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Some classes of multilinear operators on C(K) spaces

by

Fernando Bombal (Madrid), Maite Fernández (Guanajuato),
and Ignacio Villanueva (Madrid)

Abstract. We obtain a classification of projective tensor products of C(K) spaces
according to whether none, exactly one or more than one factor contains copies of `1,
in terms of the behaviour of certain classes of multilinear operators on the product of
the spaces or the verification of certain Banach space properties of the corresponding
tensor product. The main tool is an improvement of some results of Emmanuele and
Hensgen on the reciprocal Dunford–Pettis and Pełczyński’s (V) properties of the projective
tensor product of Banach spaces. We also study relationships between several classes of
multilinear operators and the associated linear operators.

1. Introduction. In recent years much research has been done in the
theory of multilinear operators and polynomials between Banach spaces. In
particular, various classes of multilinear operators or polynomials have been
defined which extended the corresponding notions for linear operators, and
the relations between some of these classes have been studied. If E,F and
X are Banach spaces and T : E × F → X is a bilinear operator, it is well
known that there exists a unique linear operator T̂ : E ⊗̂π F → X canoni-
cally associated to T , where E ⊗̂π F is the projective tensor product of E
and F . In Section 2 we improve some results of Emmanuele and Hensgen to
establish, under suitable conditions, some non-trivial relationships between
several classes of bilinear operators. In Section 3 we use the results of Sec-
tion 2 to obtain a classification of projective tensor products of several C(K)
spaces, according to whether none, exactly one or more than one factor con-
tains copies of `1, in terms of the behaviour of certain classes of multilinear
operators on the product of the spaces or the verification of certain Banach
space properties of the corresponding tensor product. Finally, in Section 4
we study the relation between T̂ belonging to certain operator ideals and T
belonging to certain classes of multilinear operators.
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The notations and terminology used along the paper are standard in Ba-
nach space theory, as for instance in [9]. However, before going any further,
we recall some notions and notations. Lk(E1 . . . , Ek;X) will be the Ba-
nach space of all continuous k-linear mappings from E1 × . . .× Ek into X,
and Lkwc(E1, . . . , Ek;X) the closed subspace formed by the weakly compact
multilinear operators. When X = K or k = 1, we omit them in notation.
We write K(E;X) for the space of compact operators from E into X. As
usual, E1 ⊗̂π . . . ⊗̂π Ek stands for the (complete) projective tensor product
of the Banach spaces E1, . . . , Ek. If T ∈ Lk(E1, . . . , Ek;X) we denote by
T̂ : E1 ⊗̂π . . . ⊗̂π Ek → X its linearization.

We say that T ∈ Lk(E1, . . . , Ek;X) is completely continuous, and we
write T ∈ Lkcc(E1, . . . , Ek;X), if, given weak Cauchy sequences (xni )n∈N ⊂ Ei
(1 ≤ i ≤ k), the sequence (T (xn1 , . . . , x

n
k))n is norm convergent in X. This

definition may be adapted to polynomials in an obvious way. The space of
completely continuous polynomials is denoted by Pcc(kE;X). By the polar-
ization formula [17, Theorem 1.10], a polynomial is completely continuous if
and only if so is its associated symmetric multilinear operator. If X = K, i.e.,
if T is a multilinear form, we will use the term weakly sequentially continuous
instead of completely continuous.

If T ∈ Lk(E1, . . . , Ek;X) we denote by Ti (1 ≤ i ≤ k) the operator
Ti ∈ L(Ei;Lk−1(E1,

[i]. . . , Ek;X)) defined by

Ti(xi)(x1,
[i]. . . , xk) := T (x1, . . . , xk).

We shall say that T is regular if all the maps Ti, 1 ≤ i ≤ k, defined above
are weakly compact.

Recall that E has the Dunford–Pettis property (DPP for short) if, for ev-
ery X, Lwc(E;X) ⊆ Lcc(E;X). Examples of spaces with the DPP are C(K)
and L1(µ) spaces. E has the reciprocal Dunford–Pettis property (RDPP for
short) if, for every X, Lcc(E;X) ⊆ Lwc(E;X). The spaces containing no
copy of `1, and C(K) spaces have the RDPP. Both properties were intro-
duced in [14].

A formal series
∑
xn in a Banach space E is weakly unconditionally

Cauchy (w.u.C. for short) if there is C > 0 such that, for any finite subset
∆ of N and any signs ±, we have ‖∑n∈∆±xn‖ ≤ C. For other equivalent
definitions, see [8, Theorem V.6]. The series

∑
xn is unconditionally conver-

gent if every subseries is norm convergent. Other equivalent definitions may
be found in [9, Theorem 1.9].

