
STUDIA MATHEMATICA 148 (2) (2001)

Asymptotics for conservation laws
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Abstract. Let −L be the generator of a Lévy semigroup on L1(Rn) and f : R→ Rn
be a nonlinearity. We study the large time asymptotic behavior of solutions of the nonlocal
and nonlinear equations ut+Lu+∇·f(u) = 0, analyzing their Lp-decay and two terms of
their asymptotics. These equations appear as models of physical phenomena that involve
anomalous diffusions such as Lévy flights.

1. Introduction. Our aim is to study the large time behavior of solu-
tions of the Cauchy problem for a class of equations

ut + Lu+∇ · f(u) = 0,(1.1)

called here the Lévy conservation laws, where x ∈ Rn, t ≥ 0, u = u(x, t),
u : Rn ×R+ → R, f : R→ Rn is a nonlinear term, and −L is the generator
of a symmetric, positivity-preserving Lévy operator semigroup e−tL, t > 0,
on L1(Rn). The operator L is a pseudodifferential operator defined by the
symbol a = a(ξ) ≥ 0: L̂v(ξ) = a(ξ)v̂(ξ). The function e−ta(ξ) is positive-
definite, so the symbol a(ξ) has the Lévy–Khinchin representation (cf. [2,
Ch. I, Th. 1], or [16, Th. B.2])

a(ξ) = ibξ + q(ξ) +
�

Rn
(1− e−iηξ − iηξ � {|η|<1}(η))Π(dη).(1.2)

The fundamental nature of the operator L is clear from the perspective
of probability theory. It represents the most general form of generator of
a stochastically continuous Markov process with independent and stationary
increments. This fact was our basic motivation for the development of the
theory presented below and in other related papers.
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We assume (with no loss of generality) that b = 0, i.e., there is no drift;
indeed, a shift of the x variable removes the drift term b. The function
q(ξ) in (1.2) is a positive-definite quadratic form on Rn; again changing the
variables linearly, we can assume that q(ξ) = |ξ|2, which corresponds to the
usual Laplacian −∆ on Rn as the Gaussian part of L. Finally, Π is a Borel
measure such that Π({0}) = 0 and � Rn min(1, |η|2)Π(dη) <∞.

Equation (1.1) is supplemented with the initial condition

u0(x) = u(x, 0)(1.3)

which is assumed to be an L1(Rn) function. If u0(x) ≥ 0 is positive a.e.,
with � Rn u0(x) dx < ∞, then (1.1) can model evolution of mass conserving
densities u, i.e., for all t > 0, one has u(x, t) ≥ 0 and � Rn u(x, t) dx =

� Rn u0(x) dx <∞.
We choose a simple functional framework of the Lebesgue Lp(Rn) spaces.

However, more general function spaces of Besov and Morrey type are also
suitable for a study of the solvability and asymptotics of solutions of (1.1)
(cf. [3], [8]).

The present work is motivated by various physical applications of non-
linear equations with nonlocal integro-differential or pseudodifferential dif-
fusive terms which include, e.g., anomalous growth models of molecular in-
terfaces involving hopping and trapping phenomena [21] and hydrodynamic
models with modified diffusivity [1]. Various linear differential equations in-
volving fractional derivatives, and their applications to statistical physics,
hydrodynamics, molecular biology etc., have been discussed in, e.g., [23].

Equations (1.1) generalize and extend model equations

ut − uxx +
k∑

j=1

aj(−∂2/∂x2)αj/2u+ f(u)x = 0,(1.4)

with 0 < αj < 2, aj > 0, called one-dimensional multifractal conservation
laws in [5]. The fractional power of the second derivative (−∂2/∂x2)α/2 in
(1.4) is defined via the Fourier transform by ((−∂2/∂x2)α/2v)̂ (ξ) = |ξ|αv̂(ξ).

The generalizations of multifractal conservation laws presented in this
paper go in three different directions, each extension encountering its own
difficulties. First, we consider the case of arbitrary space dimension n. Sec-
ond, a simple operator −∂2/∂x2 + (−∂2/∂x2)α/2 studied in [5] is replaced
by a quite general Lévy operator L generating a positivity-preserving lin-
ear semigroup e−tL. Third, instead of the polynomial nonlinear term, we
consider an arbitrary (sufficiently smooth) nonlinearity f .

The classical one-dimensional Burgers equation

ut − uxx + (u2)x = 0,(1.5)

a prototype of the whole class (1.1), is a versatile model for physical phe-
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nomena where shock formation plays an important role (cf. e.g. [27] and
references therein). Importance and popularity of (1.5) lie in its simplicity,
but also in the fact that the well known Hopf–Cole substitution u = −vx/v
reduces it to the linear heat equation. This nonlinear change of variables
permits an explicit description of solutions of (1.5) and explains their essen-
tially nonlinear first order asymptotics as time goes to infinity (cf. e.g. [27]
and Remark 1.3 below).

Needless to say, no analog of the Hopf–Cole formula is available for
our generalized conservation laws (1.1), or (1.4), which makes their study
much more difficult. Thus it was somewhat surprising that having added
a new (and weaker than the second derivative) diffusive term (−∂2/∂x2)α/2,
0 < α < 2, one obtained an essentially different asymptotic regime for so-
lutions of (1.4) as compared to that for (1.5). For (1.4), the first term of
the asymptotics reflects the linear behavior of e−tLu0, the solution of the
linearized problem ut + Lu = 0, and only the next term takes into account
the nonlinear effects (cf. Th. 1.2 in [5]).

The Burgers equation with pure fractal diffusion in several dimensions,
i.e., with L = (−∆)α/2 in Rn, has been studied in [3]. It turned out (cf. [3,
Sec. 3 and 6]) that the low order diffusion generator (−∆)α/2, 0 < α < 2,
is sometimes too weak for the fractal Burgers equation to have sufficiently
regular solutions. In [5] we proposed a class of one-dimensional models with
mixed (Brownian and Lévy α-stable) diffusions that retained essential fea-
tures of fractal diffusion, had smooth solutions, and was found acceptable
by physicists.

Another class of physically motivated equations with fractal diffusions
and nonlocal nonlinearities, stemming from statistical mechanics models of
interaction of diffusing particles, has been considered in [8]. Connections
with probability theory, stochastic differential equations and Monte Carlo-
type approximations of their solutions via finite systems of interacting par-
ticles (“propagation of chaos”) have been studied in the papers [15] and [4].

