Local dual spaces of a Banach space

by

MANUEL GONZÁLEZ (Santander) and ANTONIO MARTÍNEZ-ABEJÓN (Oviedo)

Abstract. We study the *local dual spaces* of a Banach space X, which can be described as the subspaces of X^* that have the properties that the principle of local reflexivity attributes to X as a subspace of X^{**} .

We give several characterizations of local dual spaces, which allow us to show many examples. Moreover, every separable space X has a separable local dual Z, and we can choose Z with the metric approximation property if X has it. We also show that a separable space containing no copies of ℓ_1 admits a smallest local dual.

1. Introduction. The principle of local reflexivity [14] shows that there is a close relation between a Banach space X and its second dual X^{**} from a finite-dimensional point of view: X^{**} is finitely dual representable in X with ε -isometries that fix points (see Definition 2.1). This means that X can be considered as a "local" dual of X^* .

In [9] the authors introduced the polar property as a test to check if X^* is finitely dual representable in its subspaces. Here we consider a smaller class of subspaces Z of X^* (Definition 2.1) that satisfy the principle of local reflexivity in full force: X^* is finitely dual representable in Z with ε -isometries that fix points. So we can properly refer to these subspaces Z as *local dual spaces* of X. We give several characterizations of such spaces, and we describe examples of local dual spaces for some classical spaces like $C[0, 1], L_1[0, 1],$ and for some families of Banach spaces, like $\ell_1(X^*), \ell_{\infty}(X),$ $X \otimes_{\pi} Y$ and $X \otimes_{\varepsilon} Y$ in the case that Y^* has the metric approximation property (M.A.P., for short). We show that for μ a finite positive measure, $L_1(\mu, X^*)$ is a local dual of $L_{\infty}(\mu, X)$, improving a result of Díaz [3]. We also prove that every separable space with the M.A.P. has a separable local dual space with the M.A.P.

²⁰⁰⁰ Mathematics Subject Classification: Primary 46B10, 46B20; Secondary 46B04, 46B08.

Key words and phrases: local dual space, local reflexivity, norming subspace. Research supported in part by DGICYT Grant PB 97–0349 (Spain).

The relation between a Banach space X and its local dual spaces is symmetric, in the sense that any local dual Z of X has a local dual isometric to X. This fact can also be seen as an extension of the local reflexivity principle.

We prove that every subspace L of X^* is contained in a local dual Z of X with dens $(Z) = \max\{\text{dens}(L), \text{dens}(X)\}$. Using this fact and some results of Godefroy and Kalton [7], we show that a separable space X containing no copies of ℓ_1 admits a smallest local dual Z_d which is also separable. This result provides an answer to a question in [7]. We also give a partial answer to another question in [7] by showing that a space X isometric to a dual space has a smallest local dual Z_d if and only if it admits a smallest norming subspace Z_n , and in this case $Z_d = Z_n$.

In the paper X and Y are Banach spaces, B_X the closed unit ball of X, S_X the unit sphere of X, and X^* the dual of X. We identify X with a subspace of X^{**} . A *subspace* is always a closed subspace. For $A \subset X$ we consider the sets

$$A^{\circ} := \{ f \in X^* : |\langle f, x \rangle| \le 1 \text{ for every } x \in A \}, \\ A^{\perp} := \{ f \in X^* : \langle f, x \rangle = 0 \text{ for every } x \in A \}.$$

Analogously, for $C \subset X^*$, we define the subsets C_{\circ} and C_{\perp} of X. We denote by $\mathcal{B}(X, Y)$ the space of all (bounded linear) operators from X into Y, and by $\mathcal{K}(X, Y)$ the subspace of all compact operators. Given $T \in \mathcal{B}(X, Y)$, N(T) and R(T) are the range and the kernel of T, and T^* is the conjugate operator of T.

Given a number $0 < \varepsilon < 1$, an operator $T \in \mathcal{B}(X, Y)$ is an ε -isometry if it satisfies $(1 + \varepsilon)^{-1} < ||Tx|| < 1 + \varepsilon$ for all $x \in S_X$. A space X is said to be finitely representable in Y if for each $\varepsilon > 0$ and each finite-dimensional subspace M of X there is an ε -isometry $T : M \to Y$. We denote by \mathbb{N} the set of all positive integers.

2. Local dual spaces. Recall that a subspace Z of X^* is norming if

$$||x|| = \sup\{|\langle f, x \rangle| : f \in B_Z\} \quad \text{for every } x \in X.$$

Moreover, X^* is finitely dual representable (f.d.r., for short) in Z [9, Definition 1] if for every couple of finite-dimensional subspaces F of X^* and G of X, and for every $0 < \varepsilon < 1$, there is an ε -isometry $L : F \to Z$ such that $\langle Lf, x \rangle = \langle f, x \rangle$ for all $x \in G$ and all $f \in F$.

Clearly, if X^* is f.d.r. in Z, then Z is norming. However, the converse implication does not hold [9, Remark after Theorem 4].

Now we introduce a concept which is strictly stronger than finite dual representability (see Example 2.11).

DEFINITION 2.1. Let Z be a subspace of X^* . We say that Z is a *local dual space* of X if for every couple of finite-dimensional subspaces F of X^* and G of X, and every number $0 < \varepsilon < 1$, there is an ε -isometry $L: F \to Z$ satisfying the following conditions:

(a) $\langle Lf, x \rangle = \langle f, x \rangle$ for all $x \in G$ and all $f \in F$, and (b) Lf = f for all $f \in F \cap Z$.

REMARK 2.2. (a) Obviously, X^* is a local dual of X.

(b) A local dual of X provides an almost-isometric local representation of X^* . This could be useful when we do not have a description of X^* , but it is possible to find a local dual. This happens for the ultrapowers $X_{\mathfrak{U}}$ of X and for $L_{\infty}(\mu, X)$ (see (c) and Corollary 2.7).

