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Unicellularity of the multiplication
operator on Banach spaces of formal power series

by

B. Yousefi (Shiraz)

Abstract. Let {β(n)}∞n=0 be a sequence of positive numbers and 1 ≤ p <∞. We con-
sider the space `p(β) of all power series f(z)=

∑∞
n=0 f̂(n)zn such that

∑∞
n=0 |f̂(n)|p|β(n)|p

< ∞. We give some sufficient conditions for the multiplication operator, Mz , to be uni-
cellular on the Banach space `p(β). This generalizes the main results obtained by Lu
Fang [1].

Introduction. First, we generalize some definitions from [4].
Let {β(n)} be a sequence of nonzero complex numbers with β(0) = 1

and 1 ≤ p < ∞. We consider the space of sequences f = {f̂(n)}∞n=0 such
that

‖f‖p = ‖f‖pβ =
∞∑

n=0

|f̂(n)|p|β(n)|p <∞.

The notation f(z) =
∑∞
n=0 f̂(n)zn will be used whether or not the series

converges for any value of z. These are called formal power series. Let `p(β)
denote the space of such formal power series.

For 1 < p < ∞, `p(β) ∼= Lp(µ) where µ is the σ-finite measure defined
on the positive integers by µ(K) =

∑
n∈K β(n)p, K ⊆ N ∪ {0}. So `p(β)

is a reflexive Banach space ([3]) and (`p(β))∗ = `q(βp/q) where βp/q =
{β(n)p/q}n ([6]).

Let f̂k(n) = δnk. So fk(z) = zk and then {fk}k is a basis such that
‖fk‖ = |β(k)|. Now consider Mz, the operator of multiplication by z on
`p(β):

(Mzf)(z) =
∞∑

n=0

f̂(n)zn+1.
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In other words

(Mzf)∧(n) =
{
f̂(n− 1), n ≥ 1,
0, n = 0.

Clearly Mz shifts the basis {fk}k. The operator Mz is bounded if and
only if {β(k + 1)/β(k)}k is bounded and in this case

‖Mn
z ‖ = sup

k

∣∣∣∣
β(n+ k)
β(k)

∣∣∣∣, n = 0, 1, 2, . . .

Consider the multiplication of formal power series, fg = h, given by
( ∞∑

n=0

f̂(n)zn
)
·
( ∞∑

n=0

ĝ(n)zn
)

=
∞∑

n=0

ĥ(n)zn

where

ĥ(n) =
n∑

k=0

f̂(k)ĝ(n− k), n = 0, 1, 2, . . .

If 1/p+ 1/q = 1 and

sup
n

n∑

i=1

∣∣∣∣
β(n)

β(i)β(n− i)

∣∣∣∣
q

<∞

then clearly by the Hölder inequality one can see that `p(β) is a Banach
algebra ([2]).

If f ∈ `p(β) and P (z) is a polynomial, then to the vector P (Mz)f there
corresponds the formal power series P (z)f(z).

Let X be a Banach space. We denote by B(X) the set of bounded linear
operators on X. Let A ∈ B(X) and x ∈ X. We say that x is a cyclic vector
of A if

X = span{Anx : n = 0, 1, 2, . . .}.
Here span{·} is the closed linear span of the set {·}. A polynomial p(z) =
(z− λ1) . . . (z− λk) is a cyclic vector of Mz in `p(β) iff {λni /β(n)}n 6∈ `q for
i = 1, . . . , k, where 1/p+ 1/q = 1 ([6]).

Also an operator A in B(X) is called unicellular on X if the set of its
invariant subspaces, Lat(A), is linearly ordered by inclusion.

In the main theorem of this paper we give some sufficient conditions
for the multiplication operator, Mz, on `p(β) to be unicellular and then
we obtain the main results of [1]. Throughout this paper we assume that
Mz ∈ B(`p(β)).

Unicellularity of Mz. The following theorem is the main result of this
paper.

Theorem. Let 1 ≤ p < ∞. The operator Mz is unicellular on `p(β) if
β(n) is of the form β(n) = α(n)γ(n) where {α(n)} and {γ(n)} satisfy :
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(i) There exists a positive number M such that

sup
{∣∣∣∣
γ(n+ i)
γ(n)γ(i)

∣∣∣∣ : i, n = 0, 1, 2, . . .
}
≤M.

(ii) There exists a positive integer m0 such that

Lm0 = sup
{∣∣∣∣
α(n+ i)α(m0)
α(n+m0)α(i)

∣∣∣∣ : n > 0, i ≥ m0

}
<∞

and {
α(n+m0)
α(n)

}

n

∈ `q,

where 1/p+ 1/q = 1.