Also, observe that equation (1.1) can be formally interpreted as a “Fok-
ker–Planck–Kolmogorov equation” for a “nonlinear” diffusion process in
McKean’s sense (see [15] and [4] for more details on the subject). Indeed,
consider a Markov process X(t), t ≥ 0, which is a solution of the stochastic
differential equation

(1.6)
dX(t) = dS(t)− u−1f(u(X(t), t))dt,

X(0) ∼ u0(x)dx in law,

where S(t) is the Lévy process with generator −L. Assuming that X(t) is
a unique solution of (1.6), we see that the measure-valued function v(dx, t) =
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P (X(t) ∈ dx) satisfies the weak forward equation

(1.7)
d

dt
〈v(t), η〉 = 〈v(t), L̃u(t)η〉, η ∈ S(Rn),

v(0) = u(x, 0)dx

with L̃u = −L + u−1f(u) · ∇. On the other hand, u(dx, t) = u(x, t)dx also
solves (1.7) since

d

dt
〈u(t), η〉 = 〈−Lu−∇ · f(u), η〉 = 〈u, (−L+ u−1f(u) · ∇)η〉

so that v(dx, t) = u(dx, t) and, by uniqueness, u is the density of the solution
of (1.6).

The paper is organized as follows: Section 2 recalls needed facts from the
theory of linear Lévy semigroups; solutions of (1.1)–(1.3) are constructed in
Section 3, where their time decay is also established; Sections 4 and 5 deal
with two consecutive terms of the asymptotics of solutions of (1.1).

The gist of our principal results can be summarized as follows. Suppose
that the operator L defined in (1.2) by its symbol a = a(ξ), ξ ∈ Rn, gener-
ates a positivity-preserving, symmetric, strongly continuous semigroup e−tL

satisfying the bound ‖e−tL‖2,∞ ≤ min(c1t
−N1/4, c2t

−N2/4) for all t > 0 (as
in, e.g., the monograph [12]). Any operator L with a(ξ) ∼ |ξ|α for small |ξ|,
0 < α < 2, and a(ξ) ∼ |ξ|2 for large |ξ|, is a good example here; then
N1 = n < N2 = 2n/α. In particular, the above condition is satisfied for
multifractal diffusion operators L = −∆ +

∑k
j=1 aj(−∆)αj/2, 0 < αj < 2,

α = min1≤j≤k αj , aj > 0, considered in the one-dimensional case in [5].
Now, suppose that f : R → Rn is a C2 function with f ′(0) = 0. Then it
turns out that the solutions of the initial value problem (1.1)–(1.3) with
u0 ∈ L1(Rn) ∩ L∞(Rn) satisfy

(i) ‖u(t)‖p ≤ Ct−n(1−1/p)/α‖u0‖1,
(ii) ‖u(t)− e−tLu0‖p = o(t−n(1−1/p)/α),

(iii) ‖u(t)− e−tLu0 + F · (∇e−tLδ0)‖p = o(t−n(1−1/p)/α−1/α),
where F = � ∞0 � Rn f(u(y, τ)) dy dτ , as t→∞.

Thus, roughly speaking, u(t) behaves like a linear combination u1(e−tL) +
u2 ·∇(e−tL) of the kernels (e−tL) ≡ e−tLδ0,∇(e−tL) ≡ ∇(e−tLδ0) of e−tL and
∇e−tL, respectively, for some constants u1 ∈ R and u2 ∈ Rn. The remainder
in (ii) (resp. (iii)) is of lower order than the first (resp. the first and the
second) term of the asymptotics of the solution u(t).

The paper makes use of techniques more sophisticated than those utilized
in [5]. As a result, the assumptions on the operators L could be relaxed. The
tools permitting us to deal with nonlinear terms are reminiscent of those
employed in papers [14], [28], [17], [5]. However, the use of a mixture of
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tools related to semigroup theory and the logarithmic Sobolev inequalities
seems to be novel in the context of such nonlinear equations.

Precise formulations of the main results (i), (ii), (iii) mentioned above,
with extensions and generalizations, can be found in Sections 3, 4, 5 (The-
orems 3.2, 3.3, 4.1, 5.1). Let us also mention that the results of this paper
and [6] have been announced in the note [7].

Remark 1.1. Observe that, in general (i.e., if � Rn u0 6= 0), the estimates
(i)–(iii) cannot be improved because, for the symbol a(ξ) = |ξ|2 + |ξ|α and
large t, we have ‖e−tL‖1,p ∼ ‖e−t(−∆)α/2‖1,p = ct−n(1−1/p)/α (cf. [5, Cor.
2.1]). However, if � Rn u0 = 0, then ‖u(t)‖p = o(t−n(1−1/p)/α) as t→∞.

Remark 1.2. Observe that the Brownian diffusion component of L does
not affect the long time behavior of solutions determined by the jump com-
ponent of L. On the other hand, the Brownian diffusion contributes to the
smoothness of solutions displaying an instantaneous parabolic regularization
effect.

Remark 1.3. The above asymptotic result (ii) can be reformulated as
a statement about the rescaled solutions

uλ(x, t) = λnu(λx, λαt), λ > 0,

converging to a self-similar solution ce−tl(−∆)α/2δ0 of the linear equation
vt + l(−∆)α/2v = 0 (with some l > 0) as λ tends to ∞. This holds, e.g.,
for multifractal diffusion operators or, more generally, for L satisfying l =
limξ→0 a(ξ)/|ξ|α ∈ (0,∞), a condition stronger than the assumption (2.8)
introduced below in Section 2. Note that such a result can be interpreted on
the level of stochastic differential equations (1.6) as a Central Limit Theorem
for rescalings of the nonlinear processes X(t). Observe that assumptions on
the behavior of the nonlinearity f at 0 are important; see Remark 5.3.

Remark 1.4. The asymptotics of solutions of the Cauchy problem for
the Burgers equation (1.5) is described by the relation

t(1−1/p)/2‖u(t)− UM (t)‖p → 0 as t→∞,
where

UM (x, t) =
1√
t

exp(−x2/(4t))
(
K −

x/
√
t�

0

exp(−z2/4) dz
)−1

is the “source solution” such that � R UM (x, 1) dx = M = � R u0(x) dx with
K = K(M) (see e.g. [14]). This is what we mean when we say that the long
time behavior of solutions of the classical Burgers equation is genuinely
nonlinear, i.e., it is not determined by the asymptotics of the linear heat
equation.
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Throughout this paper we use the notation ‖u‖p for the Lebesgue Lp(Rn)-
norms of functions and W k,p(Rn) for the Sobolev spaces. The operator norm
of an operator A from Lq(Rn) to Lp(Rn) is denoted by ‖A‖q,p. All the in-
tegrals are over Rn unless explicitly stated otherwise. The brackets 〈·, ·〉
provide duality between suitable function spaces. The constants indepen-
dent of solutions considered and of t (but perhaps dependent on the initial
values) will be denoted by the same letter C, even if they may vary from
line to line. For a variety of facts from the standard regularity theory of
parabolic type equations and interpolation inequalities we refer to [20].

