assumed to be separable. Thus L(R) is also
separable.

Following [6] and [11], we will call a set function F 0 : Id → L(R)+ an
almost additive process in L(R)+ with respect to the subsemigroup {τ(u) :
u ∈ Pd} of Lemma 5 if it is bounded and satisfies the following conditions:

(i) τ(u)F 0(I)(ω) ≥ F (u+ I)(ω) for almost all ω ∈ Ω, for every u ∈ Pd

and I ∈ Id.
(ii) If I1, . . . , Ik ∈ Id are pairwise disjoint and I =

⋃k
i=1 Ii ∈ Id, then

F 0(I) =
∑k
i=1 F

0(Ii).

Examples. (a) If f ∈ L is given, then, since L(R) is separable, Lemma
5(iv) implies that the function u 7→ τ(u)‖f(·)‖ from Pd to L(R)+ is strongly
Lebesgue measurable, and thus it is Bochner integrable over every I ∈ Id.
If we set

F 0(I) =
�

I

τ(u)‖f(·)‖ du

for I ∈ Id, then F 0(I) defines an almost additive process in L(R)+ with
respect to {τ(u) : u ∈ Pd} by Lemma 5(iii). It is clear that

∥∥∥
( �

I

T (u)f du
)

(ω)
∥∥∥ ≤ F 0(I)(ω)

for almost all ω ∈ Ω, for every I ∈ Id.
(b) Let F : Id → L be a bounded additive process in L with respect to

T = {T (u) : u ∈ Pd}. For an I ∈ Id, let P(I) denote the class of all finite
partitions of I into pairwise disjoint intervals in Pd, and define

F 0(I) = ess sup
{ k∑

i=1

‖F (Ii)(·)‖ : {I1, . . . , Ik} ∈ P(I)
}
.

Since
∥∥∥

k∑

i=1

‖F (Ii)(·)‖
∥∥∥
L(R)

≤
k∑

i=1

‖F (Ii)‖L ≤ K(F )λd(I) <∞,

it follows from properties (V) and (II) that F 0(I) is a function in L(R)+.
Thus, by Lemmas 3 and 5(i), F 0(I) defines an almost additive process in
L(R)+ with respect to {τ(u) : u ∈ Pd}. Clearly, we have K(F 0) = K(F )
<∞ and ‖F (I)(ω)‖ ≤ F 0(I)(ω) for almost all ω ∈ Ω, for every I ∈ Id.

Since the function u 7→ τ(u)g̃ from Pd to L(R) is strongly Lebesgue
measurable for every g̃ ∈ L(R), we can apply the same proof of Lemma 2 of
[11] to obtain the following lemma. We omit the details.

Lemma 7 (cf. Lemma 2 of [11]). Let d = 2m with m ≥ 1. Then there
exists a constant Cd, depending only on d, and a strongly continuous one-
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dimensional subsemigroup Tm = {Tm(t) : t > 0} of positive linear con-
tractions defined on L(R) such that to each d-dimensional almost additive
process F 0 in L(R)+ with respect to the subsemigroup {τ(u) : u ∈ Pd} there
corresponds a one-dimensional almost additive process Fm in L(R)+, with
respect to the subsemigroup Tm = {Tm(t) : t > 0}, such that

α−dF 0((0, α]d)(ω) ≤ Cdα̃−1Fm((0, α̃])(ω)

for almost all ω ∈ Ω, for every α > 0, where log α̃ = 2−m logα. In partic-
ular , if F 0(I) =

�
I
τ(u)‖f(·)‖ du for all I ∈ Id, where f ∈ L, then we have

Fm((a, b]) =
� b
a
Tm(t)‖f(·)‖ dt for every a, b ∈ R+

1 with a < b.

Next, for t > 0 and g̃ ∈ L(R)+, define

U(t)g̃ = ess sup
{
Tm(t1)Tm(t2) . . . Tm(tk)g̃ : ti > 0,

k∑

i=1

ti = t
}
.

Since 0 ≤ Tm(s + t) ≤ Tm(s)Tm(t) (by the subsemigroup property) and
‖Tm(t)‖ ≤ 1 for s, t > 0, it follows from properties (V), (II), (I) and Lemma 3
that U(t)g̃ is a function in L(R)+ such that

‖U(t)g̃‖L(R) ≤ ‖g̃‖L(R).

Since U(t) is linear on L(R)+, it can be uniquely extended to a linear con-
traction on L(R) in an obvious manner. Clearly, the construction implies
U(s + t) = U(s)U(t) for s, t > 0. That is, U = {U(t) : t > 0} becomes a
semigroup of operators.

Lemma 8. U = {U(t) : t > 0} is a strongly continuous semigroup of
positive linear contractions on L(R).

