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Dynamics of complex singularities in
1D nonlinear parabolic PDE’s

by

Zoran Grujić (Austin, TX and Charlottesville, VA)

Abstract. We establish local-in-time smoothing of a simple model nonlinear para-
bolic PDE in a scale of weighted Bergman spaces on a strip provided the weights are
not too singular. This constitutes a very strong smoothing property since an immediate
consequence is that the PDE can “push away” an algebraic-type complex singularity
provided that the order of the singularity is small enough.

1. Introduction. Local-in-time analytic smoothing of nonlinear para-
bolic PDE’s with analytic nonlinearities is a well known phenomenon.
Roughly speaking, the same type of initial data that guarantees local-in-time
existence of a regular solution also guarantees local-in-time spatial analyt-
icity. An elegant method of explicitly estimating the uniform analyticity
radius of solutions on periodic domains in terms of the L2-based Sobolev
norms of the initial data, the Gevrey class method, was introduced in [FT]
for the Navier–Stokes equations, and has since had numerous generalizations
and applications (see e.g. [CEES, FeTi]). A related method was presented in
[GK1, GK2], providing analogous results in terms of Lp-norms of the initial
data, and also dealing with the issue of estimating the analyticity radius of
solutions on bounded domains.

We focus on the case of one space dimension where the original spatial do-
main is equal to the whole real line. Consider, for simplicity, a model nonlin-
ear parabolic PDE with a power-type nonlinearity, (∂/∂t)u+ (−∂2/∂z2)mu
= un, posed in L2-type spaces. The aforementioned methods also provide
local-in-time smoothing in a scale of analytic Gevrey spaces, or equivalently,
L2-type Hardy spaces on a complex strip. More precisely, if the inital datum
is in H2(Sτ ), i.e., in a classical Hardy space on a complex strip

Sτ = {z ∈ C : |=z| < τ},
and if n ≤ n∗(m), then there exists T (‖u0‖H2(Sτ ),m, n) > 0 such that
u(t) ∈ H2(Sτ+(1/c)t1/(2m)) for all t ∈ [0, T ].
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It is of great interest to study the dynamics of singularities of a solution
in the complex plane. In particular, finite-time blow-up of a solution at some
time T can be detected by loss of analyticity at T , and one of the possible
scenarios is that the loss of analyticity is caused by complex singularities
migrating to the real axis. A step in the direction of establishing such results
would be to work in a scale of spaces that allow a certain algebraic rate of
blow-up of integral means

Mp(y;u) =
( ∞�

−∞
|u(x+ iy)|p dx

)1/p

as y → τ . (Recall that, in contrast, u ∈ Hp(Sτ ) if limy→τ Mp(y;u) is finite.)
Inital data with such a property are interesting because an algebraic-type
singularity at =z = τ would generally correspond to an algebraic rate of
blow-up, Mp(y;u) ∼ 1/(τ − y)α for some α > 0. The goal of this paper is
to indicate that weighted Bergman spaces on a strip Bp

α(Sτ ) may provide a
suitable basis for carrying out a program using these ideas.

In Section 2, we define the spaces and prove some inequalities including
L∞-interpolation that will be used to handle a nonlinear term in our simple
model PDE. In Section 3 we prove the main result—local-in-time smoothing
in a scale of weighted Bergman spaces on a strip.

2. Weighted Bergman spaces on a strip. For Ω ⊆ C, denote by
A(Ω) the set of C-valued functions analytic on Ω. Also, let D = {z ∈ C :
|z| < 1} be the open unit disc.

Let f ∈ A(D). The study of integral means

Mp(r; f) =
(

1
2π

2π�

0

|f(reiϕ)|p dϕ
)1/p

as r → 1

(0 < p < ∞) is a classical theory founded by Hardy and Littlewood in the
1930s. A self-contained survey including many historical references can be
found in [D]. Recall that Hardy Hp-spaces consist of functions f ∈ A(D) for
which

lim
r→1

Mp(r; f) <∞,

and Bergman Bp-spaces are those functions f ∈ A(D) for which

1�

0

Mp
p (r; f) dr <∞.

Weighted Bergman spaces Bp
α, 0 < p < ∞, α > −1 are spaces of functions

f ∈ A(D) for which
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1�

0

(1− r)αMp
p (r; f) dr <∞.

