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Weyl spectra and Weyl’s theorem

by

Young Min Han and Woo Young Lee (Suwon)

Abstract. “Weyl’s theorem” for an operator on a Hilbert space is the statement
that the complement in the spectrum of the Weyl spectrum coincides with the isolated
eigenvalues of finite multiplicity. In this paper we consider how Weyl’s theorem survives
for polynomials of operators and under quasinilpotent or compact perturbations. First,
we show that if T is reduced by each of its finite-dimensional eigenspaces then the Weyl
spectrum obeys the spectral mapping theorem, and further if T is reduction-isoloid then
for every polynomial p, Weyl’s theorem holds for p(T ). The results on perturbations are
as follows. If T is a “finite-isoloid” operator and if K commutes with T and is either
compact or quasinilpotent then Weyl’s theorem is transmitted from T to T + K. As a
noncommutative perturbation theorem, we also show that if the spectrum of T has no
holes and at most finitely many isolated points, and if K is a compact operator then
Weyl’s theorem holds for T +K when it holds for T .

Introduction. H. Weyl [22] examined the spectra of all compact pertur-
bations T +K of a hermitian operator T and discovered that λ ∈ σ(T +K)
for every compact operator K if and only if λ is not an isolated eigen-
value of finite multiplicity in σ(T ). Today this result is known as Weyl’s
theorem, and it has been extended from hermitian operators to hyponor-
mal operators and to Toeplitz operators by L. Coburn [7], to several classes
of operators including seminormal operators by S. Berberian [2], [3], and
to a few classes of Banach space operators [15], [17]. Weyl’s theorem may
fail for the square of T when it holds for T (see [18, Example 1]). In [14],
it was shown that Weyl’s theorem holds for polynomials of hyponormal
operators. The first aim of this paper is to extend this result via Berbe-
rian spectra. On the other hand, Weyl’s theorem is liable to fail under
small perturbations if “small” is interpreted in the sense of compact or
quasinilpotent. Recently Weyl’s theorem under small perturbations has been
considered in [11]–[13], and [18]. The second aim of this paper is to explore
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how Weyl’s theorem survives under quasinilpotent or compact perturba-
tions.

Throughout this paper, H denotes an infinite-dimensional separable
Hilbert space. Let L(H) denote the algebra of bounded linear operators
on H and K(H) the closed ideal of compact operators on H. If T ∈ L(H) we
write %(T ) for the resolvent set of T ; σ(T ) for the spectrum of T ; π0(T ) for
the set of eigenvalues of T ; π0f(T ) for the eigenvalues of finite multiplicity;
π0i(T ) for the eigenvalues of infinite multiplicity. An operator T ∈ L(H) is
said to be Fredholm if T−1(0) and T (H)⊥ are both finite-dimensional. The
index of a Fredholm operator T ∈ L(H), denoted by ind(T ), is given by

ind(T ) = dimT−1(0)− dimT (H)⊥ (= dimT−1(0)− dimT ∗−1(0)).

An operator T ∈ L(H) is said to be Weyl if it is Fredholm of index zero,
and Browder if it is Fredholm “of finite ascent and descent”; equivalently
[9, Theorem 7.9.3] if T is Fredholm and T − λI is invertible for sufficiently
small λ 6= 0 in C. The essential spectrum σe(T ), the Weyl spectrum ω(T )
and the Browder spectrum σb(T ) of T ∈ L(H) are defined by

σe(T ) = {λ ∈ C : T − λI is not Fredholm},
ω(T ) = {λ ∈ C : T − λI is not Weyl},
σb(T ) = {λ ∈ C : T − λI is not Browder};

then (cf. [9])

(0.1) σe(T ) ⊆ ω(T ) ⊆ σb(T ) = σe(T ) ∪ accσ(T ) and ω(T ) ⊆ η σe(T ),

where we write accK and η K for the accumulation points and the polyno-
mially-convex hull , respectively, of K ⊆ C. If we write isoK = K \ accK,
and ∂K for the topological boundary of K, and

(0.2) π00(T ) := {λ ∈ isoσ(T ) : 0 < dim (T − λI)−1(0) <∞}
for the isolated eigenvalues of finite multiplicity, and ([9])

(0.3) p00(T ) := σ(T ) \ σb(T )

for the Riesz points of σ(T ), then by the punctured neighborhood theorem,
i.e., ∂σ(T ) \ σe(T ) ⊆ isoσ(T ) (cf. [9], [10]),

(0.4) isoσ(T ) \ σe(T ) = isoσ(T ) \ ω(T ) = p00(T ) ⊆ π00(T ).