(c) The principle of local reflexivity [14] establishes that a Banach space X (as well as every isometric predual of X^*) is a local dual of X^* , and the principle of local reflexivity for ultrapowers [12, Theorem 7.3] establishes that $(X^*)_{\mathfrak{U}}$ is a local dual of $X_{\mathfrak{U}}$.

(d) There are spaces X so that X^* contains no proper norming subspaces. Hence X^* is the only local dual of X. This is the case when X is an Mideal in its bidual [11, Corollary III.2.16], or more generally, when X is Hahn–Banach smooth. This means that every $x^* \in X^*$ admits only one Hahn–Banach extension to X^{**} [21].

For the structure of Banach spaces admitting no proper norming subspaces, we refer to [6], specially Theorem 8.3 where a characterization of these spaces is given, and [2].

The following technical result is a direct application of the Hahn–Banach Theorem and the principle of local reflexivity.

LEMMA 2.3. Let Z be a norming subspace of X^* . Then for every couple of finite-dimensional subspaces E of $Z^{\perp\perp}$ and F of X, and every $0 < \varepsilon < 1$, there is an ε -isometry $L : E \to Z$ such that Le = e for all $e \in E \cap Z$, and $\langle Le, x \rangle = \langle e, x \rangle$ for all $e \in E$ and all $x \in F$.

Proof. The canonical isometry $T: Z^{\perp \perp} \to Z^{**}$ maps $f \in Z^{\perp \perp}$ to the functional $\widehat{f} \in Z^{**}$ defined by $\langle \widehat{f}, \zeta \rangle := \langle f, \zeta_e \rangle$, where $\zeta_e \in (X^*)^*$ is any Hahn–Banach extension of $\zeta \in Z^*$. Note that $\langle T^{-1}\widehat{f}, g \rangle := \langle \widehat{f}, g|_Z \rangle$ for every $g \in X^{**}$.

Let $E_1 := T(E)$. Since Z is norming, the map that sends $x \in F$ to the functional $\hat{x} \in Z^*$ given by $\langle \hat{x}, z \rangle := \langle z, x \rangle$ is an isometry. So we can apply the principle of local reflexivity to get an ε -isometry $\Lambda : E_1 \to Z$ such that $\langle a, \hat{x} \rangle = \langle \Lambda a, x \rangle$ for all $a \in E_1$ and $x \in F$, and $\Lambda a = a$ for all $a \in E_1 \cap Z$. The ε -isometry $L := \Lambda T|_E$ satisfies the requirements of our statement.

DEFINITION 2.4. Given a couple of subspaces Z of X^* and G of Z^* , an operator $L: G \to X^{**}$ is said to be an *extension operator* if $Lf|_Z = f$ for every $f \in G$.

The following result will be very useful to find examples of local dual spaces of a Banach space X. The proof uses an ultrapower version of the Lindenstrauss compactness principle and some ideas of [15]. These ideas have also been used in [8, Proposition 3.6] in order to give a local characterization of subspaces of a Banach space which are unconditional ideals.

THEOREM 2.5. For a subspace Z of X^* , the following statements are equivalent:

(1) Z is a local dual of X;

(2) for every couple of finite-dimensional subspaces F of X^* and G of X, and every $0 < \varepsilon < 1$, there is an ε -isometry $L: F \to Z$ such that

(a') $|\langle Lf, x \rangle - \langle f, x \rangle| < \varepsilon ||f|| \cdot ||x||$ for all $x \in G$ and all $f \in F$, and (b') $||Lf - f|| \le \varepsilon ||f||$ for all $f \in F \cap Z$;

(3) there is an isometric extension operator $L : Z^* \to X^{**}$ so that $R(L) \supset X$;

(4) there exists a norm-one projection $P: X^{**} \to X^{**}$ such that $N(P) = Z^{\perp}$ and $R(P) \supset X$;

(5) there exists a norm-one projection $Q : X^{***} \to X^{***}$ such that $R(Q) = Z^{\perp \perp}$ and $N(Q) \subset X^{\perp}$ (where $X^{***} = X^* \oplus X^{\perp}$).

Proof. We denote by ι the natural inclusion operator from Z into X^* . Observe that $\iota^* : X^{**} \to Z^*$ is the restriction operator: $\iota^*(F) = F|_Z$.

 $(1) \Rightarrow (2)$. This is trivial.

 $(2) \Rightarrow (3)$. First, for every compact operator $T : Z \to Y$ we obtain a compact extension $\widetilde{T} : X^* \to Y$ with $\|\widetilde{T}\| = \|T\|$, as follows:

Let \mathcal{A} be the family of all pairs $\alpha = (E_{\alpha}, F_{\alpha})$ of finite-dimensional subspaces $E_{\alpha} \subset X^*$ and $F_{\alpha} \subset X$. We define $|\alpha| := \dim E_{\alpha} + \dim F_{\alpha}$. For every $\alpha \in \mathcal{A}$ we select an $|\alpha|^{-1}$ -isometry $L_{\alpha} : E_{\alpha} \to Z$ such that $|\langle L_{\alpha}e, x \rangle - \langle e, x \rangle| < \varepsilon ||e|| \cdot ||x||$ for all $e \in E_{\alpha}$ and all $x \in F_{\alpha}$, and $||L_{\alpha}z - z|| \le |\alpha|^{-1} ||z||$ for all $z \in E_{\alpha} \cap Z$.

