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The Bloch space for the minimal ball

by

G. Mengotti (Fribourg)

Abstract. We introduce the Bloch space for the minimal ball and we prove that this
space can be identified with the dual of a certain analytic space which is strongly related
to the Bergman theory on the minimal ball.

1. Introduction and main result. Let B∗ be the domain in Cn, n ≥ 2,
defined by

B∗ := {z ∈ Cn : |z|2 + |z • z| < 1},
where z • w :=

∑n
j=1 zjwj for z and w in Cn. This is the unit ball with

respect to the norm

N∗(z) :=
√
|z|2 + |z • z|, z ∈ Cn.

The norm N := N∗/
√

2 was introduced by Hahn and Pflug [HP], and was
shown to be the smallest norm in Cn that extends the euclidian norm in Rn
under certain restrictions. The automorphism group of B∗ is compact and
its identity component is Aut0

O(B∗) = S1 · SO(n,R), where the S1-action
is diagonal and the SO(n,R)-action is the matrix multiplication (see [K]
or [OY]). The ball B∗ is a nonhomogeneous domain with singular boundary
consisting of all its boundary points z that satisfy z • z = 0. The regular
part of the boundary of B∗ consists of strictly pseudoconvex points. The
Bergman theory on the minimal ball, developed in [MY], showed the im-
portance of this singularity. B∗ was also used to construct counter-examples
to the Lu Qi-Keng conjecture [PY]. This makes the analysis on the min-
imal ball very interesting. Furthermore E. H. Youssfi recently proved [Y]
that the methods used in [MY] can be extended to a more general class of
domains in Cn containing the minimal ball, the unit ball and the complex
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ellipsoids. The study of B∗ seems to be a good way to understand a much
wider case.

Let v be the normalized Lebesgue measure on B∗. For p ≥ 1 let Lp(B∗,
|z•z|(p−2)/2dv) be the Banach space of all functions on B∗ that are Lp-integr-
able with respect to the measure |z • z|(p−2)/2dv(z). We denote by Ap(B∗)
the space of all holomorphic functions on B∗ which are in the space Lp(B∗,
|z • z|(p−2)/2dv). The spaces Ap(B∗) appear naturally in Bergman theory
associated to the minimal ball (see [MY]). It is known that these spaces
furnished with the norm of Lp(B∗, |z • z|(p−2)/2dv) are Banach spaces (see
Lemma 4.1 of [MY]).

In [M] we proved that for p > 1 the dual space of Ap(B∗) can be identified
with Aq(B∗) where 1/p+ 1/q = 1. Here we are interested in the case p = 1.
For the unit ball it is well known that the dual space of the Bergman space of
order 1 is the Bloch space (see for instance [A], [Z2] for the one-dimensional
case and [Ch], [Tim1], [Tim2] for generalizations). There are also various
results for other domains (see for instance [B], [Z1], [Tem] for bounded sy-
metric domains, and [Co], [L], [KM] for strictly pseudoconvex domains). But
these results are not applicable in the case of B∗.

Usually the definition of the Bloch space depends on the gradient growth.
But Timoney showed that we can also characterize it using the radial deriva-
tive (see Theorem 4.10 of [Tim1]). In the case of B∗ we will use the following
definition.

Let B(B∗) be the space of all holomorphic functions f on B∗ such that

‖f‖B(B∗) = |f(0)|+ sup
B∗

|Rf(z)|
|z| |z • z|

1/2(1−N2
∗ (z)) <∞,

where

Rf(z) =
n∑

i=1

zi
∂f

∂zi
(z) for all f ∈ Hol(B∗) and z ∈ B∗.

Rf is called the radial derivative of f . We easily see that ‖ · ‖B(B∗) defines
a norm on B(B∗). We will prove that B(B∗) is a Banach space and that, for
all p ≥ 1, B(B∗) ⊂ Ap(B∗) (see Corollary 4.2).