A linear operator between Banach spaces is unconditionally converging if
it takes w.u.C. series to unconditionally convergent series. A Banach space E
is said to have Pełczyński’s property (V) if every unconditionally converging
linear operator on E is weakly compact. This property was introduced in
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[18], where it is shown that C(K) spaces have property (V), and that the
dual of a space with property (V) is weakly sequentially complete.

Following [12], we say that T ∈ Lk(E1, . . . , Ek;X) is unconditionally
converging if, given w.u.C. series

∑
n∈N x

n
i in Ei (1 ≤ i ≤ k), the sequence

(T (sm1 , . . . , s
m
k ))m

is norm convergent in X, where smi =
∑m

n=1 x
n
i . This definition may be

adapted to polynomials in an obvious way. Since a linear operator fails to
be unconditionally converging if and only if it preserves a copy of c0 [8,
Exercise V.8], it is clear that the definition of unconditionally converging
k-linear operators agrees for k = 1 with that of unconditionally converging
linear operators.

By the polarization formula, a polynomial is unconditionally converging
if and only if so is its associated symmetric multilinear operator.

Since BE⊗̂πF = coe(BE ⊗ BF ), it follows that T is (weakly) compact if

and only if T̂ is (weakly) compact.

2. Some properties of bilinear operators. In [10] and [11], the fol-
lowing results are proved:

Theorem 2.1. Let E be a Banach space not containing `1 and F a Ba-
nach space with the RDPP. If L(E;F ∗) = K(E;F ∗), then E ⊗̂π F has the
RDPP.

Theorem 2.2. Let E,F be Banach spaces with the RDPP such that E∗

and F ∗ are weakly sequentially complete. If L(E;F ∗) = K(E;F ∗), then
E ⊗̂π F has the RDPP.

Theorem 2.3. Let E,F be Banach spaces with property (V) such that
L(E;F ∗) = K(E;F ∗). Then E ⊗̂π F has property (V).

Taking advantage of the ideas in those papers, we now prove a strength-
ening of these results. First we will need some definitions and lemmas.

Definition 2.4. Let E be a Banach space. A set M ⊂ E∗ is an L-set
(respectively a V-set) if for every weakly null sequence (xn) ⊂ E (resp. every
w.u.C. series

∑
n xn ⊂ E), we have

lim
n→∞

sup{|x∗(xn)| : x∗ ∈M} = 0.

The following result is well known.

Proposition 2.5. Let E be a Banach space. Then:

(a) E has the RDPP if and only if every L-set in E∗ is relatively weakly
compact ([16], see also [3]).

(b) E has property (V) if and only if every V-set in E∗ is relatively
weakly compact ([18]).
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We will also need some results concerning the Aron–Berner extension of
a multilinear operator: if T : E×F → X is a bilinear operator, then we can
define its Aron–Berner extension

AB(T ) : E∗∗ × F ∗∗ → X∗∗

by
AB(T )(z1, z2) = lim

α
lim
β
T (xα, yβ),

where (xα) ⊂ E is a net weak-star converging to z1 and (yβ) ⊂ F is a
net weak-star converging to z2. We will use the following results from [15]
relating to this extension.

Lemma 2.6. Let E,F be Banach spaces with the RDPP , and X any Ba-
nach space. If T : E×F → X is a completely continuous bilinear operator ,
then its Aron–Berner extension AB(T ) takes values in X.

Lemma 2.7. Let E,F be Banach spaces whose duals E∗ and F ∗ have
the Dunford–Pettis property and L(E;F ∗) = Lwc(E;F ∗). For any Banach
space X, if T : E × F → X is a bilinear operator such that AB(T ) is
X-valued , then AB(T ) : E∗∗ × F ∗∗ → X is completely continuous.

Lemma 2.8. Let E,F be Banach spaces with property (V), and X any
Banach space. If T : E × F → X is an unconditionally converging bilinear
operator , then AB(T ) takes values in X.

Lemma 2.9. Let E,F be Banach spaces such that L(E;F ∗) =
Lwc(E;F ∗). For any Banach space X, if T : E × F → X is a bilinear
operator such that AB(T ) is X-valued , then AB(T ) : E∗∗ × F ∗∗ → X is
unconditionally converging.

Now we can prove the following.