2. Linear symmetric Lévy semigroups. The goal of this section is
to list our assumptions and to gather needed properties of solutions of the
linear Cauchy problem

ut + Lu = 0,(2.1)

u(x, 0) = u0(x).(2.2)

Details and proofs can be found in [12], [16], while more facts and proba-
bilistic interpretations are in [2], [9], [18], [19], and [25]. Relevant topics are
also presented in [11] and [26].

Our main assumption on L is that −L generates a positivity-preserving,
symmetric Lévy semigroup e−tL of linear operators on L1(Rn), and its sym-
bol a has the Lévy–Khinchin representation (1.2). The semigroup e−tL is
analytic on Lp(Rn), 1 < p <∞ (cf. [12, Th. 1.4.2] and [26, p. 13]).

Such an L generates a conservative semigroup, i.e., satisfying e−tL1=1
(note that under the assumption (1.2), e−tL has a unique extension to con-
stant functions; cf. also [16, Th. 2.4]). In what follows we will write

L = −∆+H,(2.3)

where H describes the jump component of L, which in this paper is meant as
the integral term in (1.2). The presence of a strictly positive-definite form
q in (1.2) implies that the semigroup e−tL is ultracontractive, i.e., e−tL :
L1(Rn)→ L∞(Rn). Of course, the operator H itself may or may not gener-
ate such a semigroup; e.g., the Poisson semigroup with a(ξ) = 1−e−isξ andΠ
purely atomic is not ultracontractive. Note that symmetric hypercontractive
L2 → L∞ semigroups (as considered in [12]) act, by duality, from L1 to L2,
and thus from L1 to L∞ (cf. [16, Th. 6.4]). Under the above assumptions, the
operators e−tL, t > 0, have L1-densities (cf. [16, Th. 6.2]), and we may write

(e−tL) = (et∆) ∗ (e−tH) = (e−tH) ∗ (et∆).(2.4)

In what follows we will use generalized logarithmic Sobolev inequalities
(cf. [12]), Nash type inequalities (cf. [11] and [12]), and their consequences
expressed in terms of the decay of semigroups. In particular, we recall the
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generalized logarithmic Sobolev inequality
�

Rn
vp log v ≤ ε〈Lv, vp−1〉+ Γ‖v‖pp + ‖v‖pp log ‖v‖pp,(2.5)

valid for each ε > 0, 2 ≤ p < ∞, suitable Γ = Γ (ε, p), and all v ≥ 0,
v ∈ ⋃t>0 e

−tL(L1(Rn) ∩ L∞(Rn)) (see [12, Th. 2.2.7]).
To obtain our main results on the first and second terms of the asymp-

totics of solutions of the nonlinear problem (1.1) we need to assume that,
for all t > 0, 1 ≤ p ≤ ∞, and some 0 < α < 2, the linear semigroup satisfies

‖e−tL‖1,p ≤ min(c1t
−n(1−1/p)/2, c2t

−n(1−1/p)/α),(2.6)

‖∇e−tL‖1,p ≤ min(c1t
−n(1−1/p)/2−1/2, c2t

−n(1−1/p)/α−1/α).(2.7)

These estimates are guaranteed, in particular, if the symbol a of L satisfies
the conditions

0 < lim inf
ξ→0

a(ξ)
|ξ|α ≤ lim sup

ξ→0

a(ξ)
|ξ|α <∞,(2.8)

0 < inf
ξ

a(ξ)
|ξ|2 ,(2.9)

and if a is sufficiently smooth for ξ 6= 0. Note that if the operator −L
generates a symmetric Lévy semigroup, then lim sup|ξ|→∞ a(ξ)/|ξ|2 <∞ by
[2, I. Prop. 2(i)], and that, for the symbol h = h(ξ) ≥ 0 of the jump part H
of L, the condition lim|ξ|→∞ h(ξ)/|ξ|2 = 0 holds true due to [16, (2.9)].

We also assume the condition

lim sup
|ξ|→∞

a(ξ)− a0|ξ|2
|ξ|α̃ <∞,(2.10)

for some a0 > 0 and α̃ < 2. Condition (2.10), where, without loss of gen-
erality, we can put a0 = 1, will only be used in the proof of regularity of
solutions.

Remark 2.1. The Fourier variables representation of (e−tL), ∇(e−tL),
the Hausdorff–Young inequality (cf. (5.8)), and a change of variables give the
properties (2.6) and (2.7) as a consequence of (2.8)–(2.10) for 2 ≤ p ≤ ∞.
Similar arguments are systematically used in the proof of Theorem 5.1. The
case 1 ≤ p < 2 in (2.7) can be proved under some smoothness assumptions
on a for ξ 6= 0. This can be done using methods from, e.g., [24, Ch. IV,
Sec. 3].

Note that if k(ξ) = a(ξ) − l|ξ|α, for some l > 0, is a symbol of another
Lévy operator K (as is the case of multifractal operators (2.12) below), then
(2.7) for p = 1, and then for 1 < p < 2, follows in view of an analog of (2.4).
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Recall that, by [26, Prop. 2.2.2], the bound (2.6), for each 1 ≤ p ≤ ∞, is
equivalent to the apparently weaker condition

‖e−tL‖2,∞ ≤ min(c1t
−n/4, c2t

−n/(2α)).(2.11)

Example 2.1. In applications the most frequent situation is the case
when ‖e−tL‖2,∞ ≤ eM(t) = ct−N/4, where N is a positive number. This
corresponds, e.g., to the (Markov) semigroups generated by second order
elliptic operators on Rn, N = n. The decay rates (2.11) and (2.6)–(2.7)
appear for the semigroups e−tL generated by multifractal diffusion operators

L = −∆+
k∑

j=1

aj(−∆)αj/2, 0 < αj < 2, aj > 0,(2.12)

considered in the one-dimensional case in [5]. In this case α = min1≤j≤k αj ,
so that −∆ determines the asymptotics of the linear semigroup for small t,
and the least αj determines the decay for large t. This leads to β(ε) ≡
Γ (ε, 2) ≤ c3 − (N/4) log ε for a constant c3 and, by [12, Cor. 2.2.8], back to
eM(t) ≤ c4t

−N/4. The function β(ε) = Γ (ε, 2) is that from the generalized
logarithmic Sobolev inequality (2.5) for p = 2; the notation follows [12]. The
latter work has other examples (Ex. 2.3.2) of semigroups satisfying (2.11).

Example 2.2. For a large class of generators L considered in [12, Ex.
2.3.4 and 2.3.5] we have

either β(ε) ≤ c exp(ε−γ) or β(ε) ≤ c(1 + ε−γ)

for some 0 < γ < 1. However, due to the Laplacian influence in (2.1),
we always expect for our semigroup e−tL an algebraic decay rate such as
‖e−tL‖2,∞ ≤ ct−n/4 and ‖e−tL‖1,∞ ≤ ct−n/2.