We say that Weyl’s theorem holds for T ∈ L(H) if there is equality

(0.5) σ(T ) \ ω(T ) = π00(T ).

If T ∈ L(H), we write r(T ) for the spectral radius of T . It is familiar
that r(T ) ≤ ‖T‖. An operator T is called normaloid if r(T ) = ‖T‖, and
isoloid if isoσ(T ) ⊆ π0(T ). An operator T is called reduction-isoloid if the
restriction of T to any reducing subspace is isoloid. It is well known [21,
Theorem 2] that every hyponormal operator is reduction-isoloid.
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In Section 1, we prove that Weyl spectra, Browder spectra, and Berberian
spectra all coincide for operators reduced by each of their finite-dimensional
eigenspaces. We also use this result to show that if T is reduced by each
of its finite-dimensional eigenspaces then Weyl spectrum obeys the spec-
tral mapping theorem, and further if T is reduction-isoloid then for every
polynomial p, Weyl’s theorem folds for p(T ).

In Section 2, we show that if T is “finite-isoloid” then Weyl’s theorem is
transmitted from T to T+K when K is either compact or quasinilpotent and
commutes with T , and that if T is a finite-isoloid operator whose spectrum
has no holes and at most finitely many isolated points then Weyl’s theorem
is transmitted from T to T +K when K is a compact operator. In addition
we give applications to p-hyponormal operators, Toeplitz operators, and
unilateral weighted shifts.

1. Berberian spectra and Weyl’s theorem. Suppose that T ∈ L(H)
is reduced by each of its finite-dimensional eigenspaces. If

M :=
∨
{(T − λI)−1(0) : λ ∈ π0f(T )},

then M reduces T . Let T1 := T |M and T2 := T |M⊥. Then we have [3, Propo-
sition 4.1]:

(i) T1 is a normal operator with pure point spectrum;
(ii) π0(T1) = π0f(T );
(iii) σ(T1) = clπ0(T1);
(iv) π0(T2) = π0(T ) \ π0f(T ) = π0i(T ).

In this case, Berberian [3, Definition 5.4] defined

(1.0.1) τ(T ) := σ(T2) ∪ accπ0f(T ).

We shall call τ(T ) the Berberian spectrum of T . Berberian used the nota-
tion τ ′(T ). He also showed that τ(T ) is a nonempty compact subset of σ(T ).
We can, however, show that Weyl spectra, Browder spectra, and Berberian
spectra all coincide for operators reduced by each of their finite-dimensional
eigenspaces:

Theorem 1.1. If T ∈ L(H) is reduced by each of its finite-dimensional
eigenspaces then

(1.1.1) τ(T ) = ω(T ) = σb(T ).

Proof. Let M be the closed linear span of the eigenspaces (T −λI)−1(0)
(λ ∈ π0f(T )) and write

T1 := T |M and T2 := T |M⊥.
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From the preceding arguments it follows that T1 is normal, π0(T1) = π0f(T )
and π0f(T2) = ∅. For (1.1.1) it will be shown that

(1.1.2) ω(T ) ⊆ τ(T ) ⊆ σb(T )

and

(1.1.3) σb(T ) ⊆ ω(T ).

For the first inclusion of (1.1.2) suppose λ ∈ σ(T ) \ τ(T ). Then T2 − λI
is invertible and λ ∈ isoπ0(T1). Since also π0(T1) = π0f(T1), we see that
λ ∈ π00(T1). But since T1 is normal, it follows that T1 − λI is Weyl and
hence so is T −λI. This proves the first inclusion. For the other inclusion of
(1.1.2) suppose λ ∈ σ(T )\σb(T ). Thus T −λI is Browder but not invertible.
Observe that the following equality holds with no other restriction on either
R or S:

(1.1.4) σb(R⊕ S) = σb(R) ∪ σb(S) for each R∈L(H1) and S ∈L(H2).