Proof. It only remains to prove the strong continuity of the semigroup
U . To do so, let t > 0 and g̃ ∈ L(R)+. For an ε > 0, take t1, . . . , tk > 0 with
t =

∑k
i=1 ti so that

‖U(t)g̃ − Tm(t1)Tm(t2) . . . Tm(tk)g̃‖L(R) < ε.

Since Tm = {Tm(t)} is strongly continuous on (0,∞) by Lemma 7, it follows
that

‖Tm(s1)Tm(s2) . . . Tm(sk)g̃ − Tm(t1)Tm(t2) . . . Tm(tk)g̃‖L(R) → 0

as si approaches ti for each i with 1 ≤ i ≤ k. Hence there exists a δ > 0 so
that if |si − ti| < δ for 1 ≤ i ≤ k, then

‖U(t)g̃ − Tm(s1)Tm(s2) . . . Tm(sk)g̃‖L(R) < ε.

By the fact that U(s1 + . . . + sk)g̃(ω) ≥ Tm(s1)Tm(s2) . . . Tm(sk)g̃(ω) for
almost all ω ∈ Ω, we now get

‖(U(s)g̃ − U(t)g̃)−‖L(R) < ε
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for s = s1 + . . .+ sk, and hence

lim
s→t
‖(U(s)g̃ − U(t)g̃)−‖L(R) = 0,

which implies that the function t 7→ U(t)g̃ is strongly measurable, since
L(R) is separable. Hence the semigroup U = {U(t)} is strongly continuous
on the interval (0,∞) by Lemma VIII.1.3 of [5]. This completes the proof.

Lemma 9. For every f ∈ L there exists an X-valued function (u, ω) 7→
T (u)(f, ω) defined on Pd ×Ω, strongly measurable with respect to the usual
product σ-algebra Md ×Σ, where Md is the σ-algebra of all Lebesgue mea-
surable subsets of Pd, such that , for each fixed u ∈ Pd, T (u)(f, ·) is, as a
function on Ω, a representative of the element T (u)f ∈ L.

Proof. Since the strong limit T (0) = limu→0 T (u) exists and ‖T (u)‖ ≤ 1
for all u ∈ Pd by hypotheses, the semigroup T = {T (u) : u ∈ Pd} can be
extended uniquely to a strongly continuous semigroup on R+

d by an easy
approximation argument. We will denote this extended semigroup by T =
{T (u) : u ∈ R+

d }. (Incidentally, we note that each T (u) with u ∈ R+
d has the

linear modulus τ(u) defined on L(R). A proof can be found in the proof of
Lemma 1 of [11].)

For n ≥ 1, define a step functin Fn : R+
d → L by

Fn(u) = T

(
i1
n!
, . . . ,

id
n!

)
f for u = (u1, . . . , ud) ∈ R+

d ,

where i1, . . . , id are nonnegative integers such that

il
n!
≤ ul <

il + 1
n!

for 1 ≤ l ≤ d.

Since the contraction semigroup {T (u) : u ∈ R+
d } is strongly continuous on

R+
d , there exists a subsequence (Fn(k), k ≥ 1) of (Fn) such that

∞∑

k=1

‖Fn(k)(u)− T (u)f‖L <∞

for all u ∈ R+
d . Then we apply Lemma 1 to infer that, for each fixed u ∈ R+

d ,

∞∑

k=1

‖(Fn(k)(u))(ω)− (T (u)f)(ω)‖ <∞

for almost all ω ∈ Ω. Hence the function (u, ω) 7→ T (u)(f, ω) on Pd × Ω
defined by the relation

T (u)(f, ω) =
{

limk→∞(Fn(k)(u))(ω) if the limit exists,
0 otherwise,

is as required, and the proof is complete.
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Lemma 10. Let f ∈ L. If a, b ∈ R+
1 with a < b, define a function F (ω)

on Ω by the relation

F (ω) =
{ �

(a,b]d T (u)(f, ω) du if the integral exists,
0 otherwise.

Then F (·) is a representative of the element
�
(a,b]dT (u)f du ∈ L.

Proof. First we notice that
�

(a,b]d

‖T (u)(f, ω)‖ du <∞

for almost all ω ∈ Ω. In fact, there exists a strictly positive measurable
function w on Ω such that �

Ω

‖f(ω)‖w(ω) dµ <∞

for all f ∈ L, by Lemma 4. Thus we can find a constant K̃ > 0 so that

(10)
�

Ω

‖f(ω)‖w(ω) dµ(ω) ≤ K̃‖f‖L

for all f ∈ L (cf. the proof of Lemma 4 of [12]). Then by Fubini’s theorem
�

Ω

�

(a,b]d

‖T (u)(f, ω)‖w(ω) du dµ(ω) =
�

(a,b]d

�

Ω

‖T (u)(f, ω)‖w(ω) dµ(ω) du

≤
�

(a,b]d

K̃‖f‖L du <∞.

