Spectra of the difference, sum and product of idempotents

by
Mohamed Barraa and Mohamed Boumazgour (Marrakech)

Abstract

We give a simple proof of the relation between the spectra of the difference and product of any two idempotents in a Banach algebra. We also give the relation between the spectra of their sum and product.

By an idempotent in a unital Banach algebra \mathcal{A} we mean an element p in \mathcal{A} such that $p^{2}=p$. The problem of determination of the spectrum of the difference and sum of a pair of idempotents in a Banach algebra from their product arose from many sources (see [1] and [3]).

In [3] it is shown that for two self-adjoint idempotents P and Q on a Hilbert space, the spectrum $\sigma(P Q)$ of the product $P Q$ lies in the interval $[0,1]$ and that

$$
\sigma(P Q) \backslash\{0,1\}=\left\{1-\mu^{2}: \mu \in \sigma(P-Q) \backslash\{-1,0,1\}\right\}
$$

In this note, we shall generalize this result to an arbitrary pair of idempotents in a unital Banach algebra \mathcal{A}. The following theorem is our main result.

Theorem 1. Let $p, q \in \mathcal{A}$ be two idempotents. Then

$$
\begin{aligned}
\sigma(p q) \backslash\{0,1\} & =\left\{1-\mu^{2}: \mu \in \sigma(p-q) \backslash\{-1,0,1\}\right\} \\
& =\left\{(1-\mu)^{2}: \mu \in \sigma(p+q) \backslash\{0,1,2\}\right\}
\end{aligned}
$$

For the proof we need two lemmas. The first one is well known [2, p. 66].
Lemma 2. Let $x, y \in \mathcal{A}$. If $x y=0$, then $\sigma(x+y) \backslash\{0\}=\sigma(x) \cup \sigma(y) \backslash\{0\}$.
Proof. Just note that for any non-zero scalar λ, we have $\lambda-(x+y)=$ $\lambda^{-1}(\lambda-x)(\lambda-y)$. Hence the result is checked easily.

Lemma 3. If $p=p^{2}$ and $q=q^{2}$ in \mathcal{A}, then

$$
\sigma((e-p)(e-q)) \backslash\{0,1\}=\sigma(p q) \backslash\{0,1\}
$$

where e denotes the unit element of \mathcal{A}.

[^0]Proof. First we apply Lemma 2 for $x=p$ and $y=(e-p)(e-q)$. Since $x y=0$, we have

$$
\begin{equation*}
\sigma(p+(e-p)(e-q)) \backslash\{0\}=\sigma(p) \cup \sigma((e-p)(e-q)) \backslash\{0\} . \tag{1}
\end{equation*}
$$

From (1) and the fact that $\sigma(p) \subseteq\{0,1\}$, we deduce that

$$
\begin{equation*}
\sigma(p+(e-p)(e-q)) \backslash\{0,1\}=\sigma((e-p)(e-q)) \backslash\{0,1\} . \tag{2}
\end{equation*}
$$

Since $p+(e-p)(e-q)=e-q+p q$, we have

$$
\begin{equation*}
\sigma(p+(e-p)(e-q))=\sigma(e-q+p q) . \tag{3}
\end{equation*}
$$

Applying Lemma 2 for $x=p q$ and $y=e-q$, we obtain

$$
\begin{equation*}
\sigma(e-q+p q) \backslash\{0\}=\sigma(e-q) \cup \sigma(p q) \backslash\{0\} ; \tag{4}
\end{equation*}
$$

but $\sigma(e-q) \subseteq\{0,1\}$, so that

$$
\begin{equation*}
\sigma(e-q+p q) \backslash\{0,1\}=\sigma(p q) \backslash\{0,1\} . \tag{5}
\end{equation*}
$$

From (1), (3) and (5), we conclude that

$$
\sigma((e-p)(e-q)) \backslash\{0,1\}=\sigma(p q) \backslash\{0,1\},
$$

which completes the proof.
Proof of the theorem. Write

$$
\begin{equation*}
(e-(p+q))^{2}=(e-p)(e-q)+q p=e-(p-q)^{2} . \tag{6}
\end{equation*}
$$

Using Lemma 2 for $x=(e-p)(e-q)$ and $y=q p$, we get

$$
\sigma\left((e-(p+q))^{2}\right) \backslash\{0\}=\sigma((e-p)(e-q)) \cup \sigma(q p) \backslash\{0\} .
$$

From Lemma 3, (6) and Jacobson's theorem (see for instance [2, p. 33]), it follows that

$$
\sigma\left((e-(p+q))^{2}\right) \backslash\{0,1\}=\sigma\left(e-(p-q)^{2}\right) \backslash\{0,1\}=\sigma(p q) \backslash\{0,1\} .
$$

Now the result follows by applying the spectral mapping theorem.
An element $a \in \mathcal{A}$ is called quadratic if it satisfies some non-trivial quadratic equation $(a-\alpha e)(a-\beta e)=0$, where $\alpha, \beta \in \mathbb{C}$. We write $a=$ $a(\alpha, \beta)$. If $\alpha \neq \beta$, then it is immediate to verify that $p=(\alpha-\beta)^{-1}(a-\beta)$ is an idempotent.