We fix an ultrafilter \mathfrak{U} on \mathcal{A} refining the order filter associated to the order inclusion. Taking $L_{\alpha}g = 0$ for $g \notin E_{\alpha}$, we can define the operator

$$\widetilde{T}g := \lim_{\alpha \to \mathfrak{U}} TL_{\alpha}g, \quad g \in X^*.$$

Note that $(TL_{\alpha}g)_{\alpha\in\mathcal{A}}$ is contained in the compact set $2\|g\| \cdot \overline{TB_Z}$. Since $L_{\alpha}|_{E_{\alpha}\cap Z}$ converges to the identity map, \widetilde{T} is an extension of T; i.e., $\widetilde{T}\iota = T$. In particular, $\|T\| \leq \|\widetilde{T}\|$. Moreover, $\|\widetilde{T}\| = \lim_{\alpha \to \mathfrak{U}} \|TL_{\alpha}\| \leq \|T\|$.

Now, for every finite-dimensional subspace G of Z^* , we consider the quotient map $q_G : Z \to Z/G_{\perp}$, and denote by ι_G the inclusion operator from G into Z^* . Let $Q_G : X^* \to Z/G_{\perp}$ be the extension of q_G built as in the first part of the proof. Note that $\iota^*Q_G^* = \iota_G$, so $Q_G^* : G \to X^{**}$ is an isometric extension operator.

Let \mathfrak{V} be an ultrafilter on the set of all the finite-dimensional subspaces of Z, refining the filter associated to the order inclusion. The w^* -compactness of $B_{X^{**}}$ allows us to define $L : Z^* \to X^{**}$ as $Lh := w^* - \lim_{G \to \mathfrak{V}} Q_G^* h$. Clearly, ||L|| = 1 and $\iota^* L$ is the identity, so L is an extension operator.

It only remains to see that $R(L) \supset X$. Since every $x \in X$ belongs to X^{**} , we can consider its restriction $x|_Z \in Z^*$. Let G be any finite-dimensional subspace of Z^* containing $x|_Z$. Then for every $f \in X^*$, we have

$$\langle Q_G^*(x|Z), f \rangle = \langle x|Z, Q_G f \rangle = \lim_{\alpha \to \mathfrak{U}} \langle x|Z, q_G L_\alpha f \rangle$$

=
$$\lim_{\alpha \to \mathfrak{U}} \langle \iota_G(x|Z), L_\alpha f \rangle = \lim_{\alpha \to \mathfrak{U}} \langle L_\alpha f, x \rangle = \langle f, x \rangle,$$

hence $Q_G^*(x|_Z) = x$, so $x = L(x|_Z)$, concluding the proof.

 $(3) \Rightarrow (4)$. The operator $P := L\iota^*$ defines a projection on X^{**} , because ι^*L is the identity on Z^* , and ||P|| = 1. Also, $R(P) \supset X$ since ι^* is surjective and $R(L) \supset X$. Finally, $N(P) = N(\iota^*) = Z^{\perp}$.

 $(4) \Rightarrow (5)$. It is enough to take $Q = P^*$.

 $(5) \Rightarrow (1)$. Let Q be a norm-one projection on X^{***} such that $R(Q) = Z^{\perp \perp}$ and $N(Q) \subset X^{\perp}$. First, considering the natural embedding of X^* in X^{***} , we show that the restriction $Q|_{X^*}$ is an isometry. Indeed, given $f \in X^*$ and $0 < \varepsilon < 1$, we select $x \in X$ such that ||x|| = 1 and $\langle f, x \rangle > ||f|| - \varepsilon$. Since $R(I-Q) \subset X^{\perp}$, we have $\langle f, x \rangle = \langle Qf, x \rangle$; hence ||Qf|| = ||f||.

Fix $F \in Z^{\perp}$ and $x \in X$. We choose $f \in X^*$ so that ||f|| = 1 and $\langle f, x \rangle = ||x||$. Since $R(Q) = Z^{\perp \perp}$ and $N(Q) \subset X^{\perp}$, we have

$$|F - x|| \ge |\langle F - x, Qf \rangle| = |\langle x, Qf \rangle| = ||x||.$$

By [5, Lemma I.1], we conclude that Z is norming.

Now, in order to show that Z is a local dual of X, we take a number $0 < \varepsilon < 1$ and finite-dimensional subspaces $E \subset X^*$ and $F \subset X$, and set $E_1 := Q(E) \subset Z^{\perp \perp}$.

Applying Lemma 2.3, we get an ε -isometry $L: E_1 \to Z$ so that

$$\langle Le, x \rangle = \langle e, x \rangle$$
 for all $e \in E_1, x \in F$,
 $Le = e$ for all $e \in E_1 \cap Z$.

Thus $LQ : E \to Z$ is an ε -isometry. Moreover, given $e \in E \cap Z$, we have Le = e and Qe = e, so LQe = e. In addition, given $e \in E$, $x \in F$, we see that

$$\langle LQe, x \rangle = \langle Qe, x \rangle = \langle e, x \rangle,$$

and the proof is complete. \blacksquare

REMARK 2.6. Since X is weak*-dense in X^{**} , the projection P in Theorem 2.5(4) cannot be weak*-continuous.

A direct application of Theorem 2.5 gives the following improvement of a result of Díaz [3, Theorem 2.1].

COROLLARY 2.7. Let μ be a finite positive measure. Then $L_1(\mu, X^*)$ is a local dual of $L_{\infty}(\mu, X)$.

Proof. It is enough to observe that, in the case that μ is a probability measure, [3, Theorem 2.1] establishes that $L_1(\mu, X^*)$ satisfies condition (2) in Theorem 2.5. \blacksquare

Next we apply Theorem 2.5 to show examples of local dual spaces for some classical Banach spaces.