Example 2.3. The semigroup corresponding to H with the symbol
(|ξ|2 + m2)1/2 − m, m > 0, also satisfies (2.11) with α = 1. It arises in
relativistic quantum mechanics (cf. [16, Ch. 11]).

3. Existence and decay of solutions; maximum principle. By
a solution of the Cauchy problem for Lévy’s conservation law (1.1)–(1.3) we
mean a mild solution, i.e., a function u in the space C([0, T ];X ) of weakly
continuous functions with values in X , satisfying the Duhamel formula

u(t) = e−tLu0 −
t�

0

∇ · e−(t−τ)Lf(u(τ)) dτ(3.1)

for each t ∈ (0, T ). Here X is a suitable Banach space selected so that e−tL

acts on it as a weakly continuous semigroup. Our preferred choice is X =
L1(Rn)∩L∞(Rn). The above modifies the usual definition of mild solutions
which requires that u ∈ C([0, T ];X ) is a strongly continuous function rather
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than just weakly continuous: this modification is needed because of rather
poor properties of e−tL on L∞(Rn) (cf. a similar situation in [3] and [5]).

Theorem 3.1. Assume that f ∈ C1(R,Rn), and L is of the form (1.2)
and satisfies (2.10). For u0 ∈ L1(Rn) ∩ L∞(Rn), there exists a unique mild
solution u ∈ C([0,∞); L1(Rn) ∩ L∞(Rn)) of the problem (1.1)–(1.3). This
solution is regular , that is,

u ∈ C((0,∞);W 2,2(Rn)) ∩ C1((0,∞);L2(Rn)),

satisfies the conservation-of-integral property
�
u(x, t) dx =

�
u0(x) dx,(3.2)

and the contraction property

‖u(t)‖p ≤ ‖u0‖p(3.3)

for each p ∈ [1,∞] and all t > 0.

Proof. To prove the local existence result we show, as usual, that the
nonlinear operator

N (u)(t) = e−tLu0 −
t�

0

∇ · e−(t−τ)Lf(u(τ)) dτ

has a unique fixed point in the Banach space

XT = L∞((0, T );L1(Rn) ∩ L∞(Rn))

equipped with the norm ‖u‖XT = sup0<t<T ‖u(t)‖1 + sup0<t<T ‖u(t)‖∞.
Thus a local-in-time mild solution of (1.1)–(1.3) is obtained, via the Ba-
nach contraction theorem, as a fixed point of N in the ball B(u0, R) ≡
{u ∈ XT : ‖u − u0‖XT ≤ R}, for sufficiently large R ≥ 2‖u0‖XT and small
T > 0. This is an immediate consequence of the inequalities

‖N (u)‖XT ≤ ‖u0‖X + c̃(R)T 1/2‖u‖XT ,
‖N (u)−N (v)‖XT ≤ c̃(R)T 1/2‖u− v‖XT ,

valid for any u, v ∈ B(u0, R). Here, c̃(R) = sup|s|≤R |f ′(s)|, and we used
crude L1-bounds ‖e−tL‖1,1 ≤ 1, ‖∇e−tL‖1,1 ≤ ‖∇et∆‖1,1 ≤ Ct−1/2 for the
linear semigroup e−tL (cf. (2.4)).

The remainder of the proof depends on the fact that the solutions u
are regular, and the latter follows from the classical regularity result for
parabolic equations which allows us to prove that

u ∈ C((0, T );W 2,2(Rn)) ∩ C1((0, T );L2(Rn)).

Indeed, by (2.10), we have ut − ∆u = −Hu − ∇ · f(u) ∈ W−α̃,2(Rn) ∩
W−1,2(Rn), so by a repeated use of [20, Chapter 3], the regularity of solutions
follows. In particular, later on, this regularity enables us to use various
a priori estimates for mild solutions (as was done in [20] for weak solutions).
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Weak continuity of u(t) at t = 0 is a standard consequence of regularity of u
and properties of e−tL on X .

Now, the local solution may be extended to a global solution in view of
the a priori estimate

sup
t∈[0,T∗)

(‖u(t)‖1 + ‖u(t)‖∞) <∞,(3.4)

where T∗ is the maximal time of existence of u(t). The relation (3.4) is
a straightforward corollary to (3.3) for p = 1 and p = ∞. For p = 1, an
even stronger estimate (3.6) will be proved. Finally, the case p = ∞ is
a consequence of Proposition 3.1 proved below.

Inequality (3.3) for 1 < p < ∞ is obtained by multiplying (1.1) by
|u|p−1 sgnu and integrating over Rn with respect to x. This leads to

1
p

d

dt

�
|u(x, t)|p dx+ 〈Lu, |u|p−1 sgnu〉 = 0.

The second term on the left hand side of the above formula is positive in
view of the inequality

4(p− 1)
p2 〈L|u|p/2, |u|p/2〉 ≤ 〈Lu, |u|p−1 sgnu〉,(3.5)

which was obtained in [26, proof of Prop. II.5.4] (cf. also [12, (2.2.7)] for
p ≥ 2). Hence (d/dt)‖u(t)‖pp ≤ 0 and, as a consequence, (3.3) holds true for
each p ∈ (1,∞).

The integral � u(x, t) dx is a conserved quantity for solutions of (1.1)
constructed above. Indeed, integrating (1.1) over Rn with respect to x we
obtain (d/dt) � u(x, t) dx = 0, since � ∇ · f(u(x, t)) dx = 0 and

�
Lu(x, t) dx = L̂u(0, t) = a(0)û(0, t) = 0.

Hence, we have ‖u(t)‖1 = ‖u0‖1 for the initial data u0 of constant sign.
The uniqueness of solutions and the inequality (3.3) for p = 1 follow

from the estimate
‖u(t)− v(t)‖1 ≤ ‖u0 − v0‖1(3.6)

valid for arbitrary two solutions u0, v0 of (1.1)–(1.3) with u0, v0 ∈ L1(Rn).
Its proof is obtained by multiplying the difference of equations (1.1) written
for u and v by sgn(u− v) and integrating over Rn. Then we get

d

dt
‖u− v‖1 + 〈L(u− v), sgn(u− v)〉+

�
∇ · (f(u)− f(v)) sgn(u− v) = 0,

and (d/dt)‖u− v‖1 ≤ 0 results because the second term is nonnegative (cf.
e.g. [3, (3.5)]), and the third term vanishes. The latter fact follows by a
standard approximation of the sign function by smooth functions (cf. [3,
Th. 3.1], [14, (2.28)]).
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Remark 3.1. The existence, uniqueness and regularity results obtained
in Theorem 3.1 for the initial conditions in L1(Rn) ∩ L∞(Rn) can be easily
extended to the case of u0 ∈ L1(Rn), using techniques similar to those
employed in [14]. First, an arbitrary u0 ∈ L1(Rn) can be approximated
by bounded truncations of u0, and then a passage to the limit, using an
application of (3.6) and the estimate (3.15) (for each t > 0) derived below,
provides a mild solution of (1.1) with u0 as the initial condition.