Proof. Let {fm}m be the basis for `p(β) as defined in the introduction.
Put `p∞(β) = {0}, `p0(β) = `p(β) and

`pn(β) =
{ ∑

m≥n
cmfm ∈ `p(β)

}
(n ≥ 1).

In order to show that Mz is unicellular it suffices to show that the lattice
of invariant subspaces of Mz , Lat(Mz), is a subset of {`pn(β) : 0 ≤ n ≤ ∞}.
So let K be a nontrivial element of Lat(Mz). Then there exists a positive
integer n such that K ⊆ `pn(β) and K 6⊆ `pn+1(β). Thus we may choose
f =

∑∞
m=n xmfm in K (xm = f̂(m)) with xn 6= 0. Note that {fn+k}∞k=0 is a

basis for `pn(β). We claim that f is a cyclic vector for Mz|`pn(β). If so, then
since MzK ⊂ K, we have M i

zf ∈ K for i ∈ N. Also since

`pn(β) = span{(M i
z|`pn(β))f : i = 0, 1, 2, . . .},

we have `pn(β) ⊆ K and so `pn(β) = K. Now to prove our claim it is sufficient
to show that if

f =
∞∑

m=0

f̂(m)fm ∈ `p(β)

is such that f̂(0) 6= 0, then f is a cyclic vector for Mz. Without loss of
generality, assume that f̂(0) = 1. Note that Mzfk = fk+1. For the formal
power series

f(z) =
∞∑

m=0

f̂(m)zm,

we choose the formal power series

g(z) =
∞∑

m=0

ĝ(m)zm
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such that g(z)f(z) = 1. Indeed ĝ(0) = 1 and for k ≥ 1,

ĝ(k) =
k∑

i=1

∑

m1+...+mi=k
mj≥1

(−1)if̂(m1) . . . f̂(mi)

(see [5]). In order to show that f is a cyclic vector of Mz, we show that

(1) span
{ m0∑

k=0

ĝ(k)Mk+n
z f : n = 0, 1, 2, . . .

}
= `p(β)

(m0 is the positive integer in condition (ii) of the theorem). Put

ym0,n =
m0∑

k=0

ĝ(k)Mk+n
z f, n = 0, 1, 2, . . .

If there exists a positive integer n0 such that

(2) span{ym0,n : n ≥ n0} = `pn0
(β)

then clearly one can see that

span{ym0,n : n ≥ n0 − 1} = `pn0−1(β).

By continuing this process, we conclude that (1) holds. Now since g(z)f(z)
= 1, we have

( m0∑

k=0

ĝ(k)zk +
∑

k>m0

ĝ(k)zk
)
f(z) = 1

and so
m0∑

k=0

(ĝ(k)Mk
z )f(Mz)f0 +

∑

k>m0

(ĝ(k)Mk
z )f(Mz)f0 = f0.

Now since for each n ≥ 0, Mn
z f0 = fn, by taking the image under Mn

z of
both sides of the above equation, we have

m0∑

k=0

(ĝ(k)Mk+n
z )f(Mz)f0 − fn = −

∑

k>m0

(ĝ(k)Mk+n
z )f(Mz)f0.

Note that f(Mz)f0 = f and f =
∑∞
m=0 f̂(m)fm. So

ym0,n − fn =
∑

k>m0

∞∑

m=0

ĝ(k)f̂(m)Mk+n
z fm.

Therefore
ym0,n − fn ∈ `pm0+n+1(β).
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Now we show that there exists a positive integer n0 such that (2) holds.
For i ≥ 1, define the projections Pi : `p(β)→ `pi (β) by

Pi

( ∞∑

n=0

f̂(n)zn
)

=
∞∑

n=i

f̂(n)zn.

Note that ‖Mn
z |`pi (β)‖=supm |β(i+ n+m)/β(i+m)| and for i ≥ k, PiMk

z f

= Mk
z Pi−kf for all f ∈ `p(β) ([5]). Thus

1
|β(n)|‖ym0,n − fn‖p =

1
|β(n)|‖Pm0+n+1(ym0,n − fn)‖p

=
1

|β(n)|‖Pm0+n+1(ym0,n)‖p

≤ 1
|β(n)|

m0∑

k=0

|ĝ(k)| · ‖Pm0+n+1M
k+n
z f‖p

=
1

|β(n)|

m0∑

k=0

|ĝ(k)| · ‖Mk+n
z Pm0−k+1f‖p

≤ ‖f‖p|β(n)|

m0∑

k=0

|ĝ(k)| · ‖Mk+n
z |`pm0−k+1(β)‖

= ‖f‖p
m0∑

k=0

|ĝ(k)| sup
i

∣∣∣∣
β(m0 + n+ i+ 1)

β(n)β(m0 + i+ 1− k)

∣∣∣∣.