Since w(ω) > 0 on Ω, this shows that
�
(a,b]d‖T (u)(f, ω)‖ du <∞ for almost

all ω ∈ Ω.
Now, by the strong continuity of T = {T (u)} on R+

d , there exists a
sequence (F̂n, n ≥ 1) of step functions F̂n : (a, b]d → L such that

‖F̂n(u)‖L ≤ ‖f‖L and lim
n→∞

‖F̂n(u)− T (u)f‖L = 0

for all u ∈ (a, b]d. Thus by Lebesgue’s convergence theorem we have

(11)
�

(a,b]d

T (u)f du = strong- lim
n→∞

�

(a,b]d

F̂n(u) du.

Here we may assume without loss of generality that
∞∑

n=1

�

(a,b]d

‖F̂n(u)− T (u)f‖L du <∞.

Then by (10) and Fubini’s theorem



142 R. Sato

∞ >
∞∑

n=1

�

(a,b]d

�

Ω

‖(F̂n(u))(ω)− T (u)(f, ω)‖w(ω) dµ(ω) du

=
∞∑

n=1

�

Ω

w(ω)
( �

(a,b]d

‖(F̂n(u))(ω)− T (u)(f, ω)‖ du
)
dµ(ω),

whence the inequality
∞∑

n=1

�

(a,b]d

‖(F̂n(u))(ω)− T (u)(f, ω)‖ du <∞

must hold for almost all ω ∈ Ω, since w(ω) > 0 on Ω. Consequently,

(12) lim
n→∞

�

(a,b]d

(F̂n(u))(ω) du =
�

(a,b]d

T (u)(f, ω) du

for almost all ω ∈ Ω. On the other hand, since F̂n : (a, b] → L is a step
function, it is clear that the function ω 7→

�
(a,b]d(F̂n(u))(ω) du is a represen-

tative of the element
�
(a,b]d F̂n(u) du ∈ L, for each n ≥ 1. Hence the lemma

follows from (11) and (12) together with Lemma 2.

Lemma 11. Let f ∈L and β>0. Then the function fβ=
�
(0,β]d T (u)f du

satisfies
fβ(ω) = q-lim

α→0
α−d

( �

(0,α]d

T (u)fβ du
)

(ω)

for almost all ω ∈ Ω.

Proof. By Fubini’s theorem, the X-valued function Fβ(u, ω) on Pd ×Ω
defined by

Fβ(u, ω) =
{ �

u+(0,β]d T (t)(f, ω) dt if the integral exists,
0 otherwise,

is strongly measurable with respect to Md × Σ. By Lemmas 9 and 10 we
have

Fβ(u, ω) = T (u)(fβ, ω)

for almost all (u, ω) ∈ Pd × Ω with respect to the product measure of λd
and µ. Thus

q-lim
α→0

α−d
( �

(0,α]d

T (u)fβ du
)

(ω)

= q-lim
α→0

α−d
�

(0,α]d

T (u)(fβ , ω) du (by Lemma 10)

= q-lim
α→0

α−d
�

(0,α]d

Fβ(u, ω) du =
�

(0,β]d

T (u)(f, ω) du
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for almost all ω ∈ Ω, where the last equality follows from the obvious fact
that

lim
u→0
u∈Pd

Fβ(u, ω) =
�

(0,β]d

T (t)(f, ω) dt

for almost all ω ∈ Ω. Since the function ω 7→
�
(0,β]d T (u)(f, ω) du is a repre-

sentative of fβ by Lemma 10, this completes the proof.

3. Proof of the Theorem

Part I : Proof of the first half. If f ∈ L then, since

T (0) = strong-lim
u→0

T (u),

we find
lim
β→0

∥∥∥T (0)f − β−d
�

(0,β]d

T (u)f du
∥∥∥
L

= 0

and
T (u)(f − T (0)f) = 0 for u ∈ Pd.

Hence by Lemma 11 there exists a sequence (fn, n ≥ 1) of functions in L
so that ‖T (0)f − fn‖L < 2−n, T (0)fn = fn, and

(13) q-lim
α→0

α−d
( �

(0,α]d

T (u)fn du
)

(ω) = fn(ω)

for almost all ω ∈ Ω, for every n ≥ 1. We now define a nonnegative measur-
able function G̃(ω) on Ω by the relation

G̃(ω) = q-lim sup
α→0

∥∥∥α−d
( �

(0,α]d

T (u)f du
)

(ω)− T (0)f(ω)
∥∥∥.