Let λ be a positive Borel measure on a metrizable compact space K. We denote by B(K) the Banach algebra of all scalar, Borel-measurable bounded functions on K, endowed with the supremum norm. We can identify $L_{\infty}(\lambda)$ with the quotient $B(K)/\mathcal{J}_0$, where $\mathcal{J}_0 := \{f \in B(K) : \int |f| d\lambda = 0\}$. We denote by

$$\pi_{\lambda}: B(K) \to L_{\infty}(\lambda)$$

the canonical quotient map. Using the continuum hypothesis, it was proved in [18, Theorem 3], in the case $\operatorname{supp}(\lambda) = K$, that π_{λ} admits a *strong Borel lifting*; i.e., there exists an algebra homomorphism

$$\varrho_{\lambda}: L_{\infty}(\lambda) \to B(K)$$

so that for every $f \in L_{\infty}(\lambda)$ we have $\rho_{\lambda}(f)(t) = f(t)$ for λ -almost all $t \in K$, and $\rho_{\lambda}(f) = f$ for every $f \in C(K)$.

It follows from these properties that ρ_{λ} is a right inverse of π_{λ} that satisfies

$$\|\varrho_{\lambda}(f)\| = \|f\|_{\infty}$$
 for every $f \in L_{\infty}(\lambda)$.

For *m* the Lebesgue measure on [0, 1], the existence of ρ_m can be derived from the results of von Neumann and Stone in [19]. In this case we write $L_{\infty}[0, 1]$ rather than $L_{\infty}(m)$. Recall that $L_1[0, 1]^* = L_{\infty}[0, 1]$ and $C[0, 1]^* =$ M[0, 1], the space of all regular Borel measures on [0, 1]. For every positive $\lambda \in M[0, 1]$, the space $L_1(\lambda)$ is embedded in M[0, 1] through the map $f \mapsto$ λ_f , where $\lambda_f(U) = \int_U f \, d\lambda$.

PROPOSITION 2.8. Assume the continuum hypothesis $2^{\omega} = \omega_1$.

- (a) The natural copy of C[0,1] in $L_{\infty}[0,1]$ is a local dual of $L_1[0,1]$.
- (b) The natural copy of $L_1[0,1]$ in M[0,1] is a local dual of C[0,1].

Proof. (a) We consider the map $L: M[0,1] \to L_{\infty}[0,1]^*$ given by

$$\langle L\mu, f \rangle := \int_{0}^{1} \varrho_m(f)(t) \, d\mu(t).$$

This map is well defined because $\rho_m(f)$ is Borel measurable for every f in $L_{\infty}[0,1]$. Since $\rho_m(g) = g$ for every $g \in C[0,1]$, L is an isometric extension operator from $C[0,1]^*$ into $L_1[0,1]^{**}$. Moreover, $\rho_m(f)(t) = f(t)$ a.e. for

every f implies that L(h) = h for every $h \in L_1[0,1]$; hence $L(M[0,1]) \supset L_1[0,1]$.

(b) The map $L_m: L_\infty[0,1] \to M[0,1]^*$ defined by

$$\langle L_m f, \mu \rangle := \int_0^1 \varrho_m(f)(t) \, d\mu(t)$$

is an isometric extension operator from $L_1[0,1]^*$ into $C[0,1]^{**}$, because $M[0,1] \supset L_1[0,1]$ and $\varrho_m(f)(t) = f(t)$ a.e. for every f. Moreover, $\varrho_m(f) = f$ for every $f \in C[0,1]$ implies $L_m(L_{\infty}[0,1]) \supset C[0,1]$.

REMARK 2.9. (a) In the proof of Proposition 2.8, we have applied the continuum hypothesis in order to select a Borel function for every $f \in L_{\infty}$, so that we can define an isometric extension operator $L: C[0,1]^* \to L_{\infty}[0,1]^*$. However, in our opinion it should be possible to find a proof in which the continuum hypothesis is not necessary.

(b) The Radon–Nikodym theorem allows us to write

$$C[0,1]^* = L_1[0,1] \oplus_1 M_{\text{sing}}[0,1].$$

So if Q is the projection with range $L_1[0,1]$ and kernel $M_{\text{sing}}[0,1]$, then Q^* is a norm-one projection on $C[0,1]^{**}$ with $N(Q^*) = L_1[0,1]^{\perp}$. However, $R(Q^*) = M_{\text{sing}}[0,1]^{\perp} \not\supseteq C[0,1]$. Thus, we cannot apply part (4) of Theorem 2.5 to derive that $L_1[0,1]$ is a local dual of C[0,1].

(c) Suppose that $\lambda \in M[0,1]$ is a positive Borel measure with support equal to [0,1] and satisfying $m \perp \lambda$. Then using an argument similar to that in Proposition 2.8, we can prove that $L_1(\lambda)$ is a local dual of C[0,1]. Hence, C[0,1] admits two local dual spaces with intersection $\{0\}$.

As an example of a measure λ so that $L_1(\lambda) \cap L_1[0,1] = \{0\}$, we can consider the discrete measure associated to a dense sequence in [0,1].

Proposition 2.8 and the principle of local reflexivity suggest that the relation of "being a local dual" is symmetric. Next we prove it.

Let Z be a local dual of X. Denoting by \hat{x} the vector $x \in X$ viewed as an element of X^{**} , we consider the following natural map:

$$\Upsilon: x \in X \mapsto \widehat{x}|_Z \in Z^*$$

Note that Υ is an isometry, because Z is norming.

PROPOSITION 2.10. Let Z be a local dual of X and let $L: Z^* \to X^{**}$ be an isometric extension such that $L(Z^*) \supset X$. Then

(a) $L\Upsilon$ is the natural embedding from X into X^{**} .

(b) $\Upsilon(X)$ is a local dual of Z isometric to X.