Indeed, if λ ∈ isoσ(R⊕S) then λ is either an isolated point of the spectra of
direct summands or a resolvent element of direct summands, so that if R−λI
and S−λI are Fredholm then by (0.4), λ is either a Riesz point or a resolvent
element of direct summands, which implies that σb(R)∪σb(S) ⊆ σb(R⊕S),
and the reverse inclusion is evident. From this we can see that T1 − λI and
T2 − λI are both Browder. But since π0f(T2) = ∅, it follows that T2 − λI is
one-one and hence invertible. Therefore λ ∈ π00(T1) \ σ(T2), which implies
that λ 6∈ τ(T ). This proves the second inclusion of (1.1.2).

For (1.1.3) suppose λ ∈ σ(T ) \ ω(T ) and hence T − λI is Weyl but not
invertible. Observe that if H1 is a Hilbert space and an operator R ∈ L(H1)
satisfies ω(R) = σe(R), then (cf. [11, Theorem 5])

(1.1.5) ω(R⊕ S) = ω(R) ∪ ω(S)

for each Hilbert space H2 and S ∈ L(H2).

Since T1 is normal, applying (1.1.5) to T1 in place of R shows that T1−λI and
T2−λI are both Weyl. But since π0f(T2) = ∅, T2−λI must be invertible and
therefore λ ∈ σ(T1)\ω(T1). Thus from Weyl’s theorem for normal operators
we can see that λ ∈ π00(T1) and hence λ ∈ isoσ(T1)∩ %(T2), which by (0.4)
implies that λ 6∈ σb(T ). This proves (1.1.3) and completes the proof.

As applications of Theorem 1.1 we will give several corollaries below.

Corollary 1.2. If T ∈ L(H) is reduced by each of its finite-dimensio-
nal eigenspaces then σ(T ) \ ω(T ) ⊆ π00(T ).

Proof. This follows at once from Theorem 1.1.
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Weyl’s theorem is not transmitted to dual operators: for example if T :
`2 → `2 is the unilateral weighted shift defined by

(1.2.1) Ten =
1

n+ 1
en+1 (n ≥ 0),

then σ(T ) = ω(T ) = {0} and π00(T ) = ∅, and therefore Weyl’s theorem
holds for T , but fails for its adjoint T ∗. We however have:

Corollary 1.3. If T ∈ L(H) is reduced by each of its finite-dimensio-
nal eigenspaces and isoσ(T ) = ∅, then Weyl’s theorem holds for T and T ∗.
In this case, σ(T ) = ω(T ).

Proof. If isoσ(T ) = ∅, then it follows from Corollary 1.2 that σ(T ) =
ω(T ), which says that Weyl’s theorem holds for T . The assertion that Weyl’s
theorem holds for T ∗ follows by noting that σ(T )∗ = (σ(T ))−, ω(T ∗) =
(ω(T ))− and π00(T ∗) = (π00(T ))− = ∅.

In Corollary 1.3, “isoσ(T ) = ∅” cannot be replaced by “π00(T ) = ∅”: for
example consider the operator T defined by (1.2.1).

Corollary 1.4 ([2, Theorem]). If T ∈ L(H) is reduction-isoloid and
is reduced by each of its finite-dimensional eigenspaces then Weyl’s theorem
holds for T .

Proof. In view of Corollary 1.2, it is sufficient to show that π00(T ) ⊆
σ(T ) \ ω(T ). Suppose λ ∈ π00(T ). Then with the preceding notations, λ ∈
π00(T1) ∩ [isoσ(T2) ∪ %(T2)]. If λ ∈ isoσ(T2), then since by assumption T2

is isoloid we have λ ∈ π0(T2) and hence λ ∈ π0f(T2). But since π0f(T2) = ∅,
we should have λ 6∈ isoσ(T2). Thus λ ∈ π00(T1) ∩ %(T2). Since T1 is normal
it follows that T1−λI is Weyl and so is T −λI; therefore λ ∈ σ(T )\ω(T ).

If “reduction-isoloid” is replaced by “isoloid” then Corollary 1.4 may fail
(see Examples (1) of [2]).

Corollary 1.5. If T ∈ L(H) is reduced by each of its finite-dimensio-
nal eigenspaces then

(1.5.1) p(ω(T )) = ω(p(T )) for every polynomial p.

Further if T is reduction-isoloid then for every polynomial p, Weyl’s theorem
holds for p(T ).