Proposition 2.10. Let E be a Banach space not containing `1 and F
a Banach space with the RDPP. Assume further that L(E;F ∗) = K(E;F ∗)
and that E∗ and F ∗ have the Dunford–Pettis property. For every Banach
space X, if T : E × F → X is a completely continuous bilinear operator ,
then T is weakly compact.

Proof. Let T be as in the hypothesis and let T̂ : E ⊗̂π F → X be the
operator canonically associated to T . Since T is weakly compact if and only if
T̂ is, it suffices to prove that T̂ ∗ is weakly compact. Let thenM = T̂ ∗(BX∗) ⊂
(E ⊗̂π F )∗ = K(E;F ∗). Let (hn)n ⊂ M and let (ϕn)n ⊂ BX∗ be such that
T̂ ∗(ϕn) = hn for every n ∈ N. Define H = span [hn(x) : x ∈ E, n ∈ N].
Then H is a closed subspace of F ∗ and H is separable, because, for every
n ∈ N, hn : E → F ∗ is compact. Let now Y ⊂ F be a countable norming
set of H and let y ∈ Y .

Claim 1. The set {h∗n(y); n ∈ N} ⊂ E∗ is an L-set.
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Proof. Let (xm)m ⊂ E be a sequence weakly converging to 0. We have

h∗n(y)(xm) = hn(xm)(y) = T̂ ∗(ϕn)(xm ⊗ y) = 〈T̂ (xm ⊗ y), ϕn〉
= 〈T (xm, y), ϕn〉.

Therefore
lim
m→∞

sup
n∈N
|h∗n(y)(xm)| ≤ lim

m→∞
‖T (xm, y)‖ = 0,

and the claim is proved.

So {h∗n(y); n ∈ N} ⊂ E∗ is relatively weakly compact and therefore we
can suppose (using the fact that Y is countable and considering subsequences
if necessary) that, for every y ∈ Y , (h∗n(y))n is a weakly Cauchy sequence.
Let now x∗∗ ∈ E∗∗.

Claim 2. The set {h∗∗n (x∗∗); n ∈ N} ⊂ F ∗ is an L-set.

Proof. If we think of hn ∈ K(E;F ∗) as a bilinear form, hn : E×F → K,
it is clear that h∗∗n (x∗∗)(y) = AB(hn)(x∗∗, y), where AB(hn) denotes any of
the two Aron–Berner extensions of hn. Let then (ym)m ⊂ F be a sequence
weakly converging to 0. Then

h∗∗n (x∗∗)(ym) = AB(T̂ ∗(ϕn))(x∗∗, ym).

Let us see now that AB(T̂ ∗(ϕn))(x∗∗, ym) = 〈AB(T )(x∗∗, ym), ϕn〉: let (xα)α
⊂ E be a bounded net weak-star convergent to x∗∗. Then

AB(T̂ ∗(ϕn))(x∗∗, ym) = lim
α
T̂ ∗(ϕn)(xα, ym) = lim

α
〈T̂ (xα ⊗ ym), ϕn〉

= lim
α
〈T (xα, ym), ϕn〉 = 〈AB(T )(x∗∗, ym), ϕn〉.

Therefore,

lim
m→∞

sup
n∈N
|h∗∗n (x∗∗)(ym)| ≤ lim

m→∞
‖AB(T )(x∗∗, ym)‖ = 0.

The last limit is 0 because AB(T ) is completely continuous, as follows from
Lemmas 2.6 and 2.7. So, the claim is proved.

Now we can proceed as in [10] to obtain an h ∈ K(E;F ∗) such that hn
weakly converges to h, which finishes the proof.

Corollary 2.11. Let E,F be Banach spaces with the RDPP such that
E∗ and F ∗ are weakly sequentially complete and have the Dunford–Pettis
property. Assume further that L(E;F ∗) = K(E;F ∗). For every Banach
space X, if T : E × F → X is a completely continuous bilinear operator ,
then T is weakly compact.

Proof. The beginning of the proof runs as the proof that (hn)n is weakly
Cauchy in Proposition 2.10. To finish it, we reason as in the proof of Theorem
2.2 (see [10, Cor. 4]).
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Since compact operators are completely continuous, Proposition 4.1 be-
low implies that our results are indeed a strengthening (under the additional
hypothesis that E∗ and F ∗ have the DP property) of Theorems 2.1 and 2.2.
For instance, note that, since c0 ⊗̂π `∞ does not have the DP property ([6]),
there are completely continuous bilinear operators defined on c0 × `∞ such
that the associated linear operators defined on c0 ⊗̂π `∞ are not completely
continuous.