Proof. (a) Let J and ι denote the embedding of X in X^{**} and the embedding of Z in X^* , respectively. Then $\Upsilon = \iota^* J$. Moreover, for every

 $z \in Z$ and $z^* \in Z^*$,

$$\langle \iota^* L z^*, z \rangle = \langle L z^*, \iota z \rangle = \langle z^*, z \rangle;$$

hence ι^*L is the identity on Z^* . Thus, $L\iota^*$ is a projection on X^{**} with $R(L\iota^*) = R(L) \supset X$; hence $L\Upsilon = L\iota^*J = J$.

(b) We define $\Lambda: \Upsilon(X)^* \to Z^{**}$ by

$$\langle Af, g \rangle := \langle Lg, f \circ \Upsilon \rangle, \quad f \in \Upsilon(X)^*, \ g \in Z^*.$$

Clearly $||A|| \leq 1$. Moreover, for every $f \in \Upsilon(X)^*$ and every $\Upsilon X \in \Upsilon(X)$,

$$\langle \Lambda f, \Upsilon x \rangle = \langle L \Upsilon x, f \circ \Upsilon \rangle = \langle f \circ \Upsilon, x \rangle = \langle f, \Upsilon x \rangle.$$

Thus Λ is an isometric extension operator. Moreover, for every $y \in Z$ we can write $y = f \circ \Upsilon$ with $f \in \Upsilon(X)^*$. Then

$$\langle \Lambda f,g\rangle = \langle Lg,f\circ\Upsilon\rangle = \langle Lg,y\rangle = \langle g,y\rangle$$

for every $g \in Z^*$; hence $\Lambda(\Upsilon(X)^*) \supset Z$.

Now we show that X^* f.d.r. in Z does not imply that Z is a local dual of X. In order to do that, observe that

$$Z_1 \subset Z_2 \subset X^*$$
 and X^* f.d.r. in $Z_1 \Rightarrow X^*$ f.d.r. in Z_2 .

The following example shows that this implication is not valid for local dual spaces.

EXAMPLE 2.11. The principle of local reflexivity implies that ℓ_{∞} is f.d.r. in c_0 .

On the other hand, since the quotient map $q: \ell_{\infty} \to \ell_{\infty}/c_0$ is not weakly compact, ℓ_{∞}/c_0 contains a complemented subspace isomorphic to ℓ_{∞} [17, Proposition 2.f.4]. Therefore, there is a subspace N of ℓ_{∞}/c_0 such that the quotient space $(\ell_{\infty}/c_0)/N$ is isomorphic to ℓ_2 . We take $M := q^{-1}(N)$.

CLAIM. $\ell_1^* = \ell_\infty$ is f.d.r. in M, but M is not a local dual of ℓ_1 .

Note that ℓ_{∞}/M is isomorphic to $(\ell_{\infty}/c_0)/N$, so M^{\perp} is isomorphic to ℓ_2 . Since $c_0 \subset M$, we see that ℓ_{∞} is f.d.r. in M. But M^{\perp} is non-complemented in ℓ_{∞}^* because ℓ_{∞}^* has the Dunford–Pettis property. Therefore, by Theorem 2.5, M is not a local dual of ℓ_1 .

PROPOSITION 2.12. Let X be a Banach space. Then

(a) $\ell_1(X^*)$ is a local dual of $\ell_{\infty}(X)$, and

(b) $\ell_{\infty}(X)$ is a local dual of $\ell_1(X^*)$.

Proof. (a) For every couple $\alpha := (E, F)$ of finite-dimensional subspaces of $\ell_1(X^*)$, $\ell_{\infty}(X^{**})$, we select a pair of sequences (E_n) , (F_n) of finitedimensional subspaces of X^* and X^{**} respectively so that $E \subset \ell_1(E_n)$ and $F \subset \ell_{\infty}(F_n)$. We define $|\alpha| := \dim(E) + \dim(F)$.

162

The principle of local reflexivity allows us to find, for every n, an $|\alpha|^{-1}$ isometry $S_n^{\alpha} : F_n \to X$ so that $\langle S_n^{\alpha} f, e \rangle = \langle e, f \rangle$ for every $e \in E_n$ and $f \in F_n$, and $S_n^{\alpha}(f) = f$ for every $f \in F_n \cap X$. We consider the (non-linear) map $S^{\alpha} : \ell_{\infty}(X^{**}) \to \ell_{\infty}(X)$ given by $S^{\alpha}(z_n) := (S_n^{\alpha}(z_n))$ if $(z_n) \in F$, and $S^{\alpha}(z_n) := 0$ otherwise.

Let \mathfrak{U} be an ultrafilter in the set of all couples $\alpha = (E, F)$ of finitedimensional subspaces E of $\ell_1(X^*)$ and F of $\ell_{\infty}(X^{**})$ refining the order filter. We define an operator $\Lambda : \ell_1(X^*)^* = \ell_{\infty}(X^{**}) \to \ell_{\infty}(X)^{**}$ by

$$\Lambda((z_n)) := w^* - \lim_{\alpha \to \mathfrak{U}} S^{\alpha}(z_n), \quad (z_n) \in \ell_{\infty}(X^{**}).$$

Note that Λ is an isometry and $\Lambda(y_n) = (y_n)$ for every $(y_n) \in \ell_{\infty}(X^{**})$. Therefore, Λ is an isometric extension operator. Moreover, $\Lambda((x_n)) = (x_n)$ if $(x_n) \in \ell_{\infty}(X)$. In particular $\Lambda(\ell_{\infty}(X^{**})) \supset \ell_{\infty}(X)$.

(b) It is enough to observe that the operator $\Upsilon : \ell_{\infty}(X) \to \ell_1(X^*)^*$, introduced in Proposition 2.10, is the natural inclusion.

Recall that a Banach space X has the *metric approximation property* (M.A.P., for short) if for every $\varepsilon > 0$ and every compact set K in X, there is a finite rank operator T on X such that $||T|| \leq 1$ and $||Tx - x|| \leq \varepsilon$ for every $x \in K$. Note that if X^{*} has the M.A.P., then so does X [4, Corollary VIII.3.9]. However, the converse implication is not valid [17, Theorem 1.e.7].