Our main result is the following

Theorem 1.1. The dual of the space A1(B∗) can be identified with
B(B∗). More precisely , there is a bounded bilinear complex form ΛB∗ on
A1(B∗) × B(B∗) such that every bounded linear functional on A1(B∗) is of
the form

f 7→ ΛB∗(f, g)

for some unique g ∈ B(B∗). Furthermore the norm of the linear functional
on A1(B∗) is equivalent to the norm of g in B(B∗), i.e. there is a positive
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constant τ such that

τ‖g‖B(B∗) ≤ ‖ΛB∗(·, g)‖ ≤ τ−1‖g‖B(B∗)

for all g ∈ B(B∗).

This work was done at the “Institut de Mathématiques de Fribourg
(Switzerland)”. I wish to thank the National Swiss Foundation for sup-
porting me and all the members of the institute for their friendly welcome.
Finally I dedicate this paper to my family.

2. Preliminaries

Notation 2.1. In this paper we denote by Hol(X) the set of all holo-
morphic functions on X where X is a complex manifold.

The domain B∗ is strongly related to the hypersurface M of the unit ball
in Cn+1 defined by

M = {z ∈ Cn+1 \ {0} : z • z = 0, |z| < 1},
where z • w :=

∑n
j=1 zjwj for z and w in Cn+1. Let Pr : Cn+1 → Cn

be defined by Pr(z1, . . . , zn, zn+1) = (z1, . . . , zn) and F = Pr|M. Then
F : M → B∗ \ {0} is a proper holomorphic mapping of degree 2. We de-
note by W the branching locus of F . The image F (W ) is an analytic subset
of B∗ \ {0}. We set V := F (W ) ∪ {0}. The local inverses φ and ψ of F are
given for z ∈ B∗ \ V by

φ(z) = (z, i
√
z • z), ψ(z) = (z,−i

√
z • z).

Set
H = {z ∈ Cn+1 \ {0} : z • z = 0}.

It was proved in [OPY] that there is a unique (up to a multiplicative con-
stant) SO(n + 1,C)-invariant holomorphic form α on H. The restriction of
this form to H ∩ (C \ {0})n+1 is given by

α(z) =
n+1∑

j=1

(−1)j−1

zj
dz1 ∧ . . . ∧ d̂zj ∧ . . . ∧ dzn+1.

Definition 2.2. 1. L1(M) is the space of measurable complex functions
on M such that

‖f‖L1(M) =
�

M
|f(z)|α(z)∧ α(z)

C
<∞ where C := (−1)n(n+1)/2(2i)n.

2. A1(M) is the subspace of all holomorphic functions in L1(M).

All along this note we will use the following important operator.
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Definition 2.3. Let f : B∗ → C be a measurable function. We define
Tf by

(Tf)(z) :=
1

2(n+ 1)2 zn+1(f ◦ F )(z)

for all z = (z1, . . . , zn+1) ∈M.

In [MY] (Lemma 4.1) we proved the following.

Lemma 2.4. The operator T is an isometry from L1(B∗, dv(z)/|z •z|1/2)
into L1(M). More precisely , we have

�

M
|(Tf)(z)| α(z) ∧ α(z)

C
=

�

B∗
|f(w)| · |w • w|−1/2 dv(w).

In addition, the image E1(M) of A1(B∗) under T is a closed proper sub-
space of A1(M) and T is a unitary operator from A1(B∗) onto E1(M). In
particular , A1(B∗) is a Banach space.

Remark 2.5. In fact we have

E1(M) = L1(M) ∩ T (Hol(B∗)).

3. An intermediate result. In order to prove the main theorem on
B∗ we will establish an intermediate result on M. More precisely we will find
the dual space of E1(M) (see Theorem 3.14). For this purpose we must first
introduce some new analytic spaces.

3.1. Other analytic spaces on M

Definition 3.1. Let f be a holomorphic function on M and z ∈M.