We have a similar result for unconditionally converging bilinear opera-
tors. This time we do not need additional hypotheses on E and F .

Proposition 2.12. Let E,F be Banach spaces with property (V). As-
sume further that L(E;F ∗) = K(E;F ∗). For every Banach space X, if
T : E × F → X is an unconditionally converging bilinear operator , then
T is weakly compact.

Proof. As in the proof of Proposition 2.10, it suffices to prove that
T̂ ∗(BX∗) = M ⊂ (E ⊗̂π F )∗ = K(E;F ∗) is relatively weakly compact.
Let then hn, ϕn, H and Y be as in the proof of Proposition 2.10.

Claim 1. The set {h∗n(y); n ∈ N} ⊂ E∗ is a V-set.

Proof. Let
∑

m xm ⊂ E be a w.u.C. series. As in the proof of Proposi-
tion 2.10,

h∗n(y)(xm) = hn(xm)(y) = 〈T (xm, y), ϕn〉.
It is very easy to see that T is separately unconditionally converging, so

lim
m→∞

sup
n∈N
|h∗n(y)(xm)| ≤ lim

m→∞
‖T (xm, y)‖ = 0,

and the claim is proved.

So {h∗n(y); n ∈ N} ⊂ E∗ is relatively weakly compact and again as
in the proof of Proposition 2.10 we can suppose that, for every y ∈ Y ,
(h∗n(y))n ⊂ E∗ is a weakly Cauchy sequence. Let now x∗∗ ∈ E∗∗.

Claim 2. The set {h∗∗n (x∗∗); n ∈ N} ⊂ F ∗ is a V-set.

Proof. Observe that it follows from Lemmas 2.8 and 2.9 that AB(T )
is unconditionally converging, hence separately unconditionally converging.
So, proceeding as in the proof of Proposition 2.10 we get

lim
m→∞

sup
n∈N
|h∗∗n (x∗∗)(ym)| ≤ lim

m→∞
‖AB(T )(x∗∗, ym)‖ = 0,

and the claim is proved.

Now we can proceed as in [11] to obtain h ∈ K(E;F ∗) such that hn
weakly converges to h, which finishes the proof.

From Theorem 4.2 below it follows that Proposition 2.12 is strictly
stronger than Theorem 2.3.



Multilinear operators on C(K) spaces 265

3. Projective tensor products of C(K) spaces. This section was the
original motivation of this paper. We now apply the results of the previous
sections to obtain a classification of projective tensor products of C(K)
spaces in terms of some classical Banach space properties.

It is known that the projective tensor product of Banach spaces is as-
sociative, that is, if E,F,G are Banach spaces, then E ⊗̂π F ⊗̂π G = E ⊗̂π
(F ⊗̂π G) = (E ⊗̂π F ) ⊗̂π G. We will make frequent use of this fact.

Recall that a compact Hausdorff space K is said to be scattered (or
dispersed) if it does not contain any non-void perfect set. In [19] it is proved,
among other interesting results, that K is scattered if and only if C(K)
contains no copy of `1. In this case, C(K)∗ can be identified with `1(Γ ) for
some Γ and, consequently, it is a Schur space.

Theorem 3.1. Let k ≥ 2 and K1, . . . ,Kk be infinite compact Hausdorff
spaces. Then the following assertions are equivalent :

(a1) For every i ∈ {1, . . . , k}, Ki is scattered.
(b1) C(K1) ⊗̂π . . . ⊗̂π C(Kk) has properties DP , RDP and (V).
(c1) C(K1) ⊗̂π . . . ⊗̂π C(Kk) does not contain any isomorphic copy of `1.
(d1) For any Banach space X, and any k-linear operator T : C(K1) ×

. . .× C(Kk)→ X the following are equivalent :

(1) T is completely continuous.
(2) T is unconditionally converging.
(3) T is weakly compact.
(4) T is regular.
(5) T is compact.

Proof. We will first prove that (a1) implies all the others. By a standard
argument (see, for instance, the proof of [5, Theorem 3.1]), it can be proved
that

(C(K1) ⊗̂π . . . ⊗̂π C(Kk))∗ = C(K1)∗ ⊗̌ε . . . ⊗̌ε C(Kk)∗

= K(C(K1); (C(K2) ⊗̂π . . . ⊗̂π C(Kk))∗).