For 1 ≤ p <∞, the Bp
α are Banach spaces with norms

(1) ‖f‖Bpα =
( 1�

0

(1− r)αMp
p (r; f) dr

)1/p
.

For some properties of Bp
α see [NOW].

The theory in D has an analog on a complex strip Sτ , where the integral
means

Mp(y;u) =
( ∞�

−∞
|u(x+ iy)|p dx

)1/p

are studied as y → τ .
Henceforth, assume u(R) ⊆ R so that we can confine our considerations

to the half-plane {z ∈ C : =z ≥ 0}.
Let 1 ≤ p < ∞, α > −1. Then the analogs of the Bp

α are the Banach
spaces

Bp
α(Sτ ) =

{
u ∈ A(Sτ ) : u(R) ⊆ R,

‖u‖Bpα(Sτ ) =
( τ�

0

(τ − y)αMp
p (y;u) dy

)1/p
<∞

}
.

The goal of this section is to state and prove two basic inequalities that
will enable us to obtain energy-type estimates in B2

α(Sτ ). The first one shows
how to trade weights for derivatives.

Proposition 1. Let u ∈ A(Sτ ) for some τ > 0, u(R) ⊆ R, and α > −1.
Then

τ�

0

(τ − y)α
∞�

−∞
|u(x+ iy)|2 dx dy

≤ 2τα+1

α+ 1

∞�

−∞
|u(x+ i0)|2 dx

+
4

(α+ 1)2

τ�

0

(τ − y)α+2
∞�

−∞
|u′(x+ iy)|2 dx dy.

Proof. Assume first that u is analytic on the closed strip. Integrating by
parts gives
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(2)
τ�

0

(τ − y)α
∞�

−∞
|u(x+ iy)|2 dx dy

=
τα+1

α+ 1

∞�

−∞
|u(x+ i0)|2 dx

− 1
α+ 1

τ�

0

(τ − y)α+1 ∂

∂y

∞�

−∞
|u(x+ iy)|2 dx dy.

Since
∣∣∣∣
∂

∂y

∞�

−∞
|u(x+ iy)|2 dx

∣∣∣∣ ≤ 2
∞�

−∞
|u(x+ iy)| · |u′(x+ iy)| dx,

the last term in (2) can be estimated by

(3)
2

α+ 1

τ�

0

(τ − y)α+1
( ∞�

−∞
|u(x+ iy)|2 dx

)1/2

×
( ∞�

−∞
|u′(x+ iy)|2 dx

)1/2
dy

≤ 2
α+ 1

( τ�

0

(τ − y)α
∞�

−∞
|u(x+ iy)|2 dx dy

)1/2

×
( τ�

0

(τ − y)α+2
∞�

−∞
|u′(x+ iy)|2 dx dy

)1/2

≤ 1
2

τ�

0

(τ − y)α
∞�

−∞
|u(x+ iy)|2 dx dy

+
2

(α+ 1)2

τ�

0

(τ − y)α+2
∞�

−∞
|u′(x+ iy)|2 dx dy.

Inserting (3) in (2) yields the desired inequality.
If u is analytic only on an open strip, then we can apply the above

argument to {z ∈ C : |=z| < τ − ε}, and then pass to the limit utilizing the
Lebesgue Monotone Convergence Theorem.

Remark 1. The proof is an analog of the proof of the corresponding
result for D (see Theorem 5.6 of [D]). The only difference is that integration
by parts in radial direction is replaced by integration in y-direction, and
hence |f(0)| is replaced by the integral of |u| along the real axis.
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Proposition 2. Let u ∈ A(Sτ ) for some τ > 0, u(R) ⊆ R, and α > 0.
Then

|u(x+ iy)| ≤ c

(τ − y)1/2

( ∞�

−∞
|u(x+ i0)|2 dx

)1/2

+
cα

(τ − y)(α+1)/2

( τ�

0

(τ − y)α
∞�

−∞
|u(x+ iy)|2 dx dy

)1/4

×
( τ�

0

(τ − y)α
∞�

−∞
|u′(x+ iy)|2 dx dy

)1/4

for all x ∈ R and 0 < y < τ .

We will split the proof of Proposition 2 in three lemmas.