Corollary 4. Let $\alpha, \beta, \mu, \nu \in \mathbb{C}$ and let $a=a(\alpha, \beta), b=b(\mu, \nu)$ be quadratic elements in \mathcal{A}. If $\alpha \neq \beta$ and $\mu \neq \nu$, then

$$
\begin{align*}
& \sigma((a-\beta)(b-\nu)) \backslash\{0,(\alpha-\beta)(\mu-\nu)\} \tag{7}\\
= & (\alpha-\beta)(\mu-\nu)-\left\{\frac{\lambda^{2}}{(\alpha-\beta)(\mu-\nu)}: \lambda \in \sigma((\mu-\nu) a-(\alpha-\beta) b) \backslash \mathcal{S}_{1}\right\} \\
= & \left\{\frac{((\alpha-\beta)(\mu-\nu)-\lambda)^{2}}{(\alpha-\beta)(\mu-\nu)}: \lambda \in \sigma((\mu-\nu)(a-\beta)(\alpha-\beta)(b-\nu)) \backslash \mathcal{S}_{2}\right\},
\end{align*}
$$

where

$$
\begin{aligned}
& \mathcal{S}_{1}=\{2 \nu \alpha-\alpha \mu-\beta \nu, \nu \alpha-\beta \mu, \alpha \mu+\beta \nu-2 \beta \mu\} \\
& \mathcal{S}_{2}=\{0,(\alpha-\beta)(\mu-\nu), 2(\alpha-\beta)(\mu-\nu)\}
\end{aligned}
$$

Proof. This follows from the fact that

$$
p=\frac{1}{\alpha-\beta}(a-\beta) \quad \text { and } \quad q=\frac{1}{\mu-\nu}(b-\nu)
$$

are idempotents.
In the case where $\alpha=\beta$ and $\mu=\nu$ we obtain two nilpotents of order 2 .
Proposition 5. Let a and b in \mathcal{A} with $a^{2}=b^{2}=0$; then

$$
\begin{aligned}
\sigma(a b) \backslash\{0\} & =\left\{\lambda^{2}: \lambda \in \sigma(a+b) \backslash\{0\}\right\} \\
& =\left\{-\lambda^{2}: \lambda \in \sigma(a-b) \backslash\{0\}\right\}
\end{aligned}
$$

Proof. To see this we use Lemma 2 for $x=a b$ and $y=b a$, and the Jacobson theorem. We get $\sigma(x+y) \backslash\{0\}=\sigma(x) \backslash\{0\}$. On the other hand $(a+b)^{2}=x+y$, hence $\sigma(a b) \backslash\{0\}=\sigma\left((a+b)^{2}\right) \backslash\{0\}$. By a similar argument we infer that $\sigma(a b) \backslash\{0\}=-\sigma\left((a-b)^{2}\right) \backslash\{0\}$.

REMARK. In the case of a nilpotent and an idempotent, the following example shows that there is no quadratic relation similar to (7).

Example. On the Hilbert space \mathbb{C}^{2}, let

$$
P=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad q_{\alpha}=\left(\begin{array}{ll}
\alpha & -\alpha \\
\alpha & -\alpha
\end{array}\right), \quad \alpha \in \mathbb{C} .
$$

References

[1] W. N. Anderson, Jr., E. Harner, and G. E. Trapp, Eigenvalues of the difference and product of idempotents, Linear Multilinear Algebra 17 (1985), 295-299.
[2] B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.
[3] M. Omladic, Spectra of the difference and product of idempotents, Proc. Amer. Math. Soc. 99 (1987), 317-318.

Département de Mathématiques
Faculté des Sciences Semlalia
B.P. 2390 Marrakech, Maroc

E-mail: barraa@hotmail.com boumazgour@hotmail.com

[^0]: 2000 Mathematics Subject Classification: 46C05, 47A10, 47B15.
 The authors are indebted to Professor Vladimir Müller for enlightening discussions.