Proof. We first claim that if T is reduced by each of its finite-dimensional
eigenspaces then so is p(T ) for any polynomial p: indeed, if we write T =
T1 ⊕ T2 as in the proof of Theorem 1.1, then p(T ) = p(T1) ⊕ p(T2) shows
that p(T1) is normal and π0f(p(T2)) ⊆ p(π0f(T2)) = p(∅) = ∅, which implies
that p(T ) is reduced by each of its finite-dimensional eigenspaces because
any normal operator is reduced by each of its finite-dimensional eigenspaces.
Therefore the first assertion follows from Theorem 1.1 together with the fact
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that the Browder spectrum obeys the spectral mapping theorem. The second
assertion follows from Theorem 1 of [18] and Corollary 1.4.

An operator T ∈ L(H) is said to be p-hyponormal if (T ∗T )p−(TT ∗)p ≥ 0
(cf. [1], [4]). If p = 1, then T is hyponormal and if p = 1

2 , then T is semi-
hyponormal . In [14, Theorem 2], it was shown that if T is hyponormal then
for every polynomial p, Weyl’s theorem holds for p(T ). We can prove more:

Corollary 1.6. If T ∈ L(H) is p-hyponormal then for every polyno-
mial p, Weyl’s theorem holds for p(T ).

Proof. This follows from Corollary 1.5 and the fact that every p-hypo-
normal operator is isoloid ([6, Theorem 1]) and is reduced by each of its
eigenspaces ([5, Theorem 4]).

L. Coburn [7, Corollary 3.2] has shown that if T ∈ L(H) is hyponormal
and π00(T ) = ∅, then T is extremally noncompact , in the sense that

‖T‖ = ‖π(T )‖,
where π is the canonical map of L(H) onto the Calkin algebra L(H)/K(H).
His proof relies upon the fact that Weyl’s theorem holds for hyponormal
operators, and hence σ(T ) = ω(T ) since π00(T ) = ∅. Now we can strengthen
Coburn’s argument slightly:

Corollary 1.7. If T ∈ L(H) is normaloid and π00(T ) = ∅, then T is
extremally noncompact.

Proof. Since σ(T ) ⊆ η ω(T ) ∪ p00(T ) for any T ∈ L(H), we deduce that
η σ(T )\η ω(T ) ⊆ π00(T ). Thus by our assumption, η σ(T ) = η ω(T ). There-
fore we can argue that for each compact operator K ∈ L(H),

‖T‖ = r(T ) = rω(T ) = rω(T +K) ≤ r(T +K) ≤ ‖T +K‖,
where rω(T ) denotes the “Weyl spectral radius”. This completes the proof.

Note that if T ∈ L(H) is normaloid and π00(T ) = ∅, then Weyl’s theorem
may fail for T ; for example, take H = `2 ⊕ `2 and T = U ⊕ U∗, where U is
the unilateral shift.

2. Weyl’s theorem under small perturbations. In general Weyl’s
theorem for T ∈ L(H) is not sufficient for Weyl’s theorem for T + K with
compact (even finite rank) K ∈ L(H) commuting with T (cf. [13, Ex-
ample 2.3]). But if T ∈ L(H) is isoloid then Weyl’s theorem is transmit-
ted from T to T + K for commuting finite rank operators K ∈ L(H)
(cf. [13, Theorem 2.2]). But this may fail if “finite rank” is replaced by
“compact”. In fact Weyl’s theorem may fail even if K is both compact and
quasinilpotent: for example, take T = 0 and K the operator on `2 defined
by K(x1, x2, . . .) = (x2/2, x3/3, x4/4, . . .). We will however show that if the



Weyl spectra and Weyl’s theorem 199

“isoloid” condition is slightly strengthened then Weyl’s theorem is transmit-
ted from T to T +K if K is either a compact or a quasinilpotent operator
commuting with T . We begin with:

Proposition 2.1. If K ∈ L(H) is a compact operator commuting with
T ∈ L(H) then

π00(T +K) ⊆ isoσ(T ) ∪ %(T ).

Proof. Suppose λ ∈ π00(T + K). Assume to the contrary that λ ∈
accσ(T ). Observe that σ(T ) = σb(T ) ∪ p00(T ) for every T ∈ L(H). Since
the Browder spectrum is invariant under commuting compact perturbations
[9, Theorem 7.7.5], it follows that the difference between σ(T ) and σ(T +K)
consists of the difference between p00(T ) and p00(T + K). Since by our as-
sumption, λ ∈ isoσ(T + K) ∩ accσ(T ), we can find a sequence {λn} of
distinct numbers in p00(T ) \ p00(T +K) satisfying

(i) limn λn = λ;
(ii) σ := {λn}∞n=1 ∪ {λ} is an isolated part of σ(T ).