It then suffices to prove that G̃(ω) = 0 for almost all ω ∈ Ω. To do so, we
use the equation

α−d
�

(0,α]d

T (u)f du− T (0)f

= α−d
�

(0,α]d

T (u)(T (0)f − fn) du+ α−d
�

(0,α]d

T (u)fn du

− T (0)fn + T (0)(fn − f).

From (13) we obtain

G̃(ω) ≤ q-lim sup
α→0

∥∥∥α−d
( �

(0,α]d

T (u)(T (0)f − fn) du
)

(ω)
∥∥∥

+ ‖T (0)(fn − f)(ω)‖
= In(ω) + IIn(ω)
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for almost all ω ∈ Ω. Since
∞∑

n=1

‖T (0)(fn − f)‖L =
∞∑

n=1

‖fn − T (0)f‖L <
∞∑

n=1

2−n <∞,

it follows from Lemma 1 that

lim
n→∞

IIn(ω) = lim
n→∞

‖T (0)(fn − f)(ω)‖ = 0

for almost all ω ∈ Ω.
To estimate In(ω), we notice that

∥∥∥
( �

(0,α]d

T (u)(T (0)f−fn) du
)

(ω)
∥∥∥ ≤

( �

(0,α]d

τ(u)(‖T (0)f(·)−fn(·)‖) du
)

(ω)

for almost all ω ∈ Ω. Hence by Lemma 7,
∥∥∥α−d

( �

(0,α]d

T (u)(T (0)f − fn) du
)

(ω)
∥∥∥

≤ Cdα̃−1
( α̃�

0

Tm(t)(‖T (0)f(·)− fn(·)‖) dt
)

(ω)

for almost all ω ∈ Ω, where log α̃ = 2−m logα. Since 0 ≤ Tm(t) ≤ U(t) for
t > 0 by the construction of the semigroup U = {U(t)}, it follows that

(14) In(ω) ≤ Cd q-lim sup
α̃→0

α̃−1
( α̃�

0

U(t)(‖T (0)f(·)− fn(·)‖) dt
)

(ω)

for almost all ω ∈ Ω.
Here we need two decompositions Ω = P +N and Ω = C+D of Ω (with

respect to U = {U(t)}) mentioned in [12]. We recall that Ω = P +N is the
measurable decomposition such that

(a) if f̃ ∈ L(R) and {ω : f̃(ω) 6= 0} ⊂ N , then ‖U(t)f̃‖L(R) = 0 for all
t > 0,

(b) if 0 6= f̃ ∈ L(R)+ and µ({ω : f̃(ω) 6= 0} ∩ P ) > 0, then ‖U(t)f̃‖L(R)

> 0 for some t > 0.

Next, Ω = C +D is the measurable decomposition such that

(c) U(t)f̃(ω) = 0 on D for every t > 0 and f̃ ∈ L(R),
(d) C =

⋃∞
n=1 {ω : U(1/n)h̃(ω) > 0} for some h̃ ∈ L(R)+.

Since (L, ‖ · ‖L) has property (IV), it follows from Proposition 2 of [12]
that

(15) C ⊂ P.
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On the other hand, from (c) and Lemma 2 we see that

( α̃�

0

U(t)(‖T (0)f(·)− fn(·)‖) dt
)

(ω) = 0 on D.

Therefore it follows from the Theorem of [12] and (15) that for each n ≥ 1
the limit

(16) h̃n(ω) := q-lim
α̃→0

α̃−1
( α̃�

0

U(t)(‖T (0)f(·)− fn(·)‖) dt
)

(ω)

exists and is finite for almost all ω ∈ Ω.
Now, for an integer m ≥ 1, define a nonnegative measurable function

h̃n,m on Ω by

h̃n,m(ω) = inf
k≥m

k
( 1/k�

0

U(t)(‖T (0)f(·)− fn(·)‖) dy
)

(ω).

Clearly, h̃n,m ∈ L(R)+, 0 ≤ h̃n,1(ω) ≤ h̃n,2(ω) ≤ . . . ↑ h̃n(ω) for almost all
ω ∈ Ω, and

‖h̃n,m‖L(R) ≤ ‖T (0)f − fn‖L < 2−n for every m ≥ 1

by properties (I) and (II). Thus from properties (V), (II) and Lemma 3 we
see that h̃n is a function in L(R)+ such that

‖h̃n‖L(R) = lim
m→∞

‖h̃n,m‖L(R) ≤ ‖T (0)f − fn‖L < 2−n.

Since
∑∞
n=1 ‖h̃n‖L(R) <∞, it follows from Lemma 1 that

∑∞
n=1 h̃n(ω) <∞

for almost all ω ∈ Ω, which yields

lim
n→∞

In(ω) = 0

for almost all ω ∈ Ω, because 0 ≤ In(ω) ≤ Cdh̃n(ω) for almost all ω ∈ Ω by
(14) and (16). Hence we have proved that G̃(ω) = 0 for almost all ω ∈ Ω,
and this establishes the first half of the theorem.