1. As usual fz denotes the slice function defined by

fz(τ) = f(τz)

for all τ ∈ C such that 0 < |τ | < 1/|z|.
2. We set

Rf(z) =
∂fz
∂τ

∣∣∣∣
τ=1

.

Rf is called the radial derivative of f .

Lemma 3.2. Let f ∈ Hol(M).

1. f can be uniquely extended to the complex hypersurface M ∪ {0} so
that we can define f(0).

2. We have

f(z) = f(0) +
1�

0

Rf(tz)
t

dt.
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Proof. Let Bn+1 be the unit ball in Cn+1. By the proof of Lemma 3.1
of [MY] there is a function g ∈ Hol(Bn+1) such that g|M = f .

1. Thus limz→0, z∈M f(z) exists and we can define f(0).
2. For all z ∈ Bn+1 we can write g(z) = g(0) + � 1

0
∂gz
∂t (t) dt. But by

Definition 3.1 it is also clear that for all z ∈M,

∂gz
∂t

(t) =
∂fz
∂t

(t) =
Rf(tz)

t
.

Definition 3.3. B(M) is the space of all holomorphic functions such
that

‖f‖B(M) = |f(0)|+ sup
z∈M

|Rf(z)|
|z| (1− |z|2) <∞.

From Lemma 3.2 it follows that ‖f‖B(M) is a norm on B(M).

Lemma 3.4. Let f ∈ B(M).

1. We have
sup
z∈M
|f(z)|(1− |z|2) ≤ 2‖f‖B(M).

2. For all p > 0, f ∈ Lp(M). The inclusion of B(M) in Lp(M) is
continuous.

Proof. 1. By Lemma 3.2 we have

|f(z)| ≤ |f(0)|+
1�

0

∣∣∣∣
Rf(tz)

t

∣∣∣∣ dt

≤ ‖f‖B(M) + ‖f‖B(M)

1�

0

t|z|
t(1− (t|z|)2)

dt

≤ ‖f‖B(M) + ‖f‖B(M)

|z|�

0

du

1− t2 dt

≤ 2‖f‖B(M)(1− ln(1− |z|2)).

But it is clear that

1− ln(1− |z|2) ≤ 1
1− |z|2

on M, which completes the proof of assertion 1.
2. Now we fix p′ > p. Then there is a positive constant Mp′ such that

1− ln(1− |z|2) ≤ Mp′

(1− |z|2)1/p′

on M. But integration in polar coordinates (see Lemma 2.1 of [MY]) proves
that the function Mp′/(1− |z|2)1/p′ is in Lp(M) since p/p′ < 1. This leads
to assertion 2.
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Definition 3.5.
E(M) = B(M) ∩ T (Hol(B∗)).

Lemma 3.6. Furnished with the Bloch norm, B(M) and E(M) are Ba-
nach spaces.

Proof. The fact that B(M) is a Banach space is a classical consequence
of Lemma 3.4. Then it suffices to show that E(M) is a closed subset of
B(M). Let (fk)k∈N ⊂ E(M) tend to f in B(M). Again by Lemma 3.4 we
know that fk → f in L1(M). But by Remark 2.5, fk ∈ E1(M), and by
Lemma 2.4, E1(M) is a closed subset of L1(M) so that f ∈ E1(M). In
particular f ∈ T (Hol(B∗)).

We will use the following space.

Definition 3.7.
E∞(M) = L∞(M) ∩ T (Hol(B∗)).

Lemma 3.8. E∞(M) is dense in E1(M).

Proof. By usual methods we can show that if f ∈ L1(M) then fr → f
in L1(M) as r → 1−. But if f ∈ E1(M) then fr ∈ E∞(M).

3.2. The dual space of E1(M)

Notation 3.9. 1. P̃ denotes the orthogonal projection from L2(M) onto
E2(M) (which is a closed subspace of L2(M) by Lemma 4.1 of [MY]).