The following result is proved using some ideas of [13].

PROPOSITION 2.13. Assume that X^* or Y^* has the M.A.P. Then

(a) $X^* \otimes_{\varepsilon} Y^*$ is a local dual of $X \otimes_{\pi} Y$, and

(b) $X^* \otimes_{\pi} Y^*$ is a local dual of $X \otimes_{\varepsilon} Y$.

Proof. We assume that Y^* has the M.A.P.

(a) The dual space $(X \otimes_{\pi} Y)^*$ can be identified with $\mathcal{B}(X, Y^*)$. Moreover, since Y^* has the M.A.P., $X^* \otimes_{\varepsilon} Y^*$ can be identified with $\mathcal{K}(X, Y^*)$, and there exists a net (A_{α}) of finite rank operators on Y^* with $||A_{\alpha}|| \leq 1$ so that $\lim_{\alpha} ||A_{\alpha}g - g|| = 0$ for every $g \in Y^*$. We can assume that (A_{α}) is $\sigma(\mathcal{K}(Y^*)^{**}, \mathcal{K}(Y^*)^*)$ -convergent.

For $T \in \mathcal{B}(X, Y^*)$ and $\Phi \in \mathcal{K}(X, Y^*)^*$, the expression $\Phi_T(A) := \Phi(AT)$ defines $\Phi_T \in \mathcal{K}(Y^*)^*$. Then we define $\Lambda : \mathcal{K}(X, Y^*)^* \to \mathcal{B}(X, Y^*)^*$ by

$$\langle A\Phi, T \rangle := \lim \langle \Phi, A_{\alpha}T \rangle = \lim \langle A_{\alpha}, \Phi_T \rangle.$$

Note that for every $f \otimes g \in X^* \otimes_{\varepsilon} Y^*$ we have

$$\langle A\Phi, f \otimes g \rangle = \lim_{\alpha} \langle \Phi, A_{\alpha}(g) \cdot f \rangle = \langle \Phi, f \otimes g \rangle.$$

So Λ is an isometric extension operator. Analogously, we can check that for every $x \otimes y \in X \otimes_{\pi} Y \subset \mathcal{B}(X, Y^*)^*$, we have $\Lambda(x \otimes y|_{\mathcal{K}(X,Y^*)}) = x \otimes y$. Thus $X \otimes_{\pi} Y \subset \Lambda(\mathcal{K}(X, Y^*)^*)$, and it is enough to apply Theorem 2.5. (b) The proof is analogous, identifying $(X \otimes_{\varepsilon} Y)^*$ with the space $\mathcal{I}(X, Y^*)$ of all integral operators from X into Y^* .

REMARK 2.14. (a) If we assume in Proposition 2.13 that Y^* has the metric compact approximation property (defined as the M.A.P., but using compact operators instead of finite rank operators), then we find that $\mathcal{K}(X, Y^*)$ is a local dual of $X \otimes_{\pi} Y$.

(b) It follows from the results of Lima [16, Theorem 13] that if Y^* has the Radon–Nikodym property and $Y^{**} \otimes_{\varepsilon} Y^*$ is a local dual of $Y^* \otimes_{\pi} Y$, then Y^* has the M.A.P. So it is not enough to assume in Proposition 2.13 that X or Y has the M.A.P.

(c) Let μ be a finite positive measure and let K be a compact space. Since the spaces $L_1(\mu)^* \equiv L_{\infty}(\mu)$ and $C(K)^* \equiv M(K)$ have the M.A.P., it follows from Proposition 2.13 that $X^* \otimes_{\varepsilon} L_{\infty}(\mu)$ is a local dual of $L_1(\mu, X) = X \otimes_{\pi} L_1(\mu)$, and that $X^* \otimes_{\pi} M(K)$ is a local dual of $C(K, X) = X \otimes_{\varepsilon} C(K)$.

(d) The tensor product $X^* \otimes_{\varepsilon} L_{\infty}(\mu)$ in part (c) can be identified with a (proper, in general) subspace of $L_{\infty}(\mu, X^*)$.

It has been proved in [10] that $L_{\infty}(\mu, X^*)$ is also a local dual of $L_1(\mu, X)$.

Casazza and Kalton [1] proved that for every separable Banach space X with the M.A.P., we can find a sequence (T_n) of finite rank operators on X such that

(a) $\lim_{n\to\infty} ||T_n x - x|| = 0$ for all $x \in X$,

(b)
$$\lim_{n\to\infty} ||T_n|| = 1$$
 and

(c)
$$T_n T_k = T_k T_n = T_{\min\{k,n\}};$$

i.e., X admits a commuting 1-approximating sequence (T_n) . Using this fact we show in the following result that a separable Banach space with the M.A.P. admits a local dual of X with the M.A.P. Its proof is similar to the proof of [7, Lemma II.2].

THEOREM 2.15. Let X be a separable Banach space with the <u>M.A.P.</u>, and let (T_n) be a commuting 1-approximating sequence on X. Then $\bigcup_{n=1}^{\infty} R(T_n^*)$ is a local dual of X, and has the M.A.P.