Part II : Proof of the second half. For this purpose, X will be assumed
below to be reflexive. Let F : Id → L be a bounded additive process with
respect to the semigroup T = {T (u) : u ∈ Pd}, where d = 2m with m ≥ 1.
By Example (b) there exists an almost additive process F 0 : Id → L(R)+

with respect to the subsemigroup {τ(u) : u ∈ Pd} such that for every I ∈ Id,
(17) ‖F (I)(ω)‖ ≤ F 0(I)(ω)

for almost all ω ∈ Ω. By Lemma 7 there exists a one-dimensional strongly
continuous subsemigroup Tm = {Tm(t) : t > 0} and a one-dimensional
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almost additive process Fm : I1 → L(R)+ with respect to Tm = {Tm(t)}
such that for every α > 0,

(18) α−dF 0((0, α]d)(ω) ≤ Cdα̃−1Fm((0, α̃])(ω)

for almost all ω ∈ Ω, where log α̃ = 2−m logα. Thus, taking into account
property (V) and Lemma 3, we can apply the same proof of Lemma 3 of
[11] to obtain a bounded one-dimensional process G̃ : I1 → L(R)+, additive
with respect to the semigroup U = {U(t) : t > 0} of Lemma 8, such that
for every α > 0,

(19) Fm((0, α])(ω) ≤ G̃((0, α])(ω)

for almost all ω ∈ Ω.
Since 



G̃((0, α]) = G̃((0, ε]) + U(ε)G̃((0, α− ε]),
‖G̃((0, ε])‖L(R) → 0 as ε→ 0, and
U(ε)G̃((0, α− ε])(ω) = 0 on D (by (c)),

it follows from Lemma 2 that for every α > 0,

(20) G̃((0, α])(ω) = 0 on D.

Hence from (15) and (c) we see that it may be assumed without loss of
generality that

(21) Ω = C = P

(In fact, if f ∈ L is such that f(ω) = 0 on D then, since (U(t)‖f(·)‖)(ω) = 0
on D for every t > 0, it follows from the construction of U = {U(t)} that
(Tm(t)‖f(·)‖)(ω) = 0 on D for every t > 0, which in turn implies that
T (u)f(ω) = 0 on D for every u ∈ Pd, by the costruction of Tm = {Tm(t) :
t > 0} (see the proof of Lemma 2 of [11]). From this and (15), without loss
of generality, we may assume (21) for the proof of the theorem.)

Then, by Theorem of [12], the limit

(22) g̃(ω) := q-lim
α̃→0

α̃−1G̃((0, α̃])(ω)

exists and is finite for almost all ω ∈ Ω = C = P , and since G̃ is a bounded
process in L(R)+, it follows from properties (I), (II) and (V) that the limit
function g̃ is in L(R)+.

To complete the proof we use Lemma 8 of [12] as follows. By this lemma
we can find a positive number β and a sequence (vn, n ≥ 1) of nonnegative
measurable functions on Ω so that

(i) 0 ≤ v1(ω) ≤ v2(ω) ≤ . . . for almost all ω ∈ Ω,
(ii) limn→∞ vn(ω) > 0 for almost all ω ∈ Ω = P = C,
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(iii) for each f̃ ∈ L(R)+, t > 0 and n ≥ 1 we have

(23)
�

Ω

(U(t)f̃) · vn dµ ≤ eβt
�

Ω

f̃ · vn dµ <∞.

For n ≥ 1, we let

(24) Pn = {ω : vn(ω) > 0}.
Clearly, P1 ⊂ P2 ⊂ . . . and

⋃∞
n=1 Pn = Ω. If f ∈ L is such that f(ω) = 0 on

Pn, then (23) implies that (U(t)‖f(·)‖)(ω) = 0 on Pn for every t > 0. Thus
it follows, as before, that T (u)f(ω) = 0 on Pn for every u ∈ Pd. Hence if we
let

(25) Tn(u)f = (T (u)f)χPn
for u ∈ Pd and f ∈ Ln, where Ln is a subspace of L defined by

Ln = {f ∈ L : f(ω) = 0 on Ω \ Pn},
then Tn = {Tn(u) : u ∈ Pd} becomes a strongly continuous d-dimensional
semigroup of linear contractions on Ln for which the strong limit Tn(0) =
strong-limu→0 Tn(u) exists. It is clear that

Tn(0)f = (T (0)f)χPn
for every f ∈ Ln. Next let

(26) Fn(I) = F (I)χPn
for I ∈ Id. Then Fn : Id → Ln becomes a bounded process in Ln which is
additive with respect to the semigroup Tn = {Tn(u) : u ∈ Pd}. Moreover,
if Un = {Un(t) : t > 0} denotes the one-dimensional semigroup of positive
linear contractions on Ln(R), where

Ln(R) := {f̃ ∈ L(R) : f̃(ω) = 0 on Ω \ Pn},
induced from the semigroup Tn = {Tn(u) : u ∈ Pd} through Lemmas 7 and
8, then

(27) Un(t)f = (U(t)f)χPn
for every f ∈ Ln(R) and t > 0.

