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Differentiation of Banach-space-valued additive processes
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Dedicated to Professor Kéz6 Yabuta on his siztieth birthday

Abstract. Let X be a Banach space and (2, X, u) be a o-finite measure space. Let
L be a Banach space of X-valued strongly measurable functions on ({2, X, ). We consider
a strongly continuous d-dimensional semigroup 7' = {T'(u) : v = (u1,...,uq), u; > 0,
1 < i < d} of linear contractions on L. We assume that each T'(u) has, in a sense, a
contraction majorant and that the strong limit 7°(0) = strong-lim,, o7 (u) exists. Then we
prove, under some suitable norm conditions on the Banach space L, that a differentiation
theorem holds for d-dimensional bounded processes in L which are additive with respect
to the semigroup T'. This generalizes a differentiation theorem obtained previously by the
author under the assumption that L is an X-valued Lp-space, with 1 < p < oo.

1. Introduction. Let (X, | -||) be a Banach space and (£2, X, i) be a
o-finite measure space. Let (L, || - ||z) denote a Banach space of X-valued
strongly measurable functions on ({2, X, ) under pointwise operations. Two
functions f and g in L are not distinguished provided that f(w) = g(w) for
almost all w € (2. Thus all statements and relations are assumed to hold
modulo sets of measure zero. In this paper we will also assume that the
norm || - || of L has the following properties:

() If f,g € L and ||f(w)]| < ||g(w)| for almost all w € £2, then || f||z <
llgllz-
(IT) If g is an X-valued strongly measurable function on {2 and if there
exists an f € L such that ||g(w)]| < || f(w)]| for almost all w € §2, then g € L.
() If E,, € X, E,, D Eyyq for each n > 1, and (., E,, = 0, then for
any f € L we have lim, . ||xg, fllz = 0, where xg, denotes the charac-
teristic function of F,,.
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(IV) If f and g are in L, ||f(w)]] < |lg(w)] for almost all w € {2, and
Ifllz = llgllz, then [[f(w)[| = llg(w)]| for almost all w € £2.

(V) If (f,, n > 1) is a sequence of functions in L such that || f,(w)| <
I fns1(w)|| for almost all w € (2, for each n > 1, and also such that
sup,,>1 || fnllz < 0o, then there exists an f € L such that || f,(w)] < | f(w)]]
for almost all w € £2, for every n > 1.

It is worth noting that in addition to the usual X-valued L,-spaces,
with 1 < p < oo, there are many interesting X-valued function spaces with
properties (I) to (V). Examples are some (X-valued) Lorentz spaces and
Orlicz spaces, etc. (see, for example, [8] and [9]). By simple examples we
observe that properties (III), (IV) and (V) are independent of each other.

Fix x; € X with ||z1]| = 1. We denote by L(R) the set of all real-valued

measurable functions f on ({2, X, ) such that the function

(1) f(w) = fw)a

is in L. Define

(2) IfllL@ = IfllL  for f € L(R).

It follows that (L(R),|| - |[z)) becomes a Banach space. In an obvious
manner (L(R), || - ||z)) can be regarded as a closed subspace of (L, || - ||L).

We call a positive linear operator P defined on L(R) a majorant of a
linear operator U defined on L if

(3) U f(w)Il < [PIfCIHw)
for almost all w € (2, for every f € L. We call U a contraction if the operator
norm ||U]| of U is less than or equal to one.

For an integer d, with d > 1, we put Py = {u = (u,...,uq) : u; > 0,
1 <i<d} and R; ={u = (u1,...,uq) : u; >0, 1 <i < d}. Further, Z,
denotes the class of all bounded intervals in P4, and A, is the d-dimensional
Lebesgue measure. We will consider a strongly continuous d-dimensional
semigroup T' = {T'(u) : u € P4} of linear contractions on L. This means
that T satisfies:

(a) ||IT(u)]| <1 for u € Py,
(b) T(u+v) =T (u)T(v) for u,v € Py, and
(c) limy o, |[T(uw)f —T(v)f|lr =0 forvePyand f € L.

It follows that for each f € L the L-valued function u +— T'(u)f is Bochner
integrable over every I € 7.
By a (d-dimensional) process F' in L we mean a set function F': Zgy — L.

It is bounded if
1 FD)]|r

(4) K(F) ::sup{W:IeId, )\d(I)>0}<oo,
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and additive (with respect to T') if it satisfies the following conditions:

(i) T(uw)F(I) = F(u+1I) for all u € Py and I € Z,.

(ii) If I1,...,I € T, are pairwise disjoint and I = Ule I; € 74, then
F(I) = i, F (L),

Thus if F(I) = §,T(u)f du for all I € Zg, where f is a fixed function

in L, then F(I) defines a bounded additive process in L.
In this paper we study the almost everywhere convergence of the averages

() o~ F((0, ]

as « approaches zero. But this is meaningless when the averages denote
equivalence classes and not actual functions and « ranges through all pos-
itive numbers. Therefore in this paper we let a range through a countable
dense subset D of the positive numbers. It may be assumed that D includes
all positive rational numbers. We use the following notations:
(6) q-lim and g-limsup,
a—0 a—0

which mean that these limits are taken as « tends to zero through the set
D (ct. [2], [3)).

We are now in a position to state our differentiation theorem:

THEOREM. Assume that each T'(u), u € Pq, has a contraction majorant
P(u) defined on L(R) and that the strong limit T(0) = strong-lim,_o T (u)
exists. Then for each f € L, we have

(7) T(0)f(w) = alima™( | T(w)fdu)w)

(0,a]¢

for almost all w € (2. Further, if X is assumed to be a reflerive Banach

space, then to each bounded additive process F' : Ty — L there corresponds
a function f € L, with T(0)f = f, for which

(®) /(@) = a-lim 0~ P((0, o) (@)
for almost all w € (2.