If N is a neighborhood of σ which contains no other points of σ(T ), then by
using the spectral projection P = (2πi)−1 �

∂N (µI − T )−1 dµ corresponding
to σ, we can write T as

T =
(
T1 0
0 T2

)
,

where σ(T1) = σ and σ(T2) = σ(T)\σ. Since TK=KT and σ(T1)∩σ(T2)=∅,
it follows from a corollary of Rosenblum’s Theorem (cf. [19, Corollary 0.14])
that K admits a matrix representation

K =
(
K1 0
0 K2

)
with TiKi = KiTi (i = 1, 2).

Since λ ∈ π00(T+K) we can suppose that dim (T+K−λI)−1(0) =: m <∞
and hence dim (T1 + K1 − λI)−1(0) ≤ m. Observe that σb(T1 + K1) =
σb(T1) = {λ}. But since λ ∈ isoσ(T1 +K1), it follows that σ(T1 +K1) \ {λ}
consists of finitely many elements which are its Riesz points. Therefore
σ(T1 +K1) = p00(T1 +K1) ∪ {λ}. Write

s :=
∑

z∈p00(T1+K1)

dim (T1 +K1 − z I)−1(0).

Then evidently s < ∞. On the other hand, since λn ∈ p00(T ) for every
n = 1, 2, . . . , using the spectral projections corresponding to the set {λj}
for j = 1, . . . , s+m+ 1, we can write T1 as
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T1 =




T11

T12 0
. . .

0
. . .

T1,s+m+1



⊕ T3,

where σ(T1j) = {λj} for j = 1, . . . , s+m+ 1, and σ(T3) = {λn}∞n=s+m+2 ∪
{λ}. Note that σb(T1j) = ∅ for j = 1, . . . , s + m + 1. Therefore each T1j

(j = 1, . . . , s+m+ 1) is a finite-dimensional operator because σb(S) 6= ∅ for
every bounded linear operator S on an infinite-dimensional Hilbert space.
Since T1K1 = K1T1 and the λj (j = 1, . . . , s+m+ 1) are mutually distinct,
it again follows from [19, Corollary 0.14] that K1 can be written in the form

K1 =




K11

K12 0
. . .

0
. . .

K1,s+m+1



⊕K3.

Observe that T1j +K1j is a finite-dimensional operator for every j = 1, . . . ,
s + m + 1 and σ(T1j + K1j) ⊆ σ(T1 + K1) = p00(T1 + K1) ∪ {λ} for every
j = 1, . . . , s+m+ 1. But since

s+m+1∑

j=1

∑

z∈σ(T1j+K1j)

dim (T1j +K1j − zI)−1(0) ≥ s+m+ 1,

it follows that λ ∈ σ(T1j + K1j) for at least (m + 1) j’s, which implies
that dim (T1 +K1 − λI)−1(0) ≥ m+ 1, a contradiction. This completes the
proof.

An operator T ∈ L(H) will be said to be finite-isoloid if isoσ(T ) ⊆
π0f(T ). Evidently finite-isoloid⇒ isoloid. The converse is not true in general:
for example, take T = 0. In particular if σ(T ) has no isolated points then T
is finite-isoloid. We now have:

Theorem 2.2. Suppose T ∈ L(H) is finite-isoloid. If Weyl’s theorem
holds for T then it holds for T +K if K ∈ L(H) commutes with T and is
either compact or quasinilpotent.

Proof. First we assume that K is a compact operator commuting with T .
Suppose Weyl’s theorem holds for T . We first claim that with no restriction
on T ,

(2.2.1) σ(T +K) \ ω(T +K) ⊆ π00(T +K).

It suffices to show that if λ ∈ σ(T +K) \ ω(T +K) then λ ∈ isoσ(T +K).
Assume to the contrary that λ ∈ accσ(T+K). Then λ ∈ σb(T+K) = σb(T ),
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so that λ ∈ σe(T ) or λ ∈ accσ(T ). Remember that the essential spectrum
and the Weyl spectrum are invariant under compact perturbations. Thus
if λ ∈ σe(T ) then λ ∈ σe(T + K) ⊆ ω(T + K), a contradiction. Therefore
we should have λ ∈ accσ(T ). But since Weyl’s theorem holds for T and
λ 6∈ ω(T + K) = ω(T ), it follows that λ ∈ π00(T ), a contradiction. This
proves (2.2.1).