Taking into account (27), we will limit ourselves to the semigroup Tn =
{Tn(u) : u ∈ Pd} for the moment; hence we may and do assume for a while
that

(28) Pn = P = Ω = C.

Thus Un(t) = U(t) holds for t > 0; and by the right-hand side inequality of
(23) there exists a constant K > 0 such that

(29)
�

Ω

‖f(ω)‖vn(ω) dµ ≤ K‖f‖L
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for all f ∈ L (cf. Lemma 4 of [12]). It follows that

L ⊂ L1(vn dµ;X) := L1((Ω,Σ, vn dµ);X),

and in particular

(30) L(R) ⊂ L1(vn dµ;R) := L1((Ω,Σ, vn dµ);R).

Since L(R) is dense in L1(vn dµ;R), (23) and (29) show that U = {U(t)} can
be regarded as a strongly continuous semigroup of positive linear operators
on L1(vn dµ;R) such that

‖U(t)‖L1(vn dµ;R) ≤ eβt for t > 0,

and thus {e−βtU(t) : t > 0} becomes a strongly continuous contraction
semigroup on L1(vn dµ;R). Since C = Ω by (28), it follows from Akcoglu
and Chacon [1] that the strong limit

(31) U(0) = strong-lim
t→0

e−βtU(t)

exists in L1(vndµ;R).
Let g̃ ∈ L(R)+ be the function in (22). Then, by putting

(32) g̃k = kG̃((0, k−1]) for k ≥ 1,

we have

(33) 0 ≤ U(0)g̃(ω) ≤ lim inf
n→∞

U(0)g̃k(ω) = lim inf
k→∞

g̃k(ω) = g̃(ω)

for almost all ω ∈ Ω. On the other hand, since C = Ω by hypothesis, it
follows from (d) of the decomposition Ω = C+D that there exists a strictly
positive function f̃ in L1(vn dµ;R) such that U(0)f̃ = f̃ . Since U(0) is a
positive linear contraction on L1(vn dµ;R), we see that

U(0)∗1 = 1 ∈ L∞(vn dµ;R) = L1(vn dµ;R)∗,

so that �

Ω

[U(0)g̃]vn dµ =
�

Ω

g̃[U(0)∗1]vn dµ =
�

Ω

g̃vn dµ,

and by (33),

(34) U(0)g̃ = g̃ ∈ L(R)+ ⊂ L1(vn dµ;R)+.

Next, define

(35) h̃k = g̃ ∧ k̃G̃((0, k̃−1]) for k ≥ 1,

where log k̃ = 2−m log k. Since limk→∞ g̃k(ω) = g̃(ω) = limk→∞ h̃k(ω) for
almost all ω ∈ Ω by (22), it follows from Lemma 3 that

(36) lim
k→∞

‖g̃ − h̃k‖L(R) = 0.
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On the other hand, since the functions fk on Ω defined by

fk(ω) =
{
kdF ((0, k−1]d)(ω) if kd‖F ((0, k−1]d)(ω)‖ ≤ Cdh̃k(ω),
Cdh̃k(ω) sgn[F ((0, k−1]d)(ω)] otherwise,

where sgnx = x/‖x‖ if 0 6= x ∈ X, and sgn 0 = 0 ∈ X, satisfy

(37) ‖fk(ω)‖ ≤ Cdh̃k(ω) ≤ Cdg̃(ω) for ω ∈ Ω,
and since X is a reflexive Banach space by hypothesis, it follows that the
set {fk : k ≥ 1} is weakly sequentially compact in L1(vn dµ;X) (cf. The-
orem IV.2.1 of [4]). So, if necessary, taking a subsequence of (fk), we may
assume without loss of generality that the weak limit function

(38) f∞ = weak- lim
k→∞

fk

exists in L1(vn dµ;X). Here from (37) we see that ‖f∞(ω)‖ ≤ Cdg̃(ω) on Ω,
so that by property (II),

(39) f∞ ∈ L (⊂ L1(vn dµ;X)).