We remark that in [11] such differentiation theorems have been exam-
ined within the framework of X-valued L,-spaces, with 1 < p < oco. Since
the existence of the strong limit 7°(0) = strong-lim,,_,o 7'(u) was essentially
assumed there, the above theorem may be considered a generalization of the
main result of [11]. It is also interesting to remark that in [11] a brief dis-
cussion was presented about the condition on the existence of a contraction
majorant P(u) for each T'(u).

The idea of the proof is as follows. First we show, as in [11], that there
exists a strongly measurable subsemigroup {7(u) : u € P4} of positive linear
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contractions defined on L(R) which dominates the semigroup 7' = {T'(u) :
u € P4} in the sense that for each u € Py and f € L,

(9) 1T (w) f (W) < [r(w)[[f ()1} (w)

for almost all w € {2. By using this, we then combine a reduction method on
the dimension d of the semigroup 7" and the process F', due to Emilion [6]
(see also [2], [5] and [13]), with the recent results of [12] in order to adapt the
arguments of [11] to the present situation. This is an outline. In Section 2 we
develop these in detail and provide some necessary lemmas. The proof of the
theorem is given in Section 3, and in Section 4 we first construct an example
showing that the theorem fails to hold when property (IV) is not assumed,
and then we remark that in spite of this example the theorem holds without
assuming property (IV) if the strong limit operator 7'(0) of the theorem
satisfies | T(0) f|| # O whenever || f||z # 0. Hence, in particular, if T'(0) = I
(the identity operator), then the theorem holds without property (IV).

2. Preliminaries and lemmas. The next four lemmas clarify proper-
ties of the Banach space (L, || - ||1). Since proofs can be found in [12], we
omit them.

LEMMA 1. If (fn, m > 1) is a sequence of functions in L such that
S fnlle < oo, then Y07 || fr(w)|] < 0o for almost all w € 2, and the
function f(w) =>""", fo(w) is in L and satisfies

k
klggo Hf B ;f”

LEMMA 2. Let (fn, n > 1) be a sequence of functions in L. If

=0.
L

lim || f— fulle =0 for some f € L,
then there exists a subsequence (fn/) of (fn) such that lim, o fr(w) =
f(w) for almost all w € §2.
LEMMA 3. Let (fn, n > 1) be a sequence of functions in L. If

lim f,(w)=0 for almost all w € 2

and if there exists an f € L such that | fn(w)| < ||f(w)| for almost all
w € §2, for every n > 1, then lim,_, || fn||L = 0.

LEMMA 4. There exists a real-valued measurable function w on {2, with
w(w) > 0 on 2, such that

VI (@) l[w(w) du < oo
forall f € L.



Differentiation of additive processes 135

Hereafter we may and do assume d = 2™ with m > 1, where d is the
dimension of the semigroup 7' = {T'(u)}. This is done because if 2"~ ! <
d < 2™, then by setting T'(u,v) = T'(u) for (u,v) € Pam, where u € Py, we

have a 2™-dimensional semigroup 7 = {T'(@) : i € Pym}, and if R : Ty — L
is a bounded additive process in L with respect to T = {T'(u) : v € P4},
then by setting

F(IxI')=Xm_g(I'YF(I) for I x I' € Tym,

where I € 74, we have a 2™-dimensional bounded process P Tom — L
which is additive with respect to T'. By an obvious argument it suffices to
prove the theorem for T" and F' instead of T" and F', respectively.

LEMMA 5 (cf. Lemma 1 of [11]). Assume that each T(u), u € P4, has
a contraction magjorant P(u) defined on L(R). Then there exists a positive
linear contraction 7(u) on L(R), called the linear modulus of T(u), such
that

(1) [|7(w) f ()] < [T (@[ f OI](w) < [P)][f()l](w) for almost all w €
0, for every f € L,

(i) 7(w)F = esssup{Sh, IIT@AIO  fi € L S5, IA@I <
G(w) on 2} forall g € L(R)*, where L(R)* = {h € L(R) : h(w) >0 on 2},

(iii) (s +t) < 7(s)7(t) for s,t € Py,

(iv) limy—y, [|[7(t)g — 7(w)g] " |L(r) = O for every u € Pq and g € L(R)™.

Proof. If g € L(R)™ and u € Py, then define a nonnegative measurable
function 7(u)g on {2 by the relation

k
() = esssup { 31T @A)

fiel. Znﬁ )| < G(w) on £, 1§k:<oo}.

Since

o
B

>l Z w)[[fi()(w) < Pu)g(w)

=1 =1

for almost all w € §2, it follows that 7(u)g(w) < P(u)g(w) for almost all
w € £2. Hence from properties (I) and (II) we get 7(u)g € L(R)" and
I7(w)gll Ly < 1P(w)gll ey < 19]lL(w)- Thus (i) follows. Since 7(u) is linear
on L(R)™, it uniquely extends to a linear contraction on L(R), and (iii)
follows from the semigroup property T'(s +t) = T'(s)T'(t).
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To prove (iv), let g € L(R)™ and £ > 0. Then we can choose functions
g; in L, 1 < j < n, so that each g; has the form

k k
g; =Y fij with > |fi;w)] <glw) on £,
1=1 =1

where f;; € L for each ¢ with 1 <7 <k, and so that

|7 (w31 -—1n<ﬂja<XnZ|| u) £i)( <e.