Since β(n) = α(n)γ(n), we have

sup
i

∣∣∣∣
β(m0 + n+ i+ 1)

β(n)β(m0 + i+ 1− k)

∣∣∣∣

= sup
i

∣∣∣∣
α(m0 + n+ i+ 1)

α(n)α(m0 + i+ 1− k)

∣∣∣∣
∣∣∣∣

γ(m0 + n+ i+ 1)
γ(n)γ(m0 + i+ 1− k)

∣∣∣∣.

But by condition (ii) of the theorem,

sup
i

∣∣∣∣
α(m0 + n+ i+ 1)

α(n)α(m0 + i+ 1− k)

∣∣∣∣

= sup
i

∣∣∣∣
α(m0 + n+ i+ 1)α(m0)
α(m0 + n)α(m0 + i+ 1)

∣∣∣∣
∣∣∣∣

α(m0 + i+ 1)α(m0 + n)
α(n)α(m0)α(m0 + i+ 1− k)

∣∣∣∣

≤ Lm0

∣∣∣∣
α(m0 + n)
α(n)α(m0)

∣∣∣∣ sup
i

∣∣∣∣
α(m0 + i+ 1)

α(m0 + i+ 1− k)

∣∣∣∣,

and by (i),
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sup
i

∣∣∣∣
γ(m0 + n+ i+ 1)

γ(n)γ(m0 + i+ 1− k)

∣∣∣∣

= sup
i

∣∣∣∣
γ(m0 + n+ i+ 1)
γ(n)γ(m0 + i+ 1)

∣∣∣∣
∣∣∣∣

γ(m0 + i+ 1)
γ(m0 + i+ 1− k)

∣∣∣∣

≤M sup
i

∣∣∣∣
γ(m0 + i+ 1)

γ(m0 + i+ 1− k)

∣∣∣∣.

So

sup
i

∣∣∣∣
β(m0 + n+ i+ 1)

β(n)β(m0 + i+ 1− k)

∣∣∣∣

≤MLm0

∣∣∣∣
α(m0 + n)
α(n)α(m0)

∣∣∣∣ sup
i

∣∣∣∣
β(m0 + i+ 1)

β(m0 + i+ 1− k)

∣∣∣∣

and therefore
1

|β(n)|‖ym0,n − fn‖p

≤MLm0

∣∣∣∣
α(m0 + n)
α(n)α(m0)

∣∣∣∣‖f‖p
m0∑

k=0

|ĝ(k)| sup
i

∣∣∣∣
β(m0 + i+ 1)

β(m0 + i+ 1− k)

∣∣∣∣.

Since

‖Mk
z |`pm0+1−k(β)‖ = sup

i

∣∣∣∣
β(m0 + 1 + i)

β(m0 + 1− k + i)

∣∣∣∣ <∞

for k = 0, 1, 2, . . . ,m0, there exists a positive number M ′ such that
m0∑

k=0

|ĝ(k)| sup
i

∣∣∣∣
β(m0 + 1 + i)

β(m0 + 1− k + i)

∣∣∣∣ ≤M ′.

So we have
1

|β(n)|‖ym0,n − fn‖p ≤ cn

where

cn = MM ′‖f‖p
Lm0

|α(m0)|

∣∣∣∣
α(m0 + n)
α(n)

∣∣∣∣, n = 1, 2, . . .

Since {cn} ∈ `q, there exists a positive integer n0 > m0 such that

λ =
∑

n>n0

cqn < 1.

Therefore for any finite linear combinations

φ =
∑

dkym0,n0+k/β(n0 + k), ψ =
∑

dkfn0+k/β(n0 + k),
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by the Hölder inequality we have

‖φ− ψ‖p ≤
∑

k

|dk| · ‖ym0,n0+k − fn0+k‖p/|β(n0 + k)|

≤
(∑

k

|dk|p
)1/p( ∞∑

n=n0

‖ym0,n − fn‖qp|β(n)|−q
)1/q

= ‖ψ‖p
( ∑

n≥n0

cqn

)1/q
.

Thus
‖φ− ψ‖p ≤ λ1/q‖ψ‖p.

Since 0 ≤ λ1/q < 1, {ym0,n}∞n=n0
is in `pn0

(β) and {fn}n≥n0 is a basis for
`pn0

(β), it follows immediately from Lemma 2.1 of [1] (which is true for
Banach spaces) that {ym0,n}n≥n0 is a complete set, i.e., spanning `pn0

(β). So
(2) holds and this completes the proof.

From the proof of the theorem, we obtain the following corollary.

Corollary. Under the hypothesis of the theorem, if x =
∑∞
m=0 xmfm

belongs to `p(β) and x0 6= 0, then x is a cyclic vector of Mz.

Now as a consequence of the above theorem, in the following example we
prove the main result of [1] which gives sufficient conditions for a Lambert
weighted shift operator to be unicellular.