2. KB∗ denotes the Bergman kernel of B∗ (see [OPY] or [MY]).

We recall the following (see Lemma 2 of [M]).

Lemma 3.10. The projection P̃ is an integral operator induced by the
kernel

K̃(z, w) =
1

2(n+ 1)2 zn+1wn+1KB∗(F (z), F (w))

for all z and w in M.

Lemma 3.11. The projection P̃ is a well defined bounded operator from
L∞(M) into E(M).

Proof. In this proof M will denote a constant depending only on n which
may differ at each appearance. Let f ∈ L∞(M). Then P̃ f ∈ E2(M) so that
P̃ f ∈ T (Hol(M)). So we must only prove that P̃ f ∈ B(M). We have

P̃ f(z) =
�

M
f(w)K̃(z, w)

α(w) ∧ α(w)
C

.

Thus

R(P̃ f)(z) =
�

M
f(w)R(z 7→ K̃(z, w))

α(w) ∧ α(w)
C

.
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Using Lemma 4.2 of [MY] we find that, for all z and w in M,

K̃(z, w) = M [KM(z, w)−KM(z,A(w))]

where A is the transformation of Cn+1 defined by

A(z1, . . . , zn, zn+1) = (z1, . . . , zn,−zn+1)

and KM is the Bergman kernel of M with respect to the volume form α(w)∧
α(w)/C (see Theorem 3.2 of [MY]). Thus

R(z 7→ K̃(z, w)) = M [R(z 7→ KM(z, w))−R(z 7→ KM(z,A(w)))].

By Theorem 3.2 of [MY] and a little computation we obtain

R(z 7→ KM(z, w)) = M
(z • w)[1 + z • w]

(1− z • w)n+2 .

Hence

|R(z 7→ KM(z, w))| ≤M |z|
|1− z • w|n+2 .

Then Lemma 5.1 of [MY] gives

|R(P̃ f)(z)| ≤M |z| · ‖f‖∞
1− |z|2 .

Since P̃ f(0) = 0, this exactly says that

‖P̃ f‖B(M) ≤M‖f‖∞.
Definition 3.12. 1. For f ∈ Hol(M) and z ∈M we put

Qf(z) = (1− |z|2)(nf(z) +Rf(z)).

2. For all functions f and g measurable in M we set

〈f, g〉M =
�

M
f(w)g(w)

α(w) ∧ α(w)
C

provided the above integral is defined.

Then we have the following

Lemma 3.13. 1. Q is a well defined bounded operator from B(M) into
L∞(M).

2. For all h ∈ A(M) := L∞(M) ∩Hol(M) and g ∈ B(M) we have

〈h, g〉M = 〈h,Qg〉M.
Proof. 1. Let f ∈ B(M) and z ∈M. We have

|Qf(z)| ≤ n(1− |z|2)|f(z)|+ (1− |z|2)|Rf(z)|
and by Lemma 3.4 we obtain

|Qf(z)| ≤ (2n+ 1)‖f‖B(M).
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2. Firstly we note that by Lemma 3.4 and by the first assertion the
above scalar products are well defined. Then recall that by the proof of
Theorem 3.2 of [MY] we know that if h ∈ A(M) then

h =
∞∑

k=0

pk

in L2(M) where pk ∈ Pk(M), the set of homogeneous polynomials of degree
k on M. So we need only verify the formula for h = pk and g ∈ B(M). But
we also know that the sum is orthogonal in L2(M) and that g ∈ L2(M).
Thus it suffices to prove that

〈pk, qk〉M = 〈pk, Qqk〉M
for all pk and qk in Pk(M). But Rqk = kqk so that

Q(qk)(z) = (n+ k)(1− |z|2)qk(z).

Using integration in polar coordinates (see Lemma 2.1 of [MY]) we can prove
the previous equality and the result follows.

Now we can prove the intermediate theorem on M.