Il HL(R)
Since the strong continuity of T'= {T'(u)} and properties (I) and (II) imply
Lim ([[[[7°(2) fi) ()| = T () fis) ] gy = O
and since € > 0 was arbitrary, it follows from the definition of 7(u)g that

lim [[[7(8)g = T(w)g]~ l@) =0,
whence (iv) follows, and the proof is complete.

LEMMA 6. For the proof of the theorem we may assume that L is sepa-
rable.

Proof. First we notice that 1 € L(R) can be assumed without loss of
generality. In fact, since p is o-finite, we can apply Lemma 1 to take an
h € L with {w: h(w) # 0} D {w: f(w) # 0} for every f € L. Here obviously
we may assume without loss of generality that {w : h(w) # 0} = §2. Then,
by defining

f f
v ={fs fe ) ana = Il
IR 1RO Ly
(L(h), |l - lL(n)) becomes a Banach space which is isometrically isomorphic

to (L, - ||z) via the mapping f/||h(-)|| — f. Hence it follows that we may
consider (L(h),| - ||(n)) instead of (L, | - ||z) for the proof of the theorem.
Thus 1 € L(R) can be assumed from the beginning.

Let F : 7, — L be a bounded additive process with respect to the
semigroup T'= {T'(u) : u € Py}. It follows from the boundedness of F' that
the set {F(I): I € Z,} is separable in L, and thus by the strong continuity
of the semigroup T' = {T'(u)} the set {T'(u)F(I) : w € Py, I € Iy} is also
separable in L. Since T'(u)F(I) is a u-essentially separably valued function
for every u € Py and I € Z;, we then apply Lemma 2 to infer that there
exists a separable Banach subspace X; of X for which

T(w)F(I)(w) € X,

for almost all w € 2, for every u € Py and I € 7. Further, there exists
a separable o-subalgebra ¥y of X such that T'(u)F(I) becomes a strongly
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measurable function with respect to ({2, X) for every u € Py and I € Z,.
Thus the linear manifold M; in L defined by

M; ={g € L: g is X;-valued and strongly measurable
with respect to (£2, X)}

includes the set {T'(u)F(I) : u € Py, I € Z,}, and Lemma 2 implies that M;
is a closed subset of L. To see that it is separable, let g be a function in M.
By a standard argument there exists a sequence (g,, n > 1) of X;-valued
simple functions, strongly measurable with respect to ({2, X), such that

[gn (@) < llgn+1(@)l; llgn(w) = g(w)]| < 2([g(w)|| and limp oo [lgn(w) —
g(w)||=0for all n > 1 and w € 2. By Lemmas 2 and 3 we then have

Jim lg, — gl = 0.

On the other hand, since 1 € L(R), X, is separable, and p is o-finite, it
follows from Lemma 3 together with Theorem 13.D of [7] that the set of all
Xi-valued simple functions in L that are strongly measurable with respect
to (£2,X4) is separable in L. Hence it follows that M; is separable.

Since the union M; U {T'(u)g : v € Py, g € M} is separable, we can
continue this argument to obtain a separable Banach subspace X5 of X with
X1 C Xo, and a separable o-subalgebra X5 of X with Xy C Y5. Then the
linear manifold My in L defined by

My ={g € L: g is Xy-valued and strongly measurable
with respect to (£2, X2)}
becomes a separable Banach subspace of L such that M; C M.

By repeating this process we obtain an infinite sequence ((X,, Xy, M,),
n > 1). Finally, define

o
Xoo = the closed linear subspace of X generated by U X,

n=1

Yoo = the o-subalgebra of Y’ generated by U Xn, and

n=1
My ={g € L: gis X-valued and strongly measurable
with respect to (£2, ¥ )}.

Clearly, M is a separable Banach subspace of L such that {F(I): [ €Z,}
C M. Further, using an approximation argument and Lemma 3 together
with Theorem 13.D of [7], we observe that T'(u) M, C My for every u € Py.
Hence we may consider M, instead of L for the proof of the theorem,
since M inherits properties (I) to (V) from L. This completes the proof of
Lemma 6.
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From now on L will be assumed to be separable. Thus L(R) is also
separable.

Following [6] and [11], we will call a set function F° : 7, — L(R)" an
almost additive process in L(R)™ with respect to the subsemigroup {7(u) :
u € Py} of Lemma 5 if it is bounded and satisfies the following conditions:

(i) 7(u)F°(I)(w) > F(u+ I)(w) for almost all w € §2, for every u € Py
and I € 7.

(ii) If I, ..., I € Zy are pairwise disjoint and I = J*_, I; € Z,, then
FOI) = £y FO(L).

EXAMPLES. (a) If f € L is given, then, since L(R) is separable, Lemma
5(iv) implies that the function u — 7(u)||f(+)|| from P4 to L(R)™ is strongly
Lebesgue measurable, and thus it is Bochner integrable over every I € Z,.

If we set
FO(I) = {r(u)| ()] du
I
for I € Z,, then F°(I) defines an almost additive process in L(R)" with
respect to {7(u) : u € P4} by Lemma 5(iii). It is clear that

(V700 s du) )] < (D)

for almost all w € (2, for every I € Z,.

(b) Let F': Z; — L be a bounded additive process in L with respect to
T ={T(u):u € Py}. For an I € 74, let P(I) denote the class of all finite
partitions of I into pairwise disjoint intervals in P4, and define

FO(I) —esssup{ZHF {11,...,1k}e73(1)}.