For the reverse inclusion suppose λ ∈ π00(T + K). Then by Propo-
sition 2.1, either λ ∈ isoσ(T ) or λ ∈ %(T ). If λ ∈ %(T ) then evidently
T + K − λI is Weyl, i.e., λ 6∈ ω(T + K). If instead λ ∈ isoσ(T ) then
λ ∈ π00(T ) whenever T is finite-isoloid. Since Weyl’s theorem holds for T , it
follows that λ 6∈ ω(T ) and hence λ 6∈ ω(T + K). Therefore Weyl’s theorem
holds for T +K.

Next we assume that K is a quasinilpotent operator commuting with T .
Then it is known [18, Lemma 2] that $(T ) = $(T + Q) with $ = σ, ω.
Suppose Weyl’s theorem holds for T . Then

σ(T +K) \ ω(T +K) = σ(T ) \ ω(T ) = π00(T )

⊆ isoσ(T ) = isoσ(T +K),

which implies that σ(T +K)\ω(T +K) ⊆ π00(T +K). Conversely, suppose
λ ∈ π00(T + K). If T is finite-isoloid then λ ∈ isoσ(T + K) = isoσ(T ) ⊆
π0f(T ). Thus λ ∈ π00(T ) = σ(T ) \ ω(T ) = σ(T + K) \ ω(T + K). This
completes the proof.

Corollary 2.3. Suppose T ∈ L(H) is p-hyponormal. If either

(i) isoσ(T ) = ∅, or
(ii) T has finite-dimensional eigenspaces,

then Weyl’s theorem holds for T + K if K ∈ L(H) is either compact or
quasinilpotent and commutes with T .

Proof. Observe that each of the conditions (i) and (ii) forces p-hypo-
normal operators to be finite-isoloid. Since Weyl’s theorem holds for p-
hyponormal operators ([6]), the result follows at once from Theorem 2.2.

It is known [18, Theorem 3] that Weyl’s theorem is transmitted from T ∈
L(H) to T +K for commuting nilpotent operators K ∈ L(H). This however
does not extend to commuting quasinilpotent operators (see the remark
above Proposition 2.1). But if K is an injective quasinilpotent operator
commuting with T then Weyl’s theorem is transmitted from T to T +K.

Theorem 2.4. If Weyl’s theorem holds for T ∈ L(H) then it holds for
T + K if K ∈ L(H) is an injective quasinilpotent operator commuting
with T .
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Proof. First of all we prove that if there exists an injective quasinilpotent
operator commuting with T , then

(2.4.1) T Weyl ⇒ T injective.

To show this suppose K is an injective quasinilpotent operator commuting
with T . Assume to the contrary that T is Weyl but not injective. Then there
exists a nonzero vector x ∈ H such that Tx = 0. Then by commutativity,
TKnx = KnTx = 0 for every n = 0, 1, 2, . . . , so that Knx ∈ T−1(0) for
every n = 0, 1, 2, . . . We now claim that {Knx}∞n=0 is a sequence of linearly
independent vectors in H. To see this suppose c0x+c1Kx+. . .+cnKnx = 0.
We may then write cn(K − λ1I) . . . (K − λnI)x = 0. Since K is an injective
quasinilpotent operator it follows that (K − λ1I) . . . (K − λnI) is injective.
But since x 6= 0 we have cn = 0. By induction we also have cn−1 = . . . =
c1 = c0 = 0. This shows that {Knx}∞n=0 is a sequence of linearly independent
vectors inH. From this we can see that T−1(0) is infinite-dimensional, which
contradicts the fact that T is Weyl. This proves (2.4.1).

From (2.4.1) we see that if Weyl’s theorem holds for T then π00(T ) = ∅.
We now claim that π00(T +K) = ∅. Indeed, if λ ∈ π00(T + K), then 0 <
dim (T + K − λI)−1(0) < ∞, so that there exists a nonzero vector x ∈ H
such that (T + K − λI)x = 0. But since K commutes with T + K − λI,
the same argument as in the proof of (2.4.1) with T + K − λI in place
of T shows that (T +K − λI)−1(0) is infinite-dimensional, a contradiction.
Therefore π00(T+K) = ∅ and hence Weyl’s theorem holds for T+K because
$(T ) = $(T +K) with $ = σ, ω.