Proof. Let \mathfrak{U} be an ultrafilter on \mathbb{N} . We define a map P on X^{**} by

$$Pz := w^* \text{-} \lim_{k \to \mathfrak{U}} T_k^{**} z, \quad z \in X^{**}.$$

From $T_n^{**}T_k^{**} = T_k^{**}T_n^{**} = T_{\min\{k,n\}}^{**}$ and the weak*-continuity of the operators T_n^{**} , it follows that for every $n \in \mathbb{N}$ and every $z \in X^{**}$, we have

(1)
$$T_n^{**}Pz = PT_n^{**}z = T_n^{**}z.$$

Hence $P^2 z = w^* - \lim_{n \to \mathfrak{U}} T_n^{**} P z = P z$. Since $\lim_{n \to \infty} ||T_n|| = 1$, P is a norm-one projection. Also, it follows from formula (1) that $N(T_n^{**}) \supset N(P)$

for every $n \in \mathbb{N}$. Since the intersection of the kernels $N(T_n^{**})$ is clearly contained in N(P), we get

$$N(P) = \bigcap_{n=1}^{\infty} N(T_n^{**}).$$

As a consequence, N(P) is weak*-closed. And clearly $P(X^{**}) \supset X$.

Note that $T_nT_k = T_kT_n = T_{\min\{k,n\}}$ implies $N(T_n^{**})_{\perp} = R(T_n^*) \subset R(T_{n+1}^*)$ for every n. Therefore

$$N(P)_{\perp} = \bigcup_{n=1}^{\infty} R(T_n^*),$$

and it follows from Theorem 2.5 that $\overline{\bigcup_{n=1}^{\infty} R(T_n^*)}$ is a local dual of X.

Moreover, since T_n^*f is weak*-convergent for every $f \in X^*$, and compact operators take weak*-convergent sequences to norm-convergent sequences, by formula (1) we have $\lim_{k\to\infty} ||T_k^*f - f|| = \lim_{k\to\infty} ||T_n^*(T_k^*g - g)|| = 0$ for every $f = T_n^*g \in R(T_n^*)$. Since (T_k^*) is bounded, we get $\lim_{k\to\infty} ||T_k^*f - f||$ = 0 for every $f \in \overline{\bigcup_{n=1}^{\infty} R(T_n^*)}$; hence $\overline{\bigcup_{n=1}^{\infty} R(T_n^*)}$ has the M.A.P.

REMARK 2.16. If X has a monotone Schauder basis, then the local dual of X provided by Theorem 2.15 is the subspace generated by the coefficient functionals of the basis.

As an application of Theorem 2.15, we give another example of a local dual space of $L_1[0, 1]$.

EXAMPLE 2.17. The subspace Z of $L_{\infty}[0,1]$ generated by the characteristic functions $\chi_{n,i}$ of the dyadic intervals

$$\left[\frac{i-1}{2^n}, \frac{i}{2^n}\right], \quad n = 0, 1, 2, \dots; \ i = 1, \dots 2^n,$$

is a local dual of $L_1[0,1]$ isometric to $C(\Delta)$, where Δ denotes the Cantor set.

It is enough to check that the sequence (P_n) of projections defined by

$$P_n f := \sum_{i=1}^{2^n} \langle 2^n \chi_{n,i}, f \rangle \chi_{n,i}$$

is a commuting 1-approximating sequence in $L_1[0, 1]$, and that $\bigcup_n R(P_n^*)$ is the subspace generated by the functions $\chi_{n,i}$.

In relation to the necessity of the continuum hypothesis in Proposition 2.8, note that $C(\Delta)$ is isomorphic, but not isometric to C[0, 1].

We have seen in part (a) of the previous example that there are local dual spaces Z_1 and Z_2 of C[0, 1] so that $Z_1 \cap Z_2$ is finite-dimensional. Now we will show that this cannot happen for spaces that contain no copies of ℓ_1 .

Godefroy and Kalton [7] considered the family \mathcal{P}_X of all the subspaces Y of X^{**} for which there is a norm-one projection on X^{**} such that Y = N(P) and $R(P) \supset X$. The following result is an application of [7, Proposition V.1] and our previous results.

PROPOSITION 2.18. If X contains no copies of ℓ_1 , then it admits a smallest local dual; i.e., there exists a local dual Z_d contained in every local dual of X.

Proof. If X contains no copies of ℓ_1 , then \mathcal{P}_X consists of weak*-closed subspaces of X^{**} and has a largest element L [7, Proposition V.1]. By Theorem 2.5, the local dual spaces of X are precisely the subspaces Z of X^* such that $Z^{\perp} \in \mathcal{P}_X$. Thus $Z_d := L_{\perp}$ is the smallest local dual of X.

The following result was obtained by Sims and Yost [20] (see [11, Lemmas III.4.3 and III.4.4]). Here, dens(X) stands for the *density character* of X, defined as the smallest cardinal κ for which X has a dense subset of cardinality κ .

PROPOSITION 2.19. Let L be a subspace of Y, and let F be a subspace of Y^* with dens $(F) \leq \text{dens}(L)$. Then there exists a subspace M of Y with dens(M) = dens(L) and $M \supset L$ for which there exists an isometric extension operator $T: M^* \to Y^*$ such that $T(M^*) \supset F$.

We now prove our next result about the existence of local dual spaces.

PROPOSITION 2.20. Every subspace L of X^* is contained in a local dual Z_L of X with dens $(Z_L) = \max{\text{dens}(L), \text{dens}(X)}$.

Proof. Given a subspace L of X^* , it is easy to find a subspace L_0 of X^* so that $L \subset L_0$ and dens $(L_0) = \max\{\text{dens}(L), \text{dens}(X)\}$. If we apply Proposition 2.19 to L_0 as a subspace of X^* and X as a subspace of X^{**} we get a subspace Z_L of X^* with $Z_L \supset L$ and dens $(Z_L) = \max\{\text{dens}(L), \text{dens}(X)\}$ for which there exists an isometric extension operator $T : Z_L^* \to X^{**}$ such that $T(Z_L^*) \supset X$. By Theorem 2.5, this is the desired local dual of X.