Now, we prove that for each fixed α > 0 the mapping

(40) g 7→
�

(0,α]d

T (u)g du

from L into itself can be uniquely extended to a bounded linear operator
from L1(vn dµ;X) into itself. For this purpose, let g ∈ L. Since

∥∥∥α−d
( �

(0,α]d

T (u)g du
)

(ω)
∥∥∥ ≤ Cdα̃−1

( α̃�

0

U(t)‖g(·)‖dt
)

(ω)

for almost all ω ∈ Ω, where log α̃ = 2−m logα, we have
�

Ω

α−d
∥∥∥
( �

(0,α]d

T (u)g du
)

(ω)
∥∥∥vn(ω) dµ(ω)

≤ Cdα̃−1
�

Ω

[( α̃�

0

U(t)‖g(·)‖ dt
)

(ω)vn(ω)
]
dµ(ω)

= Cdα̃
−1

α̃�

0

[ �

Ω

(U(t)‖g(·)‖)(ω)vn(ω) dµ(ω)
]
dt (by (29))

≤ Cdα̃−1
α̃�

0

[
eβt

�

Ω

‖g(ω)‖ · vn(ω) dµ(ω)
]
dt (by (23))

≤ Cdeβα̃
�

Ω

‖g(ω)‖vn(ω) dµ(ω),
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and thus

(41)
∥∥∥α−d

�

(0,α]d

T (u)g du
∥∥∥
L1(vndµ;X)

≤ Cdeβα̃‖g‖L1(vndµ;X)

for every g ∈ L. Since L is dense in L1(vn dµ;X), this establishes the desired
conclusion.

We will apply this result to the weak limit function f∞ of (38) as follows.
Since f∞ ∈ L by (39), for every α > 0 we have

(42) F ((0, α]d)−
�

(0,α]d

T (u)f∞ du

= strong-lim
k→∞

�

(0,α]d

T (u)[kdF ((0, k−1]d)] du

−
�

(0,α]d

T (u)f∞ du in L (cf. the proof of Lemma 3.2 of [1])

= weak-lim
k→∞

�

(0,α]d

T (u)[kdF ((0, k−1]d)] du

− weak-lim
k→∞

�

(0,α]d

T (u)fk du

in L1(vndµ;X) by (29) and (38).
On the other hand, from the definition of fk we have

‖kdF ((0, k−1]d)(ω)− fk(ω)‖
= max{0, [kd‖F ((0, k−1]d)(ω)‖ − Cdh̃k(ω)]}

≤ Cdk̃G̃((0, k̃−1])(ω)− Cdh̃k(ω) (by (17)–(19))

for almost all ω ∈ Ω, where log k̃ = 2−m log k. Thus by Lemma 7 and the
construction of U = {U(t)} we have

(43) α−d
∥∥∥
( �

(0,α]d

T (u)[kdF ((0, k−1]d)− fk] du
)

(ω)
∥∥∥

≤ Cdα̃−1
( α̃�

0

Tm(t)[Cdk̃G̃((0, k̃−1])− Cdh̃k] dt
)

(ω)

≤ C2
d α̃
−1
( α̃�

0

U(t)[k̃G̃((0, k̃−1])− h̃k] dt
)

(ω)
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for almost all ω ∈ Ω. Next we use the following relations:

(44) α̃−1G̃((0, α̃])− α̃−1
α̃�

0

U(t)g̃ dt

= α̃−1G̃((0, α̃])− strong- lim
k→∞

α̃−1
α̃�

0

U(t)h̃k dt in L(R) (by (36))

= strong- lim
k→∞

α̃−1
α̃�

0

U(t)[k̃G̃((0, k̃−1])− h̃k] dt

in L1(vndµ;R) by Lemma 3.2 of [2], (30) and (29).
It follows from (42)–(44), together with Lemma 5 of [11], that

(45) α−d
∥∥∥F ((0, α]d)(ω)−

( �

(0,α]d

T (u)f∞ du
)

(ω)
∥∥∥

≤ C2
d α̃
−1
[
G̃((0, α̃])(ω)−

( α̃�

0

U(t)g̃ dt
)

(ω)
]

for almost all ω ∈ Ω. Therefore

q-lim sup
α→0

∥∥∥α−dF ((0, α]d)(ω)− α−d
( �

(0,α]d

T (u)f∞ du
)

(ω)
∥∥∥

≤ C2
d q-lim sup

α̃→0
α̃−1

[
G̃((0, α̃])(ω)−

( α̃�

0

U(t)g̃ dt
)

(ω)
]

= C2
d [g̃(ω)− U(0)g̃(ω)] = 0 (by (34))

for almost all ω ∈ Ω, and thus

q-lim
α→0

α−dF ((0, α]d)(ω) = q-lim
α→0

α−d
( �

(0,α]d

T (u)f∞ du
)