Theorem 3.14. The dual of the space E1(M) can be identified with E(M).
More precisely , there is a bounded bilinear complex form ΛM on E1(M) ×
E(M) such that every bounded linear functional on E1(M) is of the form
ΛM(·, g) for some unique g ∈ B(B∗). ΛM is defined for all h ∈ E∞(M) and
g ∈ E(M) by

ΛM(h, g) = 〈h, g〉M.
Furthermore the norms of g and ΛM(·, g) are equivalent.

Proof. Firstly by Lemma 3.13 we can write, for all h ∈ E∞(M) and
g ∈ E(M),

|〈h, g〉M| = |〈h,Qg〉M| ≤ ‖h‖1‖Qg‖∞ ≤ ‖h‖1‖Q‖ · ‖g‖B(M).

So ΛM is bounded on E∞(M)× E(M). By Lemma 3.8, ΛM can be uniquely
extended to a bounded bilinear form on E1(M) × E(M). Lemma 3 of [M]
shows that the g as in the statement is unique.

Now let L be a bounded linear functional on E1(M). By the Hahn–
Banach theorem, L can be extended to a bounded linear functional L̃ on
L1(M) satisfying ‖L‖ = ‖L̃‖ and by the Riesz representation theorem we
can find a function f ∈ L∞(M) such that

L̃(h) =
�

M
h(z)f(z)

α(z) ∧ α(z)
C
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for all h ∈ L1(M) and ‖L̃‖ = ‖f‖∞. By Lemma 3.11 the function g = P̃ (f)
belongs to E(M) and

‖g‖E(M) ≤ ‖P̃‖ · ‖f‖∞ = ‖P̃‖ · ‖L‖.
Then for all h ∈ E∞(M) we have

�

M
h(z)g(z)

α(z) ∧ α(z)
C

=
�

M
h(z)P̃ (f)

α(z) ∧ α(z)
C

=
�

M
h(z)

( �

M
K̃(z, w)f(w)

α(w) ∧ α(w)
C

)
α(z) ∧ α(z)

C

=
�

M
f(w)

( �

M
K̃(w, z)h(z)

α(z) ∧ α(z)
C

)
α(w) ∧ α(w)

C

= 〈h, f〉 = L̃(h) = L(h).

Note that the proof of Lemma 4 of [MY] enables us to use Fubini’s
theorem. The equivalence of the norms is clear.

4. Proof of the main theorem. To prove the main theorem we need
the next lemma and its corollary.

Lemma 4.1. Let g ∈ Hol(M). For all z ∈ M set T̃ g(z) = zn+1g(z) and
define

S̃(g) = sup
z∈M

|R(T̃ g)(z)|
|z| (1− |z|2),

S(g) = |g(0)|+ sup
z∈M

|R(g)(z)|
|z| (1− |z|2)|zn+1|.

Then there is a constant γ independent of g such that

γ−1S̃(g) ≤ S(g) ≤ γS̃(g).

Proof. First of all note that

(1) R(T̃ g)(z) = zn+1[g(z) +Rg(z)] for all z ∈M.

Then we recall that g =
∑∞
k=0 pk for some pk ∈ Pk as in the proof of

Lemma 3.13. Thus for all z ∈M we can write

Rg(z) =
∞∑

k=0

kpk(z), T̃ g(z) =
∞∑

k=0

zn+1pk(z)

and so

zn+1Rg(z) =
∞∑

k=0

zn+1kpk(z).



140 G. Mengotti

Now suppose that

(2) S̃(g) = sup
z∈M
|R(T̃ g)(z)|(1− |z|2) <∞.

By (1) we can write

(3) S(g)− |g(0)| ≤ S̃(g) + sup
z∈M

|T̃ g(z)|
|z| (1− |z|2).