Since

HZHF LT S IR s < KE M) <

=1
it follows from properties (V) and (II) that F°(I) is a function in L(R)™.
Thus, by Lemmas 3 and 5(i), F°(I) defines an almost additive process in
L(R)* with respect to {r(u) : u € P4}. Clearly, we have K(F°) = K(F)
< oo and ||F(I)(w)|| < F°(I)(w) for almost all w € §2, for every I € Z,.
Since the function u +— 7(u)g from P4 to L(R) is strongly Lebesgue

measurable for every g € L(R), we can apply the same proof of Lemma 2 of
[11] to obtain the following lemma. We omit the details.

LEMMA 7 (cf. Lemma 2 of [11]). Let d = 2™ with m > 1. Then there
exists a constant Cy, depending only on d, and a strongly continuous one-
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dimensional subsemigroup T™ = {T™(t) : t > 0} of positive linear con-
tractions defined on L(R) such that to each d-dimensional almost additive
process FO in L(R)™ with respect to the subsemigroup {7(u) : u € P4} there
corresponds a one-dimensional almost additive process F™ in L(R)™, with
respect to the subsemigroup T™ = {T™(t) : t > 0}, such that

a”F((0,0))(w) < Coa 'F™((0,a])(w)
for almost all w € §2, for every a > 0, where loga = 27" log . In partic-
ular, if FO(I) = SI T(w)||f()|| du for all I € Iy, where f € L, then we have
F™((a,b)) = SZ T™ ()| ()|l dt for every a,b € RY with a < b.
Next, for t > 0 and g € L(R)™", define

k
CKﬂﬁzﬂﬁMmp{Tm@QTm@g.”Jm%mﬁ%ti>O,}:ti:t}

i=1
Since 0 < T™(s +t) < T™(s)T™(t) (by the subsemigroup property) and
IT™(t)|| < 1fors,t > 0, it follows from properties (V), (II), (I) and Lemma 3
that U(t)g is a function in L(R)™ such that

IU®)3New) < 119l

Since U(t) is linear on L(R)™, it can be uniquely extended to a linear con-
traction on L(R) in an obvious manner. Clearly, the construction implies
U(s+t) =U(s)U(t) for s,t > 0. That is, U = {U(¢t) : ¢ > 0} becomes a
semigroup of operators.

LEMMA 8. U = {U(t) : t > 0} is a strongly continuous semigroup of
positive linear contractions on L(R).

Proof. It only remains to prove the strong continuity of the semigroup
U. To doso, let t >0 and g € L(R)". For an ¢ > 0, take t1,...,t; > 0 with

t =% t; so that
1U()g —T™(t)T™ (t2) ... T™ (tx) gl Lr) <&

Since T™ = {T™(t)} is strongly continuous on (0, c0) by Lemma 7, it follows
that

1T (51)T™ (2) ... T™(s1)G — T™(t)T™ (t2) . .. T™ (tx)F]| g2y — O

as s; approaches t; for each ¢ with 1 <14 < k. Hence there exists a § > 0 so
that if |s; — t;] < ¢ for 1 < i <k, then

[U(t)g —T™(s1)T™(s2) - T™ (s) gl L(w) < €

By the fact that U(sy + ...+ sk)g(w) > T™(s1)T™(s2) ... T™(sk)g(w) for
almost all w € 2, we now get

1U(s)g =Ut)g) " llw) <e
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for s = s; + ...+ sk, and hence
lim [(U()3 — U()3) Loy = 0.

which implies that the function ¢t — U(t)g is strongly measurable, since
L(R) is separable. Hence the semigroup U = {U(t)} is strongly continuous
on the interval (0,00) by Lemma VIII.1.3 of [5]. This completes the proof.

LEMMA 9. For every f € L there exists an X -valued function (u,w) —
T(u)(f,w) defined on Py x §2, strongly measurable with respect to the usual
product o-algebra My x X, where Mg s the o-algebra of all Lebesgue mea-
surable subsets of Pg, such that, for each fixred u € Py, T(u)(f,) is, as a
function on 2, a representative of the element T(u)f € L.

Proof. Since the strong limit 7°(0) = lim, o 7T'(u) exists and ||T'(u)|| < 1
for all u € Py by hypotheses, the semigroup 7" = {T'(u) : v € P4} can be
extended uniquely to a strongly continuous semigroup on R; by an easy
approximation argument. We will denote this extended semigroup by T' =
{T(u) : uw € R}}. (Incidentally, we note that each T'(u) with u € R} has the
linear modulus 7(u) defined on L(R). A proof can be found in the proof of
Lemma 1 of [11].)

For n > 1, define a step functin F), : R; — L by

Fn(u):T<%,...,z—d>f for u = (u1,...,uq) € RY,

n!
where i1,...,74 are nonnegative integers such that
i 1 +1
—llgul<l for 1 <1< d.
n!

Since the contraction semigroup {T'(u) : u € R} } is strongly continuous on
]R:{, there exists a subsequence (F,x), k > 1) of (F,) such that

S 1By (@) = T(@)f < o0
k=1

for all u € R;r. Then we apply Lemma 1 to infer that, for each fixed u € ]R;r,

S 1Py () (@) = (T f)(@)]| < 00

k=1
for almost all w € 2. Hence the function (u,w) — T'(u)(f,w) on Py x 2
defined by the relation

_J limg oo (Fryy (w))(w)  if the limit exists,
T()(f,w) = {0 otherwise,

is as required, and the proof is complete.