In Theorem 2.4, “quasinilpotent” cannot be replaced by “compact”. For
example consider the following operators on `2 ⊕ `2:

T =




0
1/2 0

1/3
0 1/4

. . .



⊕ I and K=




1
−1/2 0

−1/3
0 −1/4

. . .



⊕Q,

where Q is an injective compact quasinilpotent operator on `2. Observe
that Weyl’s theorem holds for T , K is an injective compact operator, and
TK = KT . But

σ(T +K) = {0, 1} = ω(T +K) and π00(T +K) = {1},
which says that Weyl’s theorem does not hold for T +K.

In perturbation theory the commutativity condition looks so rigid. With-
out it, however, the spectrum can undergo a substantial change even under
rank one perturbations. In spite of it, Weyl’s theorem may hold for (noncom-
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mutative) compact perturbations of “good” operators. We now give such a
perturbation theorem. To do this we need:

Lemma 2.5. If N ∈ L(H) is a quasinilpotent operator commuting with
T ∈ L(H) modulo compact operators (i.e., TN−NT ∈ K(H)) then σe(T+N)
= σe(T ) and ω(T +N) = ω(T ).

Proof. Straightforward from [18, Lemma 2].

Theorem 2.6. Suppose T ∈ L(H) satisfies the following :

(i) T is finite-isoloid ;
(ii) σ(T ) has no “holes” (bounded components of the complement), i.e.,

σ(T ) = η σ(T );
(iii) σ(T ) has at most finitely many isolated points;
(iv) Weyl’s theorem holds for T .

If K ∈ L(H) is either compact or quasinilpotent and commutes with T
modulo compact operators then Weyl’s theorem holds for T +K.

Proof. By Lemma 2.5, we have σe(T+K) = σe(T ) and ω(T+K) = ω(T ).
Suppose Weyl’s theorem holds for T and λ ∈ σ(T +K) \ω(T +K). We now
claim that λ ∈ isoσ(T +K). Assume to the contrary that λ ∈ accσ(T +K).
Since λ 6∈ ω(T + K) = ω(T ), it follows from the punctured neighborhood
theorem that λ 6∈ ∂σ(T +K). Also since the set of all Weyl operators forms
an open subset of L(H), we have λ ∈ int(σ(T +K) \ω(T +K)). Then there
exists ε > 0 such that {µ ∈ C : |µ − λ| < ε} ⊆ int(σ(T + K) \ ω(T + K)),
and hence {µ ∈ C : |µ− λ| < ε} ∩ ω(T ) = ∅. But since

∂σ(T +K) \ isoσ(T +K) ⊆ σe(T +K) = σe(T ),

it follows from our assumption that

{µ ∈ C : |µ− λ| < ε} ⊆ int(σ(T +K) \ ω(T +K))

⊆ η (∂σ(T +K) \ isoσ(T +K))

⊆ η σe(T ) ⊆ η σ(T ) = σ(T ),

which implies that {µ ∈ C : |µ − λ| < ε} ⊆ σ(T ) \ ω(T ). This contradicts
Weyl’s theorem for T . Therefore λ ∈ isoσ(T + K) and hence σ(T + K) \
ω(T +K) ⊆ π00(T +K). For the reverse inclusion suppose λ ∈ π00(T +K).
Assume to the contrary that λ ∈ ω(T + K) and hence λ ∈ ω(T ). Then we
claim λ 6∈ ∂σ(T ). Indeed if λ ∈ isoσ(T ) then by assumption λ ∈ π00(T ),
which contradicts Weyl’s theorem for T . If instead λ ∈ accσ(T ) ∩ ∂σ(T )
then since isoσ(T ) is finite it follows that

λ ∈ acc(∂σ(T )) ⊆ accσe(T ) = accσe(T +K),

which contradicts the fact that λ ∈ isoσ(T +K). Therefore λ 6∈ ∂σ(T ). Also
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since λ ∈ isoσ(T +K), there exists ε > 0 such that

{µ ∈ C : 0 < |µ− λ| < ε} ⊆ σ(T ) ∩ %(T +K),

so that {µ ∈ C : 0 < |µ − λ| < ε} ∩ ω(T ) = ∅, which contradicts Weyl’s
theorem for T . Thus λ ∈ σ(T +K)\ω(T +K) and therefore Weyl’s theorem
holds for T +K.