So it suffices to study the last supremum. Let z ∈ ∂M where

∂M = {z ∈ Cn+1 : z • z = 0, |z| = 1}.
The slice function (R(T̃ g))z is holomorphic on D, the unit disc in C. For all
ζ ∈ D, we have

(R(T̃ g))z(ζ) =
∞∑

k=0

(k + 1)[zn+1pk(z)]ζk+1 = ζ
∞∑

k=0

(k + 1)ak(z)ζk

with ak(z) = zn+1pk(z). But by (2) we have

|(R(T̃ g))z(ζ)|
|ζ| ≤ S̃(g)

1− |ζ|2 .

Thus for all k ∈ N we get

|(k + 1)ak(z)| ≤ S̃(g)e(k + 1).

Therefore we have, for all z ∈ ∂M and k ∈ N,

|ak(z)| ≤ S̃(g)e.

Note that, in particular, |a0(z)| = |zn+1g(0)| ≤ S̃(g)e for all z ∈ ∂M. For
z = (1/

√
2, 0, . . . , 0, i/

√
2) this gives

(4) |g(0)| ≤
√

2 S̃(g)e.

We also have
(T̃ g)z(ζ)

ζ
=
∞∑

k=0

akζ
k

for z ∈ ∂M and ζ ∈ D. Hence
∣∣∣∣
(T̃ g)z(ζ)

ζ

∣∣∣∣ ≤ S̃(g)e
∞∑

k=0

|ζ|k ≤ 2S̃(g)e
1− |ζ|2 .

So we get

sup
z∈M

|T̃ g(z)|
|z| (1− |z|2) ≤ 2S̃(g)e.

This combined with (3) and (4) shows that there exists γ > 0 such that
S(g) ≤ γS̃(g).

We use the same method to establish the other inequality.
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Corollary 4.2. T is a linear isomorphism from B(B∗) onto E(M) and
there is a constant δ such that for all f ∈ B(B∗),

δ−1‖f‖B(B∗) ≤ ‖Tf‖E(M) ≤ δ‖f‖B(B∗).

In particular B(B∗) is a Banach space and , for all p ≥ 1, B(B∗) ⊂ Ap(B∗).

Proof. In fact the radial derivative of holomorphic functions on B∗ can
be defined using slice functions as in Definition 3.1 for holomorphic functions
on M. This fact, the previous lemma and the equivalence of the norms | · |
and N∗ lead to the desired inequalities. This implies that T is a linear
isomorphism from B(B∗) onto E(M) and that B(B∗) is a Banach space.
Then the inclusion B(B∗) ⊂ Ap(B∗) follows from Lemma 4.1 of [MY] and
Lemma 3.4.

Now we can prove the main result. Consider the bilinear form ΛB∗ defined
on A1(B∗)× B(B∗) by

(f, g) 7→ ΛB∗(f, g) = ΛM(Tf, Tg).

This mapping is well defined and bounded by Lemma 2.4, the previous
corollary and Theorem 3.14. Now let L be a bounded linear functional on
A1(B∗). Then L ◦ T−1 is a bounded linear functional on E1(M). By Theo-
rem 3.14 there is a function g̃ ∈ E(M) such that L ◦ T−1(f̃) = ΛM(f̃ , g̃) for
all f̃ ∈ E1(M). But g̃ = Tg for some g ∈ B(B∗). Then for all f ∈ A1(B∗) we
have

L(f) = L ◦ T−1(Tf) = ΛM(Tf, Tg) = ΛB∗(f, g).

Therefore L = ΛB∗(·, g). We also have the uniqueness and the equivalence
of the norms. The proof is complete.

Problem 4.3. Theorem 4.10 of [Tim1] shows that the Bloch space of the
unit ball can also be characterized by the norm

|f(0)|+ sup
z∈B
|∇f(z)|(1− |z|2)

where ∇f(z) is the complex gradient of the holomorphic function f . In the
case of B∗ it does not seem to be easy to prove the analogue of Theorem 4.10
of [Tim1]. Thus it would be very interesting to find a similar characterization
of B(B∗)—if it is possible—in terms of the gradient, the norm N∗ and the
weight |z • z|1/2.
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