Differentiation of additive processes 141

LEMMA 10. Let f € L. If a,b € R with a < b, define a function F(w)
on §2 by the relation

Flw) = { S(a b T(u)(f,w)du if the integral exists,
0 otherwise.

Then F(-) is a representative of the element S(a b]dT(u)f du € L.

Proof. First we notice that
VT (f,w)] du < o0
(a,b]?

for almost all w € (2. In fact, there exists a strictly positive measurable
function w on {2 such that

J 117 @) leo(w) dp < o0
(%

for all f € L, by Lemma 4. Thus we can find a constant K > 0 so that
(10) VI (@) [w(w) dp(w) < K| £l
Q

for all f € L (cf. the proof of Lemma 4 of [12]). Then by Fubini’s theorem
V1 IT@(fo)llww) dudpw) = § §IT@)(f,w)llw(w) dp(w) du
£2 (a,b)¢ (a,b]* £2

< | K|fllrdu< oco.
(a,b)4

Since w(w) > 0 on 2, this shows that S(a b]dHT(u)(f,w)H du < oo for almost
all w e 2.
Now, by the strong continuity of T = {T(u)} on R}, there exists a

sequence (F,, n > 1) of step functions F), : (a,b]¢ — L such that
IEa(w)llz < | f]l. and nli_glo 1E(u) = T(u) fllL =0
for all u € (a,b]?. Thus by Lebesgue’s convergence theorem we have

(11) S T'(u)f du = strong-lim S F,(u) du.
(b1 T (e

Here we may assume without loss of generality that

S IEuw) = T(w)flz du < o.
n=1 (a,b]4

Then by (10) and Fubini’s theorem
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OO>Z |V IE)(@) = T@)(fw)|[w(w) du(w) du

n=1 (a,b]d 2
=S Jw@( | I @)@ - Tw)(f.w)] du)dp(e),
n=10 (a,b]d

whence the inequality

ST IFE) (W) - T(w)(f,w)] du < o0
n=1 (a,b]d

must hold for almost all w € {2, since w(w) > 0 on (2. Consequently,
(12) lim | (F.(w)w)du= | T(u)(fw)du

n—oo

(a,b]? (a,b]*

for almost all w € £2. On the other hand, since F), : (a,b] — L is a step
function, it is clear that the function w +— S(a,b]d(Fn(“))(w) du is a represen-
tative of the element S(a b F,(u)du € L, for each n > 1. Hence the lemma
follows from (11) and (12) together with Lemma 2.

LEMMA 11. Let f€L and 3>0. Then the function fz= S(o gaT (u)f du
satisfies
fow) = alim a4 | T(u)fsdu)(w)
(0,04
for almost all w € £2.
Proof. By Fubini’s theorem, the X-valued function Fi(u,w) on Py x 2
defined by

Fy(u,w) = Squ(O ga T(A)(f,w)dt if the integral exists,
AEEI7 0 otherwise,

is strongly measurable with respect to My x X. By Lemmas 9 and 10 we
have

Fp(u,w) = T(u)(f3,w)
for almost all (u,w) € Py x 2 with respect to the product measure of Ay
and p. Thus

alim o™ (| T()fsdu) )
(0,a]?
:q—limoa_d S T(u)(fg,w)du (by Lemma 10)
(0,a]?

=qlima™ | Fyuw)du= | T(u)(fw)du
(0,04 (0,814
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for almost all w € {2, where the last equality follows from the obvious fact
that

lim Fs(u,w)= | T(t)(f w)dt

uep, (0,8)
for almost all w € £2. Since the function w — S(o g4 T(u)(f,w)du is a repre-

sentative of fg by Lemma 10, this completes the proof.

3. Proof of the Theorem
Part I: Proof of the first half. If f € L then, since
T(0) = strong- liII%J T(u),
we find
li — g H _
tim [7(0)f =57 | T(wfdul
(0,8]¢
and
T(u)(f—T(0)f) =0 foru e Py.

Hence by Lemma 11 there exists a sequence (f,, n > 1) of functions in L
so that ||[T(0)f — fullL <27™, T(0)f, = fn, and

(13) o-lim a—d( S] T(u)fn du) (W) = fu(w)
(0,a]

for almost all w € (2, for every n > 1. We now define a nonnegative measur-
able function G(w) on {2 by the relation

Gi(w) = qlimsup o~ ( T(u)f du)(w) - T(O) /()|

a0 (0.0]4

It then suffices to prove that G(w) = 0 for almost all w € 2. To do so, we
use the equation

a=® | T(u)fdu—T(0)f

(0,04

=a~? | T)(TO)f - fa)du+a™ | T(u)fndu
(0,0]¢ (0,a]¢
- T(O)fn + T(O)(fn - f)

From (13) we obtain

Gi(w) < qlim sup||a~ ( (@)(T©0)f = fu) du) ()|

a—0

+1T0)(fn )( )II
=1,(w) + 1L, (w)
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for almost all w € (2. Since

ZHT HL—Zan—T fHL<Zzn<oo

it follows from Lemma 1 that
lim 10, (w) = lim [[T(0)(fn — f)(w)] =0

for almost all w € (2.
To estimate I,,(w), we notice that

H( @O~ f)du) @) < (] 7@ATOFC)=fall) du) ()
(0,0

for almost all w € (2. Hence by Lemma 7,

lo=?( § T@(TO)f - fu) du) @)

(0,a]?