Next, we establish the maximum and minimum principles for the nonli-
near problem (1.1)–(1.3).

Proposition 3.1. Solutions of (1.1)–(1.3) with u0 ∈ L1(Rn) ∩ L∞(Rn)
satisfy the inequalities

ess inf u0 ≤ u(x, t) ≤ ess supu0 for a.e. x, t.(3.7)

Proof. We show the maximum principle only, because the proof of the
minimum principle is completely analogous. The reasoning uses a crucial
property of L which is a Dirichlet operator (cf. [16] or [9]). Let µ = ess supu0
and consider the function g = (u−µ−ε)+ ≡ max(u−µ−ε, 0) for an arbitrary
ε > 0. The equation (1.1) multiplied by g leads to

�
utg +

�
gLu+

�
g∇ · f(u) = 0,

and since � utg = � gtg, � g∇ · f(u) = 0, we obtain

�
g2(x, t) dx+

t�

0

〈Lu, g〉 = 0.

The inequality 〈Lu, g〉≥0 is satisfied for (self-adjoint) generators −L of sym-
metric (sub-)Markovian semigroups (cf. [16, (3.9)], or [9, Théorème 1.1]),
so ‖g‖2 = 0 follows. Of course, that means u ≤ µ a.e., since ε > 0 was an
arbitrary number.

Solutions of (1.1) also satisfy the following comparison principle.

Corollary 3.1. Let u and v be solutions of the Cauchy problem (1.1)–
(1.3) with initial values u0, v0 ∈ L1(Rn), respectively. If u0(x) ≤ v0(x) a.e.
then, for each t > 0, u(x, t) ≤ v(x, t) a.e.

Proof. The nonlinear semigroup u0 7→ u(t) is an L1-contraction (cf.
(3.6)) and preserves the integrals (cf. (3.2)). Since s+ = (|s| + s)/2, the
inequality u0 ≤ v0 a.e. gives

2
�
(u(t)− v(t))+ =

�
|u(t)− v(t)|+

�
(u(t)− v(t))

≤
�
|u0 − v0|+

�
(u0 − v0) = 2

�
(u0 − v0)+ = 0,

i.e., u(t) ≤ v(t) a.e. Thus, the nonlinear semigroup is order-preserving.
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The results presented in the remainder of this section concern the Lp(Rn)-
decay of positive solutions of (1.1)–(1.3) constructed in the first part of The-
orem 3.1. First we consider the case of p = 2. The estimate of solutions of
the nonlinear equation, which turns out to be the same as for the linear
semigroup, can be proved under quite general assumptions on the decay of
the semigroup.

Theorem 3.2. If the semigroup e−tL satisfies the estimate ‖e−tL‖1,∞ ≤
m(t) for some decreasing C1 function m : R+ → R+, then positive solutions
of the Cauchy problem (1.1)–(1.3) satisfy the bound

‖u(t)‖2 ≤ m(t)1/2‖u0‖1.
Proof. Multiplying (1.1) by u we obtain

d

dt
‖u‖22 + 〈Lu, u〉 = 0,(3.8)

since the integral � u∇ · f(u) vanishes.
Now let us recall from [11, Prop. II.1 and Th. II.5] that the decay estimate

for the semigroup
‖e−tL‖1,∞ ≤ m(t),(3.9)

for some function m such that m′ < 0, is equivalent to the generalized Nash
inequality

ϑ(‖v‖22) ≤ 〈Lv, v〉,(3.10)

valid for all v ∈ D(L), ‖v‖1 = 1, whenever −m′(s) = ϑ(m(s)). Setting
w(t) = ‖u(t)‖22 and K = ‖u(t)‖21 ≡ const, from (3.8) and (3.10) we have

w′ +Kϑ(w/K) ≤ 0,

or
t�

0

w′ dt
Km′(m−1(w/K))

≥ t.

Since (m−1)′ = 1/(m′(m−1)) < 0, this leads to the inequality

m−1(w(t)/K)−m−1(w(0)/K) ≥ t,
so that w(t) decays like m(t):

w(t) ≤ Km(t+m−1(w(0)/K)) ≤ Km(t).

In other words, we have ‖u(t)‖2 ≤ m(t)1/2‖u0‖1, which is the optimal decay
of the L2-norm.

Remark 3.2. If assumptions on L are as in Section 2 (i.e., stronger
than in Theorem 3.2), then ϑ is a power function (cf. also [16, Th. 6.3]),
and in this case the above proof applies to solutions of arbitrary sign (the
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norm ‖u(t)‖1 might be strictly less than that of u0 but this causes no ad-
ditional difficulties). This remark is essential for the presentation of results
concerning solutions of arbitrary sign in Theorem 3.3 below.

A further extension, based on (3.5) and (3.3), of the proof of Theorem
3.2 leads to the estimate

‖u(t)‖p ≤ m(t)1/p‖u0‖p/2
for each 2 ≤ p <∞.

Our next task is to prove the L∞-decay of solutions using a reasoning
similar to that in [12, Th. 2.2.7]. Note that, for the conservation laws in-
volving just Brownian diffusion, the authors of [10] found a precise decay
in terms of ‖u0‖q, 1 ≤ q ≤ p ≤ ∞, including best multiplicative constants,
of all Lp-norms of solutions. They used the generalized logarithmic Sobolev
inequalities (equivalent to the Nash inequality), but even for q = 1, p = 2,
they needed more restrictive assumptions than those in the proof of the
above Theorem 3.2. Also, recall that in [5] we proved the L2-decay of solu-
tions of (1.1). Our approach via Fourier splitting was more elementary but
it applied only to simpler operators L.

Theorem 3.3. Suppose that the linear semigroup e−tL satisfies a decay
estimate

‖e−tL‖2,∞ ≤ eM(t).(3.11)

Then solutions of the nonlinear Cauchy problem (1.1)–(1.3) satisfy

‖u(t)‖∞ ≤ eM(t)‖u0‖2.(3.12)

Proof. Without loss of generality, we may assume that u(x, t) is non-
negative. Indeed, by the comparison principle (cf. Corollary 3.1), we have
|u(x, t)| ≤ v(x, t) for almost all x ∈ Rn and t ≥ 0, where v(x, t) is the
solution to (1.1) with initial data |u0(x)|.

Now, it follows from [12, Th. 2.2.4], that (3.11) implies the generalized
logarithmic Sobolev inequality (2.5). Here p = p(s) ∈ [2,∞) is chosen so
that p(s) = 2t/(t− s), 0 ≤ s < t, hence

dp

ds
=
p2

2t
, p(0) = 2, lim

s→t
p(s) =∞,

and ∞�

2

p−1 2t
p
dp = t.