REMARK 2.21. (a) Assume that X is separable and contains no copies of ℓ_1 , and that X^* is not separable. By Proposition 2.20, the smallest local dual space Z_d provided by Proposition 2.18 is separable; in particular, $Z_d \neq X^*$. This fact gives an affirmative answer to a question of Godefroy and Kalton in [7, Remarks V.3].

(b) Assume that X contains no copies of ℓ_1 . In this case, apart from the smallest local dual Z_d there also exists a smallest norming subspace $Z_n \subset X^*$ [5, Lemma I.2 and Theorem II.3]. Clearly Z_n is contained in Z_d . However, we do not know whether or not $Z_n = Z_d$.

QUESTION [7, Remarks V.3]. Assume that both Z_n and Z_d exist for X. Is $Z_n = Z_d$?

We can only give an affirmative answer for dual spaces.

PROPOSITION 2.22. Assume that X is isometric to a dual space. Then X admits a smallest local dual Z_d if and only if it admits a smallest norming subspace Z_n . In this case $Z_d = Z_n$, and this space is the unique isometric predual of X.

Proof. By [5, Lemma I.2], the smallest norming subspace Z_n exists if and only if

$$Z_n^{\perp} = \{ z \in X^{**} : ||z - x|| \ge ||x|| \text{ for every } x \in X \}.$$

In this case $X^{**} = X \oplus Z_n^{\perp}$ and Z_n is the unique predual of X [5, Theorem II.1].

Clearly, the projection P on X^{**} with kernel Z_n^{\perp} and range X satisfies ||P|| = 1 and the remaining conditions in Theorem 2.5. Hence Z_n is a local dual of X, and it is the smallest one, because every local dual is norming.

Conversely, assume that the smallest local dual Z_d exists, and let P be the associated projection. If X_* is a predual of X, then $X^{**} = X \oplus X_*^{\perp} = P(X) \oplus Z_d^{\perp}$. Since $X \subset P(X)$ and $Z_d \subset X_*$ (hence $X_*^{\perp} \subset Z_d^{\perp}$), we conclude that $Z_d = X_*$ and $X_*^{\perp} = Z_d^{\perp}$. In particular,

$$Z_d^{\perp} = \{ z \in X^{**} : ||z - x|| \ge ||x|| \text{ for every } x \in X \};$$

hence Z_d is the smallest norming subspace of X.

REMARK 2.23. (a) In Proposition 2.22, we have seen that a dual space admitting a smallest norming subspace has a unique predual. However, this condition is not sufficient, since $L_{\infty}[0, 1]$ has a unique predual but it does not admit a smallest norming subspace [5, Proposition IV.2].

(b) There are spaces X containing no copies of ℓ_1 so that X^* is f.d.r. in a subspace Z which is not a local dual of X.

Indeed, let Y be a separable space such that Y^{**}/Y is isomorphic to c_0 , and let $Q: Y^{**} \to Y^{**}/Y$ denote the quotient map. We select a subspace M of c_0 such that M^{\perp} is not complemented in ℓ_1 . For example, we can take M so that M^{\perp} is isomorphic to $\ell_1(\ell_2^n)$.

The space $X = Y^*$ contains no copies of ℓ_1 , and X^* is f.d.r. in $Z := Q^{-1}(M)$, because Y is contained in Z. However, Z is not a local dual of X because $Z^{\perp} = M^{\perp}$ is not complemented.

Acknowledgements. We are grateful to the referee for several valuable comments.

References

 P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 49–63.

- D. Chen and B.-L. Li, Ball topology of Banach spaces, Houston J. Math. 22 (1996), 821–833.
- [3] S. Díaz, A local approach to functionals on $L^{\infty}(\mu, X)$, Proc. Amer. Math. Soc. 128 (2000), 101–109.
- [4] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
- G. Godefroy, Existence and uniqueness of isometric preduals: a survey, in: Contemp. Math. 85, Amer. Math. Soc., 1989, 131–193.
- [6] G. Godefroy and N. J. Kalton, The ball topology and its applications, ibid., 195–237.
- [7] —, —, Approximating sequences and bidual projections, Quart. J. Math. Oxford 48 (1997), 179–202.
- [8] G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13–59.
- M. González and A. Martínez-Abejón, Local reflexivity of dual Banach spaces, Pacific J. Math. 56 (1999), 263–278.
- [10] —, —, Local dual spaces of Banach spaces of vector-valued functions, preprint.
- [11] P. Harmand, D. Werner and W. Werner, *M-Ideals in Banach Spaces and Banach Algebras*, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
- [12] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104.
- J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304–311.
- [14] W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488–506.
- [15] N. J. Kalton, Locally complemented subspaces and L_p-spaces for 0 Nachr. 115 (1984), 71–97.
- [16] Å. Lima, The metric approximation property, norm-one projections and intersection properties of balls, Israel J. Math. 84 (1993), 451–475.
- [17] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977.
- [18] S. P. Lloyd, *Two lifting theorems*, Proc. Amer. Math. Soc. 42 (1974), 128–134.
- [19] J. von Neumann and M. H. Stone, The determination of representative elements in the residual classes of a Boolean algebra, Fund. Math. 25 (1935), 353–378.
- [20] B. Sims and D. Yost, Banach spaces with many projections, Proc. Centre Math. Anal. Austral. Nat. Univ. 14 (1986), 335–342.
- [21] F. Sullivan, Geometrical properties determined by the higher duals of a Banach space, Illinois J. Math. 21 (1977), 315–331.

Departamento de Matemáticas	Departamento de Matemáticas
Facultad de Ciencias	Facultad de Ciencias
Universidad de Cantabria	Universidad de Oviedo
E-39071 Santander, Spain	E-33007 Oviedo, Spain
E-mail: gonzalem@ccaix3.unican.es	E-mail: ama@pinon.ccu.uniovi.es

Received September 21, 2000 Revised version March 19, 2001

(4608)