(ω) = T (0)f∞(ω)

for almost all ω ∈ Ω by (7).
Since (28) was assumed in the above argument, and since Ω = C = P

by (21), it is now easy to see that the limit

f(ω) := q-lim
α→0

α−d F ((0, α]d)(ω)

exists for almost all ω ∈ ⋃∞n=1 Pn = P = C = Ω. Obviously, the limit
function f is in L, and since the functions

hn(ω) := f(ω)χPn(ω)

satisfy T (0)hn(ω) = hn(ω) = f(ω) for almost all ω ∈ Pn, it follows from
Lemma 2 that

T (0)f(ω) = lim
n→∞

T (0)hn(ω) = f(ω)

for almost all ω ∈ Ω. This establishes the second half of the theorem.
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4. Concluding remarks

(A) In order to see that property (IV) is necessary for the Theorem, we
give the following example: By Theorem 2 of [10], for ε > 0, there exists
a strongly continuous one-dimensional semigroup T = {T (t) : t ≥ 0} of
positive linear operators on L1(µ;R), where (Ω,Σ, µ) is a finite measure
space, such that

(46) T (t)1 = 1 and ‖T (t)‖L1(µ;R) = 1 + ε

for all t ≥ 0, and also such that for some h ∈ L1(µ;R)+ the limit

(47) q-lim
α→0

α−1
( α�

0

T (t)h dt
)

(ω)

fails to exist for almost all ω ∈ N , where Ω = P + N is the decomposition
of Ω (with respect to T = {T (t)}) in Section 3 and µ(N) > 0.

As a set, we let L = L1(µ;R); we define the norm ‖f‖L of f ∈ L by

‖f‖L = sup{‖(T (t)|f(·)|)‖1 ∨ ‖f‖1 : t ≥ 0}.
By (46), (L, ‖·‖L) becomes a Banach space which is equivalent to (L1(µ;R),
‖·‖1) via the identity mapping. Thus it is clear that (L, ‖·‖L) has properties
(I), (II), (III) and (V). To see that (L, ‖ · ‖L) fails (IV), let f = χP and
g = χP + δχN , where δ > 0 is a constant. By the construction of the
semigroup T = {T (t)} (see the proof of Theorem 2 of [10]), if δ is sufficiently
small, then we have

‖T (t)f‖1 = (1 + ε)‖χP‖1 = ‖T (t)g‖1
for all t ≥ 0, whence ‖f‖L = ‖g‖L follows. Thus property (IV) fails to hold
for (L, ‖ · ‖L).

On the other hand, it is obvious that ‖T (t)f‖L ≤ ‖f‖L for every t ≥ 0
and f ∈ L, and so T = {T (t) : t ≥ 0} becomes a strongly continuous
semigroup of positive linear contractions on (L, ‖ · ‖L). Since the Bochner
integral

� α
0 T (t)h dt with respect to (L, ‖ · ‖L) is the same as the one with

respect to (L1(µ;R), ‖ · ‖1), it follows that the theorem fails to hold in this
case.

(B) In spite of the above example, if the strong limit operator T (0) of
the Theorem satisfies

(48) ‖T (0)f‖L 6= 0 whenever ‖f‖L 6= 0,

then the Theorem holds without assuming (IV).
To see this we note that property (IV) was used just once for all in the

above proof of the Theorem, to deduce that C ⊂ P . Thus if P = Ω is known,
then the theorem must hold without property (IV). We now prove that (48)
implies P = Ω. To do so, assume the contrary: µ(N) > 0. Then there exists
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an f̃ ∈ L(R)+ such that ‖f̃‖L(R) 6= 0 and {ω : f̃(ω) > 0} ⊂ N . By (a) of
Section 3 we have ‖U(t)f̃‖L(R) = 0 for every t > 0, which implies, as in
Section 3, that ‖T (u)f‖L = 0 for every u ∈ Pd, where we let f(ω) = f̃(ω)x1

for ω ∈ Ω. Thus we have T (0)f = 0. But this contradicts (48), because
‖f‖L 6= 0. Hence P = Ω must follow.

References

[1] M. A. Akcoglu and R. V. Chacon, A local ratio theorem, Canad. J. Math. 22 (1970),
545–552.

[2] M. A. Akcoglu and A. del Junco, Differentiation of n-dimensional additive pro-
cesses, ibid. 33 (1981), 749–768.

[3] M. A. Akcoglu and U. Krengel, A differentiation theorem for additive processes,
Math. Z. 163 (1978), 199–210.

[4] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence, 1977.
[5] N. Dunford and J. T. Schwartz, Linear Operators. Part I : General Theory , Inter-

science, New York, 1958.
[6] R. Emilion, A general differentiation theorem for n-dimensional additive processes,

Math. Scand. 57 (1985), 206–214.
[7] P. R. Halmos, Measure Theory , Van Nostrand, New York, 1950.
[8] R. A. Hunt, On L(p, q) spaces, Enseign. Math. (2) 12 (1966), 249–276.
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