We also take ε(p) = 2t/p (= t − s) in (2.5), and Γ becomes Γ (ε, p) =
2β(ε(p))/p for the function β(ε) = Γ (ε, 2) linked to (2.5). Finally, we define
N to have

dN

ds
=

2β(ε(p))
pε(p)

and N(0) = 0.
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Next, we calculate
d

ds
log(e−N(s)‖u(s)‖p(s)) =

d

ds

(
−N +

1
p

log ‖u‖pp
)

= − 2β(ε)
pε
− 1
p2

p

ε
log ‖u‖pp

+
1
p
‖u‖−pp

(
−p〈Lu, up−1〉+ 0 +

p

ε

�
up log u

)

=
1
ε
‖u‖−pp

( �
up log u− ε〈Lu, up−1〉 − 2β

p
‖u‖pp − ‖u‖pp log ‖u‖p

)
≤ 0,

in view of (2.5). Observe that

M(t) ≡
t�

0

dN(s)
s

=
t�

0

2β(ε(p))
pε(p)

ds =
1
t

t�

0

β(s) ds,

which gives (3.12). The above argument was adapted from [12, Th. 2.2.7],
where it was used in the linear case.

It is immediately seen that under the assumptions of Theorems 3.2 and
3.3 we have

‖u(t)‖∞ ≤ eM(t/2)‖u(t/2)‖2 ≤ eM(t/2)m(t/2)1/2‖u0‖1.(3.13)

Corollary 3.2. Under assumption (2.11) on e−tL, solutions of the ini-
tial value problem (1.1)–(1.3) with u0 ∈ L1(Rn) satisfy the estimates

‖u(t)‖p ≤ Cp min(t−n(1−1/p)/2, t−n(1−1/p)/α)‖u0‖1(3.14)

for all 1 ≤ p ≤ ∞ and t > 0. Moreover , if u0 ∈ L1(Rn) ∩ L∞(Rn), then

‖u(t)‖p ≤ C(1 + t)−n(1−1/p)/α,(3.15)

with a constant C which depends on ‖u0‖1 and ‖u0‖p.
Proof. Assumption (2.11) on the semigroup generated by L implies that

both functions eM(t), m(t)1/2, themselves majorizing the norms ‖e−tL‖2,∞,
‖e−tL‖1,2, respectively, can be bounded above by min(c1t

−n/4, c2t
−n/(2α)).

Thus, the interpolation inequality

‖v‖p ≤ ‖v‖1/p1 ‖v‖1−1/p
∞(3.16)

and (3.13) give the estimate (3.14), which blows up near t = 0. The estimate
(3.15) results from (3.13) and the Lp-contraction property (3.3).

Remark 3.3. An extension

‖u(t)‖p ≤ C(1 + t)−n(1/q−1/p)/α

of (3.15) holds true for solutions of (1.1)–(1.3), all t ≥ 0, and for the whole
range of exponents 1 ≤ q ≤ 2 ≤ p ≤ ∞. Here, the constant C depends on
the norms ‖u0‖q and ‖u0‖p. To prove this estimate one can modify the proof
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of Theorem 3.3 to have (3.15) for 2 ≤ q and p =∞. Then, an interpolation
concludes the proof.

4. The first order term of asymptotics. Under the decay assump-
tions on e−tL formulated in Section 2 we now arrive at a result which gives
the first term of the asymptotics of the solution of the problem (1.1)–(1.3).
As it happens, that term exactly corresponds to the asymptotics for the so-
lution of the corresponding linear equation with the same initial data. The
phenomenon can be viewed as the asymptotic stability of solutions in L1,
which, in turn, can be interpreted as a mixing property of e−tL, shared by
the nonlinear semigroup associated with (1.1) (cf. [22]).

Theorem 4.1. Assume that u is a solution of the Cauchy problem (1.1)–
(1.3) with u0 ∈ L1(Rn) ∩ L∞(Rn), and that −L generates the semigroup
e−tL satisfying (2.6)–(2.7) for some 0 < α < 2. Furthermore, suppose that
f ∈ C1(R,Rn) and |f(s)| ≤ c(R)|s|r for some r > max((α − 1)/n + 1, 1),
a continuous nondecreasing function c(·) on [0,∞), and |s| ≤ R. Then, for
every p ∈ [1,∞],

tn(1−1/p)/α‖u(t)− e−tLu0‖p → 0 as t→∞.(4.1)

The proof depends on the following

Lemma 4.1. Under the assumptions of Theorem 4.1, for every p ∈ [1,∞],
there exists a constant C such that , for all t > 0,

(4.2)
∥∥∥
t/2�

0

∇ · e−(t−τ)Lf(u(τ)) dτ
∥∥∥
p

≤ C




t−n(1−1/p)/α−1/α+1−n(r−1)/α for n(r − 1) < α < 2,
t−n(1−1/p)/α−1/α log(1 + t) for α = n(r − 1),
t−n(1−1/p)/α−1/α for 0 < α < n(r − 1),

and

(4.3)
∥∥∥

t�

t/2

∇ · e−(t−τ)Lf(u(τ)) dτ
∥∥∥
p

≤ C




t−n(1−1/p)/α−n(r−1)/α−1/α+1 for 1 < α < 2,
t−n(1−1/p)/α−n(r−1)/α log(1 + t) for α = 1,
t−n(1−1/p)/α−n(r−1)/α for 0 < α < 1.

Proof. For τ ∈ [0, t/2], we use (2.7), the growth assumptions on f , (3.7)
and (3.15), which leads to

‖∇ · e−(t−τ)Lf(u(τ))‖p ≤ C(t− τ)−n(1−1/p)/α−1/αc(‖u0‖∞)‖u(τ)‖rr
≤ C(t− τ)−n(1−1/p)/α−1/α(1 + τ)−n(r−1)/α.
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Hence, the Lp-norm on the left hand side of (4.2) is bounded by

C

t/2�

0

(t− τ)−n(1−1/p)/α−1/α(1 + τ)−n(r−1)/α dτ

≤ C(t/2)−n(1−1/p)/α−1/α
t/2�

0

(1 + τ)−n(r−1)/α dτ

≤ C




t−n(1−1/p)/α−1/α+1−n(r−1)/α for n(r − 1) < α < 2,
t−n(1−1/p)/α−1/α log(1 + t) for α = n(r − 1),
t−n(1−1/p)/α−1/α for 0 < α < n(r − 1).

Using again (2.7) and (3.15), we estimate the Lp-norm in (4.3) by
t�

t/2

‖∇e−(t−τ)L‖1,1‖u(τ)‖rrp dτ ≤ C(t/2)−n(r−1/p)/α
t�

t/2

‖∇e−(t−τ)L‖1,1 dτ.