Lemma 1. Let u ∈ A(Sτ ) for some τ > 0, u(R) ⊆ R, and α > −1. Then
∞�

−∞
|u(x+ iy)| dx ≤ 2α+1

(τ − y)α+1

τ�

0

(τ − s)α
∞�

−∞
|u(x+ is)| dx ds

for all 0 < y < τ .

Proof. Let 0 < y < τ , and consider a closed interval [y, (y+ τ)/2]. Then

τ�

0

(τ − s)α
∞�

−∞
|u(x+ is)| dx ds ≥

(y+τ)/2�

y

(τ − s)α
∞�

−∞
|u(x+ is)| dx ds(4)

=
τ − y

2
(τ − η)α

∞�

−∞
|u(x+ iη)| dx

for some η ∈ [y, (y + τ)/2] by the Mean Value Theorem. Since τ − η ≥
(τ − y)/2, the last line in (4) is bounded below by

(5)
(τ − y)α+1

2α+1

∞�

−∞
|u(x+ iη)| dx,

and since the integral means are monotone in s,

(6)
∞�

−∞
|u(x+ iη)| dx ≥

∞�

−∞
|u(x+ iy)| dx

concluding the proof.

Lemma 2. Let u ∈ A(Sτ ) for some τ > 0, u(R) ⊆ R, and α > 0. Then
∞�

−∞
|u(x+ iy)| dx ≤

∞�

−∞
|u(x+ i0)| dx

+
2α+1

α
· 1

(τ − y)α

τ�

0

(τ − s)α
∞�

−∞
|u′(x+ is)| dx ds

for all 0 < y < τ .
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Proof. Let 0 < y < τ . Then

(7) |u(x+ iy)| ≤ |u(x+ i0)|+
y�

0

|u′(x+ is)| ds.

Integrating (7) in x gives
∞�

−∞
|u(x+ iy)| dx ≤

∞�

−∞
|u(x+ i0)| dx+

∞�

−∞

y�

0

|u′(x+ is)| ds dx.

Utilizing the Fubini Theorem, and integrating the inequality in Lemma 1
applied to u′, we obtain the estimate.

Lemma 3. Let u ∈ A(Sτ ) for some τ > 0, u(R) ⊆ R, and α > 0. Then

|u(x+ iy)| ≤ 2
π
· 1
τ − y

∞�

−∞
|u(x+ i0)| dx

+
22(α+1)

πα
· 1

(τ − y)α+1

τ�

0

(τ − s)α
∞�

−∞
|u′(x+ is)| dx ds

for all x ∈ R and 0 < y < τ .

Proof. Let x ∈ R, 0 < y < τ . Then, by the Cauchy formula,

|u(x+ iy)| ≤ 1
2π

�

=ζ=y+(τ−y)/2

|u(ζ)|
|ζ − (x+ iy)| |dζ|(8)

+
1

2π

�

=ζ=y−(τ−y)/2

|u(ζ)|
|ζ − (x+ iy)| |dζ|.

Since |ζ − (x+ iy)| ≥ (τ − y)/2, the right-hand side of (8) is bounded by

1
π

1
τ − y

∞�

−∞
|u(x+ i(y + (τ − y)/2)| dx

+
1
π

1
τ − y

∞�

−∞
|u(x+ i(y − (τ − y)/2)| dx,

which is by the monotonicity of integral means (and conjugate symmetry if
y < τ/3) bounded by

(9)
2
π
· 1
τ − y

∞�

−∞
|u(x+ i(y + (τ − y)/2)| dx.

Estimating the integral in (9) by Lemma 2 finishes the proof.

Proof of Proposition 2. Apply Lemma 3 to u2, estimate the area integral
by the Cauchy–Schwarz inequality, and take the square root.

Remark 2. Proposition 2 is an Agmon-type interpolation inequality in
a B2

α-setting.
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3. A nonlinear parabolic PDE in a scale of weighted Bergman
spaces. For simplicity of exposition we consider L2-type spaces B2

α(Sτ ).
(The interpolation inequalities in Propositions 1 and 2 are in B2

α(Sτ )-setting;
however, the corresponding inequalities in the general Bp

α(Sτ )-setting can be
obtained using similar techniques.)

Also, since our primary goal is to show that one can derive energy-type
inequalities in the setting of weighted Bergman spaces, we will not always
strive to obtain an optimal estimate.