If, in Theorem 2.6, the condition “σ(T ) has no holes” is dropped then
Theorem 2.6 may fail even if T is normal. For example, if on `2 ⊕ `2,

T =
(
U I − UU∗
0 U∗

)
and K =

(
0 I − UU∗
0 0

)
,

where U is the unilateral shift on `2, then T is unitary (essentially the
bilateral shift) with σ(T ) = T (the unit circle), K is a rank one nilpotent,
and Weyl’s theorem does not hold for T −K.

Also in Theorem 2.6, the condition “isoσ(T ) is finite” is essential in the
cases where K is compact. For example, if on `2,

T (x1, x2, . . .) = (x1, x2/2, x3/3, . . .),

Q(x1, x2, . . .) = (x2/2, x3/3, x4/4, . . .),

we define K := −(T +Q). Then: (i) T is finite-isoloid; (ii) σ(T ) has no holes;
(iii) Weyl’s theorem holds for T ; (iv) isoσ(T ) is infinite; (v) K is compact
because T and Q are both compact; (vi) Weyl’s theorem does not hold for
T +K (= −Q).

Corollary 2.7. If σ(T ) has no holes and at most finitely many isolated
points and if K is a compact operator then Weyl’s theorem is transmitted
from T to T +K.

Proof. Straightforward from Theorem 2.6.

Corollary 2.7 shows that if Weyl’s theorem holds for T whose spectrum
has no holes and at most finitely many isolated points then for every compact
operator K, the passage from σ(T ) to σ(T + K) adds at most countably
many isolated points outside σ(T ) which are Riesz points of σ(T +K). Here
we should note that this holds even if T is quasinilpotent because for every
quasinilpotent operator T (more generally, “Riesz operator”), we have

σ(T +K) ⊆ η σe(T +K) ∪ p00(T +K) = η σe(T ) ∪ p00(T +K)

= {0} ∪ p00(T +K).

Corollary 2.7 can easily be applied for Toeplitz operators and unilateral
weighted shifts. Below we give two corollaries on those operators. Let H2(T)
denote the Hardy space of the unit circle T = ∂D in the complex plane.
Recall ([16]) that given ϕ ∈ L∞(T), the Toeplitz operator with symbol ϕ
is the operator Tϕ on H2(T) defined by Tϕf = P (ϕ · f), where f ∈ H2(T)
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and P denotes the projection that maps L2(T) onto H2(T). For example, if
ϕ(z) = z then Tϕ represents the unilateral shift on `2. Write C(T) for the
algebra of all continuous complex-valued functions on T.

Corollary 2.8. Suppose Tϕ is a Toeplitz operator with nonconstant
continuous symbol ϕ ∈ C(T) whose winding number with respect to each
hole of ϕ(T) is nonzero. If K ∈ L(H2) is a compact operator then Weyl’s
theorem holds for Tϕ +K. Hence, in particular , if U is the unilateral shift
on `2 then Weyl’s theorem holds for U + K with every compact operator
K ∈ L(`2).

Proof. Remember ([7]) that Weyl’s theorem holds for every Toeplitz op-
erator and σ(Tϕ) has no isolated points for nonconstant symbols ϕ. The
spectral theory for Toeplitz operators with continuous symbols shows that
our assumption implies σ(Tϕ) has no holes (cf. [16]). Therefore the result
follows at once from Corollary 2.7. The second assertion is immediate from
the first.

Corollary 2.9. If T is a unilateral weighted shift with positive weights
and is not quasinilpotent , and if K ∈ L(`2) is a compact operator then
Weyl’s theorem holds for T +K.

Proof. If T is a unilateral weighted shift which is not quasinilpotent then
σ(T ) is a nondegenerate disk [20, Theorem 4]. Moreover since the weights
are positive it follows that π0(T ) = ∅, and hence σ(T ) = ω(T ), which implies
that Weyl’s theorem holds for T . Therefore the result follows at once from
Corollary 2.7.

Corollary 2.9 may fail if T is quasinilpotent: for example consider the
operators T and K defined by T (x1, x2, . . .) = (0, x1, x2/2, x3/3, . . .) and
K(x1, x2, . . .) = (0,−x1, 0, 0, . . .).
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