Then, for 1 < α < 2, we immediately have
t�

t/2

‖∇e−(t−τ)L‖1,1 dτ ≤ C
t�

t/2

(t− τ)−1/α dτ ≤ Ct1−1/α.

For 0 < α ≤ 1, using (2.7), we obtain
t�

t/2

‖∇e−(t−τ)L‖1,1 dτ ≤ C
t−1�

t/2

(t− τ)−1/α dτ + C

t�

t−1

(t− τ)−1/2 dτ.

It is easy to see that, if 0 < α < 1, both integrals on the right hand side are
uniformly bounded for t ≥ 1. However, for α = 1, the first of them grows as
log(1 + t).

Proof of Theorem 4.1. Now, (4.1) is an immediate consequence of the
integral equation (3.1), of the decomposition

t�

0

∇ · e−(t−τ)Lf(u(τ)) dτ =
t/2�

0

. . . dτ +
t�

t/2

. . . dτ,

and of the preceding lemma which gives a more precise decay of the remain-
der u(t)− e−tLu0.

5. The second order term of asymptotics. In this section we find
the second term of the large time asymptotics of solutions of the problem
(1.1)–(1.3). That term reflects nonlinear effects. Compared to the previous
sections, the assumptions on the nonlinearity are more restrictive here. For
simplicity of exposition, we limit ourselves to the case of f ∈ C2(R,Rn).
Since one can always assume that f(0) = f ′(0) = 0, we immediately see from
the Taylor expansion that |f(s)| ≤ c(R)|s|2 for |s| ≤ R with some continuous
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nondecreasing function c(·) on [0,∞). Hence, in view of the inequalities (3.7)
and (3.15), we have

�
|f(u(y, t))| dy ≤ c(‖u0‖∞)

�
|u(y, t)|2 dy ≤ C(1 + t)−n/α.(5.1)

Moreover, in the one-dimensional case, the additional assumptions f ∈
C3(R,R) and f ′′(0) = 0 allow us to use the estimate |f(s)| ≤ c(R)|s|3 for
|s| ≤ R, which implies, in view of (3.3) and (3.15), that

�
|f(u(y, t))| dy ≤ c(‖u0‖∞)

�
|u(y, t)|3 dy ≤ C(1 + t)−2/α.(5.2)

Also, recall that the assumptions (2.8) and (2.9) imposed on the symbol
a(ξ) imply the existence of positive constants C1, C2, C3 such that

(5.3) C1|ξ|α ≤ a(ξ) ≤ C2|ξ|α for |ξ| ≤ 1, C3|ξ|2 ≤ a(ξ) for |ξ| > 1.

Theorem 5.1. Assume that u is a solution of the Cauchy problem (1.1)–
(1.3) with u0 ∈ L1(Rn)∩L∞(Rn). Let the semigroup e−tL satisfy (2.6)–(2.7),
and the symbol a(ξ) satisfy the assumptions (2.8)–(2.9) for some 0 < α < 2.
Suppose that f ∈ C2(R,Rn), f ′(0) = 0. If n = 1 and α ≥ 1, suppose that
f ∈ C3(R,R) and f ′(0) = f ′′(0) = 0. Then, for each p ∈ (1,∞],

(5.4) tn(1−1/p)/α+1/α

×
∥∥∥u(t)− e−tLu0 +

(∞�

0

�

Rn
f(u(y, τ)) dy dτ

)
· ∇(e−tL)

∥∥∥
p
→ 0

as t→∞.

Proof. First, note that the assumptions on f and (5.1) imply that, for
n ≥ 2 and 0 < α < 2, as well as for n = 1 and 0 < α < 1, we have

∞�

0

�

Rn
|f(u(y, τ))| dy dτ ≤ C

∞�

0

(1 + τ)−n/α dτ <∞.(5.5)

In view of (5.2), an analogous estimate holds true for n = 1, α ≥ 1, as long
as f ′′(0) = 0.

Now, by the integral representation (3.1) of solutions of (1.1)–(1.3), it
suffices to estimate the Lp-norm of the difference

t�

0

∇ · e−(t−τ)Lf(u(τ)) dτ −
(∞�

0

�

Rn
f(u(y, τ)) dy dτ

)
· ∇(e−tL).

Utilizing (2.7) and (5.5), we immediately obtain

tn(1−1/p)/α+1/α
∥∥∥
( ∞�

t/2

�

Rn
f(u(y, τ)) dy dτ

)
· ∇(e−tL)

∥∥∥
p

≤ C
∞�

t/2

�

Rn
|f(u(y, τ))| dy dτ → 0
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as t→∞. Moreover, it has already been proved in (4.3) that, for n ≥ 2 and
0 < α < 2 (choose r = 2 in (4.3)), and for n = 1 and α ≥ 1 (choose r = 3),

tn(1−1/p)/α+1/α
∥∥∥

t�

t/2

∇ · e−(t−τ)Lf(u(τ)) dτ
∥∥∥
p
→ 0

as t → ∞. To prove this for n = 1 and 0 < α < 1 it suffices to repeat the
argument from [5, (5.9)], hence we skip the details. Therefore the proof of
(5.4) will have been completed if we can show that, as t→∞, the quantity

(5.6) tn(1−1/p)/α+1/α

×
∥∥∥
t/2�

0

�

Rn
∇((e−(t−τ)L)(· − y)− (e−tL)(·)) · f(u(y, τ)) dy dτ

∥∥∥
p

tends to 0. To prove this assertion, we fix δ ∈ (0, 1/2) and decompose the
integration domain [0, t/2]× Rn into two parts Ω1 and Ω2, where

Ω1 = [0, δt]× {y ∈ Rn : |y| ≤ δt1/α}, Ω2 = ([0, t/2]× Rn) \Ω1.

We estimate the Lp-norm of the integral in (5.6) over Ω2 in a straight-
forward manner by the following quantity:

(5.7)
� �

Ω2

(‖∇(e−(t−τ)L)(· − y)‖p + ‖∇(e−tL)(·)‖p)|f(u(y, τ))| dy dτ

≤ C
( � �

Ω2

(t− τ)−n(1−1/p)/α−1/α|f(u(y, τ))| dy dτ

+ t−n(1−1/p)/α−1/α
� �

Ω2

|f(u(y, τ))| dy dτ
)

≤ Ct−n(1−1/p)/α−1/α
� �

Ω2

|f(u(y, τ))| dy dτ.

Now, it easily follows from (5.5) that � � Ω2
|f(u(y, τ))| dy dτ → 0 as t→∞.