< cda—l( T (@) (ITO)F() = fa()) dt ) ()

O e O)

for almost all w € §2, where loga = 27 log v. Since 0 < T™(¢t) < U(t) for
t > 0 by the construction of the semigroup U = {U(t)}, it follows that

(14) I, (w) < Cyqlimsupa™ 1(

a—0

O e O}

UOUTO)/() = fal)]) dt) (@)

for almost all w € (2.

Here we need two decompositions 2 = P+ N and 2 = C+ D of {2 (with
respect to U = {U(t)}) mentioned in [12]. We recall that {2 = P + N is the
measurable decomposition such that

(a) if f € L(R) and {w : f(w) # 0} C N, then ||U(t)f| L) = 0 for all
t>0,

(b) if 0 # f € L(R)" and p({w : f(w) # 0} N P) >0, then [|U(t)f[| L)
> 0 for some t > 0.

Next, {2 = C + D is the measurable decomposition such that

(¢) U(t)f(w) =0 on D for every t > 0 and f € L(R),

(d) C =2, {w: U(1/n)h(w) > 0} for some h € L(R)™.

Since (L, | - ||z) has property (IV), it follows from Proposition 2 of [12]
that

(15) CcP
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On the other hand, from (c) and Lemma 2 we see that

(

Therefore it follows from the Theorem of [12] and (15) that for each n > 1
the limit

U@)UT0) () = faC)l) dt) (w)=0 onD.

O e O

(16) (@) = alim & (JUBUTO)F() = fa()]) dt) (@)
0

exists and is finite for almost all w € (2.
_ Now, for an integer m > 1, define a nonnegative measurable function
hy,m on 2 by

1/k
(@) = b § VOUTOL0) = £ ) )
Clearly, hpm € L(R)T, 0 < Enjl(w) < hpa(w) < ... 1 hn(w) for almost all
w € §2, and

il Ly < TO)f — full, <27 for every m > 1

by properties (I) and (II). Thus from properties (V), (II) and Lemma 3 we
see that hy, is a function in L(R)* such that

Voallzy = Jim o mlloey < IT(O)f = fall <27

Since Y7 ||71n|\L(R) < 00, it follows from Lemma 1 that 3°° | A, (w) < 0o

n=1

for almost all w € {2, which yields
lim I,(w)=0

for almost all w € £2, because 0 < I, (w) < Cyhy,(w) for almost all w € £2 by
(14) and (16). Hence we have proved that G(w) = 0 for almost all w € (2,
and this establishes the first half of the theorem.

Part II: Proof of the second half. For this purpose, X will be assumed
below to be reflexive. Let F' : Zy — L be a bounded additive process with
respect to the semigroup T' = {T'(u) : u € P4}, where d = 2™ with m > 1.
By Example (b) there exists an almost additive process F° : Zy — L(R)*
with respect to the subsemigroup {7(u) : u € P4} such that for every I € Z,

(17) IF (D))l < F(I)(w)

for almost all w € (2. By Lemma 7 there exists a one-dimensional strongly
continuous subsemigroup 7™ = {T™(t) : t > 0} and a one-dimensional
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almost additive process F™ : 77 — L(R)* with respect to T™ = {T™(t)}
such that for every a > 0,

(18) a”FO((0,a]")(w) < Caa™ " F™((0,8])(w)

for almost all w € {2, where loga = 27™ log . Thus, taking into account
property (V) and Lemma 3, we can apply the same proof of Lemma 3 of
[11] to obtain a bounded one-dimensional process G : Z; — L(R)*, additive
with respect to the semigroup U = {U(t) : t > 0} of Lemma 8, such that
for every a > 0,

(19) F™((0,a)(w) < G((0,0])(w)
for almost all w € (2.
Since N
G((0,a]) = G((0,]) + U(£)G((0, o — e]),
HG((O,&)HL(R) —0 ase—0, and

U(e)G((0,a—¢])(w) =0 on D  (by (c)),
it follows from Lemma 2 that for every a > 0,
(20) G((0,a])(w) =0 on D.

Hence from (15) and (c) we see that it may be assumed without loss of
generality that

(21) Q=C=P

(In fact, if f € L is such that f(w) = 0 on D then, since (U(t)||f(:)]|)(w) =0
on D for every ¢t > 0, it follows from the construction of U = {U(t)} that
(T™@)If)])(w) = 0 on D for every t > 0, which in turn implies that
T(u)f(w) =0 on D for every u € Py, by the costruction of T = {T™(t) :
t > 0} (see the proof of Lemma 2 of [11]). From this and (15), without loss
of generality, we may assume (21) for the proof of the theorem.)

Then, by Theorem of [12], the limit
(22) 9(w) = qlim a” 'G((0,a))(w)
exists and is finite for almost all w € 2 = C = P, and since G is a bounded
process in L(R)™, it follows from properties (I), (II) and (V) that the limit
function ¢ is in L(R)™.

To complete the proof we use Lemma 8 of [12] as follows. By this lemma
we can find a positive number 3 and a sequence (v,, n > 1) of nonnegative
measurable functions on {2 so that

(i) 0 < v1(w) <wvg(w) < ... for almost all w € (2,
(ii) limy,— 00 v (w) > 0 for almost all w € 2 =P = C,
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(iii) for each f € L(R)*, ¢ > 0 and n > 1 we have

(23) {UOF)  vndu < e | Frondu < oo
Q Q
For n > 1, we let
(24) P, ={w:v,(w) > 0}.