Example. Let H be a separable Hilbert space with orthonormal basis
{en}∞n=0. A unilateral weighted shift operator S in B(H) (Sen = wnen+1)
is called a Lambert weighted shift operator if the weights {wn} are given by

wn = an
‖An+1f‖
‖Anf‖ , n = 0, 1, 2, . . . ,

where A is a given injective operator in B(H), f is a nonzero vector in
H and {an}∞n=0 is a bounded sequence of positive numbers. S is unitarily
equivalent to the multiplication operator Mz on the space `2(β) where the
sequence β = {β(n)}∞n=0 satisfies β(0) = 1 and

β(n) = w0w1 . . . wn−1 (n ≥ 1).

The equivalence of these operators is realized by means of the isomorphism
U of `2(β) onto H defined by the formula (Uf)n = f̂(n)β(n) ([4]). Now for
each nonnegative integer n put

α(n) = a0 . . . an−1, γ(n) = ‖Anf‖/‖f‖.
If {α(n)} and {γ(n)} satisfy the hypothesis of the theorem, then the Lambert
weighted shift operator is unicellular.
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Proposition. Suppose

∑

i,n

∣∣∣∣
β(i+ n)
β(i)β(n)

∣∣∣∣
q

<∞ where 1/p+ 1/q = 1.

Then Mz is uicellular on `p(β).

Proof. Let `pn(β) be defined as in the proof of the previous theorem. As
in that proof, it is sufficient to show that if f =

∑
n≥0 f̂(n)fn ∈ `p(β) is such

that f̂(0) 6= 0, then f is a cyclic vector for Mz. Without loss of generality,
assume that f̂(0) = 1. Put yn = Mn

z f for n = 0, 1, 2, . . . As before we can
see that if

(1) ∃n0 ∈ N, span{yn : n ≥ n0} = `pn0
(β)

then
span{yn : n ≥ n0 − 1} = `pn0−1(β).

By continuing this process we can conclude that f is a cyclic vector. Note
that

yn = fn +
∑

i≥1

f̂(i)fi+n, n ≥ 0.

Now we have
1

|β(n)|‖yn − fn‖p =
1

β(n)|
∥∥∥
∑

i≥1

f̂(i)fi+n
∥∥∥
p

≤
∑

i≥1

|f̂(i)| · |β(i)|
∣∣∣∣
β(i+ n)
β(i)β(n)

∣∣∣∣

≤
(∑

i≥1

|f̂(i)|p|β(i)|p
)1/p

(∑

i≥1

∣∣∣∣
β(i+ n)
β(i)β(n)

∣∣∣∣
q)1/q

≤ ‖f‖p
(∑

i≥1

∣∣∣∣
β(i+ n)
β(i)β(n)

∣∣∣∣
q)1/q

.

Put

cn = ‖f‖qp
∑

i≥1

∣∣∣∣
β(i+ n)
β(i)β(n)

∣∣∣∣
q

, n = 0, 1, 2, . . .

Thus
∑
n≥0 cn < ∞ and so there exists a positive integer n0 such that

λ =
∑
n≥n0

cn < 1. Therefore for any finite linear combinations

φ =
∑

k

ckyn0+k, χ =
∑

k

ckfn0+k
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we have

‖φ− χ‖p =
∥∥∥
∑

k

ck(yn0+k − fn0+k)
∥∥∥
p

≤ ‖χ‖p
( ∑

n≥n0

‖yn − fn‖qp
|β(n)|q

)1/q

= λ1/q‖χ‖p.

Since {fn0+k}k≥0 is a basis for Kn0 , and 0 ≤ λ1/q < 1, it follows that (1)
holds. This completes the proof.
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[2] N. K. Nikol’skĭı, Selected problems of weighted approximation and spectral analysis,
Trudy Mat. Inst. Steklov. 120 (1974) (in Russian).

[3] K. Seddighi, K. Hedayatiyan and B. Yousefi, Operators acting on certain Banach
spaces of analytic functions, Internat. J. Math. Math. Sci. 18 (1995), 107–110.

[4] A. L. Shields, Weighted shift operators and analytic function theory , in: Math. Sur-
veys 13, Amer. Math. Soc., Providence, 1974, 49–128.

[5] D. V. Yakubovich, Conditions for unicellularity of weighted shift operators, Dokl.
Akad. Nauk SSSR 278 (1984), 821–824 (in Russian).

[6] B. Yousefi, On the space `p(β), Rend. Circ. Mat. Palermo 49 (2000), 115–120.

College of Sciences
Shiraz University
Shiraz 71454, Iran
E-mail: yousefi@math5.susc.ac.ir

Received January 8, 1999
Revised version November 20, 2000 (4241)