Next, we estimate the integral in (5.6) over Ω1. For this purpose, we first
derive a suitable bound of

sup
|y|≤δt1/α
0<τ≤δt

‖∇(e−(t−τ)L)(· − y)−∇(e−tL)(·)‖p

≤ sup
0<τ≤δt

‖∇(e−(t−τ)L)(·)−∇(e−tL)(·)‖p

+ sup
|y|≤δt1/α

‖∇(e−tL)(· − y)−∇(e−tL)(·)‖p

≡ I1(δ, t) + I2(δ, t)
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for each p ∈ [2,∞], δ ∈ (0, 1/2), and t > 0. The tool here is the Hausdorff–
Young inequality

‖v̂‖p ≤ C‖v‖q,(5.8)

valid for every 1 ≤ q ≤ 2 ≤ p ≤ ∞ such that 1/p+ 1/q = 1. Recall that

∇(e−tL)(x) = (2π)−n
�

Rn
iξe−ta(ξ)+ixξ dξ,

so, in view of (5.8), we get

(I1(δ, t))q ≤ C sup
τ≤δt

�

Rn
|ξ|q|e−(t−τ)a(ξ) − e−ta(ξ)|q dξ(5.9)

≤ C sup
0<τ≤δt

�

|ξ|<1

. . . dξ + C sup
0<τ≤δt

�

|ξ|≥1

. . . dξ.

Now, using the elementary inequality

|e−w1 − e−w2 | ≤ |w1 − w2|e−w2 ,

valid for all 0 < w2 ≤ w1, and the assumptions imposed on a(ξ) (cf. (2.8)
and (5.3)), we obtain

sup
0<τ≤δt

�

|ξ|<1

. . . dξ ≤ sup
0<τ≤δt

�

|ξ|<1

|ξ|q|τa(ξ)|qe−q(t−τ)a(ξ) dξ

≤ C(δt)q
�

|ξ|<1

|ξ|q|ξ|qαe−C1(1−δ)t|ξ|α dξ

≤ Cδqt−n/α−q/α,
with a constant C > 0 independent of δ and t. In view of (2.9) and (5.3),
the second term on the right hand side of (5.9) is estimated directly by

C
�

|ξ|≥1

|ξ|q(e−C3(1−δ)t|ξ|2 + e−C3t|ξ|2) dξ ≤ Ct−N

for every N > 0, and a constant C depending on N only.
The reasoning in the case of I2(δ, t) is similar. Using (5.8) we bound it,

for p ∈ [2,∞], by

(5.10) C sup
|y|≤δt1/α

�

Rn
|ξ|q|eiyξ − 1|qe−qta(ξ) dξ

≤ C sup
|y|≤δt1/α

�

|ξ|<1

. . . dξ + C sup
|y|≤δt1/α

�

|ξ|≥1

. . . dξ.

Now, the elementary inequality |eiyξ − 1| ≤ |yξ| yields

sup
|y|≤δt1/α

�

|ξ|≤1

. . . dξ ≤ sup
|y|≤δt1/α

�

|ξ|≤1

|ξ|q|yξ|qe−C1t|ξ|α dξ ≤ Cδqt−n/α−q/α,

with a constant C > 0 independent of δ and t.



190 P. Biler et al.

The estimation for the second term on the right hand side of (5.10) is
similar to that for the corresponding term in I1(δ, t), hence we skip the
details.

Putting together the above arguments we find that, for each p ∈ [2,∞],

sup
|y|≤δt1/α
0<τ≤δt

‖∇(e−(t−τ)L)(· − y)−∇(e−tL)(·)‖p ≤ Cδt−n(1−1/p)/α−1/α + Ct−N

for every δ ∈ (0, 1/2), t > 0, and constants independent of δ and t. Applying
this estimate to (5.6) we see that the latter is bounded by

(Cδ + Ct−N )
� �

Ω1

|f(u(y, τ))| dy dτ.

Since δ was an arbitrary number from (0, 1/2), in view of (5.7), we conclude
that, for every p ∈ [2,∞], the quantity in (5.6) tends to 0 as t→∞.

To deal with the case p ∈ (1, 2), first observe that (4.2) and (2.7) imme-
diately imply

(5.11)
∥∥∥
t/2�

0

�

Rn
(∇(e−(t−τ)L)(· − y)−∇(e−tL)(·)) · f(u(y, τ)) dy dτ

∥∥∥
1

≤
∥∥∥
t/2�

0

�

Rn
∇(e−(t−τ)L)(· − y) · f(u(y, τ)) dy dτ

∥∥∥
1

+ ‖∇(e−tL)(·)‖1
∞�

0

�

Rn
|f(u(y, τ))| dy dτ ≤ Ct−1/α.

Now, inequality (3.16), combined with (5.11) and our result for p =∞, gives
the proof that, for 1 < p < 2, the quantity in (5.6) tends to 0, as t→∞, as
well.

Remark 5.1. Theorem 5.1 does not cover the case p = 1. However, this
missing case can be handled, for L having the particular form (2.12), by
using the approximation of (e−tL) by (e−tH) for large t developed in [5,
Lemma 2.2 and Corollary 2.1]; cf. also [13].

Remark 5.2. Observe that it was crucial in the proof of Theorem 5.1
that � ∞0 � Rn |f(u(y, τ))| dy dτ <∞. Assuming, as in Theorem 4.1, that |f(s)|
≤ c(R)|s|r for some r > max((α − 1)/n + 1, 1) and |s| ≤ R, in view of
Corollary 3.2 we obtain

∞�

0

�

Rn
|f(u(y, τ))| dy dτ ≤ C

∞�

0

�

Rn
|u(y, τ)|r dy dτ

≤ C
∞�

0

(1 + t)−n(r−1)/α dτ.
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The integral on the right hand side converges provided −n(r − 1)/α < −1,
i.e., when r > α/n + 1. This simple observation allows us to relax the
conditions imposed on f in Theorem 5.1.

If max((α − 1)/n + 1, 1) < r ≤ α/n + 1, the second order term of the
asymptotics of solutions of (1.1)–(1.3) differs from that in (5.4); see e.g. [5,
Th. 1.2(i)] for n = 1, r = 2. Since the reasoning from [5, Th. 1.2] applies in
this case with no essential changes, we will not give the details of calculations
(cf. [28] and [17]).

Remark 5.3. Finally, notice that the case r = (α − 1)/n + 1 is crit-
ical in the sense that the asymptotic behavior of solutions of (1.1) is no
longer determined by the linear evolution term e−tLu0. Of course, this is
not a surprise: for n = 1, α = 2, r = 2, L = −∂2/∂x2, (1.1) becomes the
classical Burgers equation (1.5) whose solutions have a genuinely nonlinear
asymptotic behavior described in Remark 1.3. A candidate self-similar pro-
file, which may describe the asymptotics of solutions in this case, has been
constructed for the fractal Burgers equation in [3, Proposition 6.1]. A de-
tailed discussion of this issue for the general problem (1.1)–(1.3) will appear
elsewhere (cf. [6]).
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