Consider a very simple model nonlinear parabolic PDE with a quadratic
nonlinearity (n = m = 2),

(10) ut + uzzzz = u2

in a scale of weighted Bergman spaces B2
α(Sτ ), τ ≥ τ0 > 0, where u0 =

u(0) ∈ B2
α(Sτ0). (It is expected that higher (relative to the positive linear

part) nonlinearities can be treated by working inBp
α(Sτ ), for p large enough.)

Notice that applying Lemma 1 to u2
0, and letting y → 0, we obtain

(11) ‖u0‖L2(R) ≤ cτ0,α‖u0‖B2
α(Sτ0) <∞.

Consequently, using standard techniques, one can show that there exists
T ∗(‖u0‖B2

α(Sτ0), τ0, α) > 0 such that

(12) ‖u(t)‖L2(R) ≤ cτ0,α‖u0‖B2
α(Sτ0)

for all t ∈ [0, T ∗]. The inequality (12) provides the control of the trace of a
complexified solution on the real axis that is needed in the inequalities in
Section 2.

We are now ready to state our main result.

Theorem 1. Let u0 ∈ B2
α(Sτ0) for some τ0 > 0, α ≤ 3. Then there

exists T (‖u0‖B2
α(Sτ0), τ0, α) > 0 such that u(t) ∈ B2

α(Sτ0+t) for all t ∈ [0, T ].

Remark 3. Considering the expansion of the analyticity radius γ(t) =
τ0 + δt, and then optimizing in δ, one finds that u(t) ∈ B2

α(Sτ0+(1/c)t1/4),
which is favorable for small t, and also obeys the correct space-time scaling.

Proof of Theorem 1. For t ≥ 0, consider

(13) ϕ(t) =
τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy.

Notice that ϕ(0) = ‖u0‖2B2
α(Sτ0) <∞. Also,

d

dt
ϕ(t) = α

τ0+t�

0

((τ0 + t)− y)α−1
∞�

−∞
|u(x+ iy, t)|2 dx dy(14)

+
τ0+t�

0

((τ0 + t)− y)α
∂

∂t

∞�

−∞
|u(x+ iy, t)|2 dx dy.
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To obtain a differential inequality for ϕ, we multiply (10) by u, take the
real part, integrate in x, multiply by ((τ0 + t)− y)α, and integrate in y.
Integration by parts (in x) yields

(15)
1
2

τ0+t�

0

((τ0 + t)− y)α
∂

∂t

∞�

−∞
|u(x+ iy, t)|2 dx dy

+
τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′′(x+ iy, t)|2 dx dy

≤
τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|3 dx dy

(u′ = ux = uz). Utilizing (14) gives

(16)
d

dt

τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

+ 2
τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′′(x+ iy, t)|2 dx dy

≤ 2α
τ0+t�

0

((τ0 + t)− y)α−1
∞�

−∞
|u(x+ iy, t)|2 dx dy

+ 2
τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|3 dx dy

= I1 + I2.

For the linear term I1, we need to consider two (possible) cases, (τ0 + t)− y
≥ 1 and (τ0 + t)−y < 1. In the first case, ((τ0 + t)−y)α−1 ≤ ((τ0 + t)− y)α,
and we can simply write

(17) I1 ≤ 2α
τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy.

In the second case, ((τ0 +t)−y)α−1 > ((τ0 +t)−y)α, and we will have to use
Proposition 1 (notice that the assumptions in the theorem imply α−1 > −1,
and the proposition is applicable).

We restrict our considerations to [0, T ∗], where T ∗ is as in (12), so that
the L2-norm of the trace of a complexified solution on the real axis is uni-
formly bounded. Also, the constants depending on the initial parameters
τ0, α, and ‖u0‖B2

α(Sτ0) will be denoted by a generic K.
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Adopting the above, Proposition 1 and scaling down the exponent imply

I1 ≤ K +K

τ0+t�

0

((τ0 + t)− y)α+1
∞�

−∞
|u′(x+ iy, t)|2 dx dy(18)

≤ K +K

τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′(x+ iy, t)|2 dx dy.

By standard interpolation,

(19)
∞�

−∞
|u′(x+ iy, t)|2 dx

≤
( ∞�

−∞
|u(x+ iy, t)|2 dx

)1/2( ∞�

−∞
|u′′(x+ iy, t)|2 dx

)1/2
,

which in turn implies (by the Cauchy–Schwarz inequality in the variable y)

(20)
τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′(x+ iy, t)|2 dx dy

≤
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)1/2

×
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′′(x+ iy, t)|2 dx dy

)1/2
.