Clearly, P, C P, C...and |, P, = 2. If f € L is such that f(w) =0 on
P, then (23) implies that (U(¢)||f(-)||)(w) = 0 on P, for every t > 0. Thus
it follows, as before, that T'(u) f(w) = 0 on P, for every u € P4. Hence if we
let

(25) To(u)f = (T(u)f)xp,
for u € P4 and f € L,,, where L,, is a subspace of L defined by
L,={f€eL: f(w)y=0o0n N2\ P,},

then T,, = {T),(u) : v € P4} becomes a strongly continuous d-dimensional
semigroup of linear contractions on L,, for which the strong limit 7,,(0) =
strong-lim,, o 75, (u) exists. It is clear that

T0(0)f = (T(0)f)xp,
for every f € L,. Next let
(26) Fo(I) = F(I)xp,

for I € Z4. Then F,, : Z; — L,, becomes a bounded process in L,, which is
additive with respect to the semigroup T3, = {T,(u) : u € P4}. Moreover,
if U, = {U,(t) : t > 0} denotes the one-dimensional semigroup of positive
linear contractions on L, (R), where

Lo(R):={f € L(R) : f(w)=0o0n 2\ P,},
induced from the semigroup T,, = {T,,(u) : u € P4} through Lemmas 7 and
8, then
(27) Un(t)f = (U@)f)xp,
for every f € L,(R) and ¢ > 0.

Taking into account (27), we will limit ourselves to the semigroup T, =
{T,(u) : u € Py} for the moment; hence we may and do assume for a while
that
(28) P,=P=02=C.

Thus U, (t) = U(t) holds for ¢t > 0; and by the right-hand side inequality of
(23) there exists a constant K > 0 such that

(29) VI @llon(w)du < K| £l
9]



148 R. Sato

for all f € L (cf. Lemma 4 of [12]). It follows that

L C Li(vy dp; X) == Li((2, X, v, dp); X)),
and in particular
(30) L(R) C Ly (vn dp; R) := L1 ((£2, X, vy, dp); R).

Since L(R) is dense in L; (v, du; R), (23) and (29) show that U = {U(¢t)} can
be regarded as a strongly continuous semigroup of positive linear operators
on Li (v, dp; R) such that

HU(t)H[q(vn du;R) < eﬁt for t > 0,

and thus {e #*U(t) : t > 0} becomes a strongly continuous contraction
semigroup on L (v, du; R). Since C' = §2 by (28), it follows from Akcoglu
and Chacon [1] that the strong limit

(31) U(0) = strong—%ii% e PtU(t)
exists in Lq(v,du;R).
Let g € L(R)' be the function in (22). Then, by putting
(32) g = kG((0,k7Y]) fork>1,
we have
(33)  0<UO)§w) < lminf U0)j(w) = lminf Gi(w) = §()

for almost all w € (2. On the other hand, since C' = 2 by hypothesis, it
follows from (d) of the decomposition {2 = C'+ D that there exists a strictly
positive function f in Ly (v, dp; R) such that U(0)f = f. Since U(0) is a
positive linear contraction on Lj (v, du; R), we see that

U(0)*1 =1€ Loo(vn, dp; R) = Ly (v, dp; R)™,

so that
VU (0)glon du =\ G[U0)* 1oy dp = § Gon dps,
2 2 2
and by (33),
(34) U0)g=g € LR)T C Ly (v, dp; R) ™.
Next, define
(35) he =G AEG((0,k7Y]))  fork>1,

where logk = 27 log k. Since limy_o0 Gr(w) = §(w) = limp_ oo hx(w) for
almost all w € 2 by (22), it follows from Lemma 3 that

(36) klggo lg — 7Lk:||L(]R) = 0.
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On the other hand, since the functions fj on {2 defined by
o) = {EEOII) SRR kW] < Cuto)
Cgihi(w)sgn[F((0,k71]9)(w)] otherwise,
where sgnz = z/||z| if 0 # z € X, and sgn 0 = 0 € X, satisfy
(37) 1 f1(@)]| < Cahp(w) < Cag(w)  for w € 2,

and since X is a reflexive Banach space by hypothesis, it follows that the
set {fx : k > 1} is weakly sequentially compact in L; (v, du; X) (cf. The-
orem IV.2.1 of [4]). So, if necessary, taking a subsequence of (fx), we may
assume without loss of generality that the weak limit function

(38) foo = weak—klim I

exists in Lj (v, dp; X). Here from (37) we see that || foo(w)| < Cag(w) on £2,
so that by property (II),

(39) foo c L (C Ll(vn d,UJ; X))
Now, we prove that for each fixed a > 0 the mapping
(40) g S T(u)gdu
(0,a]4

from L into itself can be uniquely extended to a bounded linear operator
from L (v, dp; X) into itself. For this purpose, let g € L. Since

Ha‘d< S T(u)gdu)(u))H < C’da_1<
(0,a]?

U®)llg(-)dt) ()

O e O)

for almost all w € £2, where loga = 27 log o, we have

ot (]| Tgdu)w)

2 (0,0

on (@) d(w)

< G | [(?U(tmg(-)n t) ()vn () | du(w)
0

)

= Cd&_l

O e O

S @OIgO D @)en(w) duw)]at by (29))
2

< Caa ' { [# [ llg@@)] - valw) dp(w)]dt (by (23))

2

< Cae™® \ [lg(w)llvn (@) du(w),

D= ot
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and thus

(41) Ha—d | Ty du‘
(0.0

< Ca€®|g| 1, (o x)

Ll(vn 5 )

for every g € L. Since L is dense in L1 (v, du; X), this establishes the desired
conclusion.