Inserting (20) in (18) and polarizing yields

I1 ≤ K +K

τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy(21)

+
1
2

τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′′(x+ iy, t)|2 dx dy.

Notice that we can incorporate (17) in (21), and hence (21) is our final
bound on I1.

We now turn our attention to the nonlinear term I2. The x-integral in
I2 is estimated as

(22)
∞�

−∞
|u(x+ iy, t)|3 dx ≤ ‖u‖L∞(Sτ0+t)

∞�

−∞
|u(x+ iy, t)|2 dx

where ‖u‖L∞(Sτ0+t) can be bounded utilizing Proposition 2. That leads to
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I2 ≤ K
τ0+t�

0

((τ0 + t)− y)α−1/2
∞�

−∞
|u(x+ iy, t)|2 dx dy(23)

+K
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)1/4

×
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′(x+ iy, t)|2 dx dy

)1/4

×
τ0+t�

0

((τ0 + t)− y)(α−1)/2
∞�

−∞
|u(x+ iy, t)|2 dx dy.

As for the linear term, we need to consider two cases, (τ0 + t)− y ≥ 1 and
(τ0 + t)− y < 1. In the first case

I2 ≤ K
τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy(24)

+K
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)5/4

×
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′(x+ iy, t)|2 dx dy

)1/4
.

In the second case, we apply Proposition 1 to both terms (both exponents
satisfy the assumptions in the proposition), and then scale down the expo-
nents obtaining

I2 ≤ K +K

τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′(x+ iy, t)|2 dx dy(25)

+K
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)1/4

×
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′(x+ iy, t)|2 dx dy

)1/4

+K
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)1/4

×
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′(x+ iy, t)|2 dx dy

)5/4
.

Notice that to be able to scale down the exponent in the last term, we
need (α+ 3)/2 ≥ α, which is the source of our restrictive assumption on α.
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Collecting (24) and (25) gives

I2 ≤ K +K

τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy(26)

+K

τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′(x+ iy, t)|2 dx dy

+K
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)1/4

×
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′(x+ iy, t)|2 dx dy

)1/4

+K
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)5/4

×
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′(x+ iy, t)|2 dx dy

)1/4

+K
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)1/4

×
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′(x+ iy, t)|2 dx dy

)5/4
.

Utilizing (20), and polarizing, we obtain our final bound on I2:

I2 ≤ K +K

τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy(27)

+K
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)3/7

+K
( τ0+t�

0

((τ0 + t)− y
)α ∞�

−∞
|u(x+ iy, t)|2 dx dy

)11/7

+K
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)7/3

+
τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u′′(x+ iy, t)|2 dx dy.
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Inserting (21) and (27) in the differential inequality (16) yields

(28)
d

dt

τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

≤ K +K

τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

+K
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)3/7

+K
( τ0+t�

0

((τ0 + t)− y
)α ∞�

−∞
|u(x+ iy, t)|2 dx dy

)11/7

+K
( τ0+t�

0

((τ0 + t)− y)α
∞�

−∞
|u(x+ iy, t)|2 dx dy

)7/3

or, equivalently,

(29)
d

dt
ϕ ≤ K +Kϕ3/7 +Kϕ+Kϕ11/7 +Kϕ7/3.

Solving the differential inequality (29) finishes the proof.

Remark 4. The estimates in the proof are formal a priori estimates that
can be made rigorous by considering a sequence of linear approximations
[GK1, GK2].

Remark 5. An immediate consequence of Theorem 1 is that (10) can
“push away” an algebraic-type singularity, provided the order of the singu-
larity is small enough (α ≤ 3). This constitutes a very strong smoothing
property, and a restriction on α is expected. So, loss of analyticity (and
hence, a finite-time blow-up) can be caused only by “strong enough” com-
plex singularities that a priori cannot be repelled.

Remark 6. It should be noted that, in general, the migration of complex
singularities to the real axis is not the only scenario through which the loss
of analyticity may occur. Some “more discontinuous” scenarios are possible,
as well as uniform-in-space growth of a solution.
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