We will apply this result to the weak limit function f of (38) as follows.
Since fo € L by (39), for every o > 0 we have

(42)  F((0,a]) = | T(u)foodu
(0,0)4
= strong—hm S T(u)[KF((0, k%)) du

k—oo

(0,0

- S T(u)foodu in L  (cf. the proof of Lemma 3.2 of [1])
(0,a]4

= weak-lim | Tk F(0,k"))] du

(0,a]¢

— weak-lim S T(u)fr du

(0,0

in Ly (v,dp; X) by (29) and (38).
On the other hand, from the definition of f; we have

KT (0, k™) (w) = fu(w)ll R
= max{0, [k*|F((0,k™"]) ()| — Cahu(w)]}

< CkG((0,k7"])(w) = Cahg(w)  (by (17)~(19))

for almost all w € (2, where 10g7<; = 27" log k. Thus by Lemma 7 and the
construction of U = {U(t)} we have

o~ ] T@EFOK) ~ fil du) @)
(0,a]
< Cyga? ((f:rm(t)[cd%é((a EY) — Cuhil dt) (w)
0

< cgazfl( U®)[EG((0, k1)) — Tg] dt) (w)

O e Q)
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for almost all w € £2. Next we use the following relations:

(44)  a'G((0,a) —a \U®)gat

O e O

= a 'G((0,a]) — strong- lim &~

k—oo

Uhedt in L(R) (by (36))

OMQ)

= strong-lim & § U [FG((0,k~Y)) — hy) dt
0
in Li(v,dp; R) by Lemma 3.2 of [2], (30) and (29).
It follows from (42)—(44), together with Lemma 5 of [11], that

(15) o~ F(0.0)")w) ~ ( § T/ du) @)

(0,a]d
< cia G0 a)(w) - (CSYU(t)ﬁdt) ()]
0
for almost all w € 2. Therefore
g-lim sgp Ha_dF((O7 o)) (w) — a_d< S T(u) foo du) (w)H
o (0,04 )
< Cietmsupa™! [G((0.8) () = ([ U074t ) )

= C3[§(w) ~ U(0)gw)] =0 (by (34))
for almost all w € (2, and thus
aclim o~ F((0,0]") () = ¢-lim a—d(ms ) T(u) foo du) (@) = T(0) foo ()

for almost all w € 2 by (7).
Since (28) was assumed in the above argument, and since 2 = C = P
by (21), it is now easy to see that the limit

F(w) = arlinm o= F((0,0)%) ()

exists for almost all w € |, P, = P = C = §2. Obviously, the limit
function f is in L, and since the functions

hn(w) := f(w)xp, ()
satisfy T'(0)hy,(w) = hp(w) = f(w) for almost all w € P,, it follows from

Lemma 2 that
T(O)f(w) = lim T(0)h(w) = f()

for almost all w € 2. This establishes the second half of the theorem.
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4. Concluding remarks

(A) In order to see that property (IV) is necessary for the Theorem, we
give the following example: By Theorem 2 of [10], for ¢ > 0, there exists
a strongly continuous one-dimensional semigroup 7' = {T'(t) : t > 0} of
positive linear operators on Li(u;R), where (£2,X, 1) is a finite measure
space, such that

(46) T(H1=1 and [ T(#)] 0 qum =1 +¢
for all ¢ > 0, and also such that for some h € Ly (u; R)™ the limit

(47) lim ! ( {7(n dt) (w)
0
fails to exist for almost all w € N, where 2 = P 4+ N is the decomposition
of 2 (with respect to T'= {T'(t)}) in Section 3 and u(N) > 0.
As a set, we let L = L1(u;R); we define the norm || f||L of f € L by

[fllz = sup{I(T@OLFC)DIV [flly = ¢ = 0}

By (46), (L, ||-||z) becomes a Banach space which is equivalent to (L1 (u; R),
||-]/1) via the identity mapping. Thus it is clear that (L, ||-|| 1) has properties
(I), (II), (III) and (V). To see that (L, | - | ) fails (IV), let f = xp and
g = xp + dxn, where § > 0 is a constant. By the construction of the
semigroup T = {T'(t)} (see the proof of Theorem 2 of [10]), if ¢ is sufficiently
small, then we have

IT@)fllr = (L +e)llxplly = 1T (#)glh
for all t > 0, whence ||f||z = ||g||z follows. Thus property (IV) fails to hold
for (L, - |Ir).

On the other hand, it is obvious that ||T'(¢)f||r < ||f|/z for every ¢ > 0
and f € L, and so T = {T(t) : t > 0} becomes a strongly continuous
semigroup of positive linear contractions on (L, || - ||z). Since the Bochner
integral §'T(t)hdt with respect to (L, || - ||.) is the same as the one with
respect to (L1(u;R), | - |l1), it follows that the theorem fails to hold in this
case.

(B) In spite of the above example, if the strong limit operator 7'(0) of
the Theorem satisfies

(48) IT(O)fllz #0 whenever |£]l #0,

then the Theorem holds without assuming (IV).

To see this we note that property (IV) was used just once for all in the
above proof of the Theorem, to deduce that C' C P. Thus if P = {2 is known,
then the theorem must hold without property (IV). We now prove that (48)
implies P = (2. To do so, assume the contrary: p(N) > 0. Then there exists
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an f € L(R)* such that HfHL(R) # 0 and {w : f(w) > 0} C N. By (a) of
Section 3 we have [|U(t)f| L) = 0 for every ¢ > 0, which implies, as in

Section 3, that || T'(u) f|| = 0 for every u € P4, where we let f(w) = f(w)x;
for w € 2. Thus we have T'(0)f = 0. But this contradicts (48), because
Il fllL # 0. Hence P = (2 must follow.
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