Hence, (C(K1) ⊗̂π . . . ⊗̂π C(Kk))∗ is a Schur space, and so, by a well known
result of Pethe and Thakare, X := C(K1) ⊗̂π . . . ⊗̂π C(Kk) has the DPP
and contains no copy of `1. Also, from the associativity of projective tensor
products and Theorem 2.3 it follows that X has property (V), and hence it
also has the RDPP. So (b1) and (c1) hold.

Let us check (d1): Compact multilinear operators are always weakly com-
pact, and weakly compact multilinear operators are completely continuous
on a product of spaces with the DP property. On C(K) spaces, multilinear
unconditionally converging and completely continuous operators coincide
([15]). Since no C(Ki) (1 ≤ i ≤ k) contains copies of `1 by hypothesis, ev-
ery completely continuous multilinear operator on C(K1) × . . .× C(Kk) is
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compact. On C(K) spaces, every regular multilinear operator is completely
continuous ([5, Lemma 2.6]). Finally, reasoning as in [2] we can prove that,
under the assumption (a1), if T is completely continuous, it is weakly con-
tinuous on bounded sets ([2, Proposition 2.12]), hence regular ([2, Theorem
2.9]).

For the converse implications, notice that one and only one of the con-
ditions (a1), or (a2), (a3) (in Theorems 3.3 and 3.4 below) holds. Then, by
exclusion, it is enough to prove that conditions (ai) (i = 1, 2, 3) imply all
the others in Theorems 3.1, 3.3 and 3.4.

Thanks are due to Joaqúın Gutiérrez for his help in shortening the proof
of (a1)⇒(d1).

Corollary 3.2. Let K be an infinite compact Hausdorff space and 2 ≤
k ∈ N. Then the following assertions are equivalent :

(a) K is scattered.
(b) ⊗̂kπ,sC(K) has properties DP , RDP and (V).
(c) ⊗̂kπ,sC(K) does not contain any isomorphic copy of `1.
(d) Any k-homogeneous unconditionally converging polynomial on C(K)

is weakly compact.

Proof. Reasoning as in the last part of the proof of Theorem 3.1, it suf-
fices to prove that (the same situation will occur in Corollary 3.5) condition
(a) implies all the others. Hence, suppose (a) holds. Since ⊗̂kπ,sC(K) is com-
plemented in ⊗̂kπC(K), (b) and (c) follow. If a polynomial P : C(K)→ X is
unconditionally converging, then its associated symmetric multilinear form
T is also unconditionally converging. By Theorem 3.1, T is weakly compact,
hence P is weakly compact.

Theorem 3.3. Let K1, . . . ,Kk be compact Hausdorff spaces. Then the
following assertions are equivalent :

(a2) There exists precisely one i ∈ {1, . . . , k} such that Ki is not scattered
(i.e., C(Ki) ⊃ `1).

(b2) C(K1) ⊗̂π . . . ⊗̂π C(Kk) has properties RDP and (V), but it does
not have the DP property.

(c2) C(K1) ⊗̂π . . . ⊗̂π C(Kk) contains `1, but not complemented.
(d2) For any Banach space X and any k-linear operator T : C(K1) ×

. . .× C(Kk)→ X, T is unconditionally converging (equivalently completely
continuous) if and only if T is weakly compact , but there are weakly compact
multilinear operators on C(K1)× . . .×C(Kk) which are neither compact nor
regular.

Proof. As mentioned before, we only need to show that (a2) implies all
the others. Let us prove (b2): The statement about the DP property can be
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found in [6]. For properties (V) and RDP, we use induction on k. For k = 2
the result follows from Theorems 2.1 and 2.3. Suppose it is true for k − 1,
and let C(Kk) ⊃ `1. From the induction hypothesis it follows that C(K2)⊗̂π
. . .⊗̂πC(Kk) has property (V), hence it cannot contain complemented copies
of `1. Therefore, (C(K2)⊗̂π. . .⊗̂πC(Kk))∗ does not contain copies of c0. Then
every operator from C(K1) into (C(K2) ⊗̂π . . . ⊗̂π C(Kk))∗ is compact. Now
we use the associativity of the projective tensor product and Theorem 2.3.

Clearly C(K1) ⊗̂π . . . ⊗̂π C(Kk) contains a copy of `1. But since it has
property (V), none of such copies can be complemented. So, (b2) implies (c2).

Let us now see that (a2) implies (d2). We first show that, under assump-
tion (a2), unconditionally converging multilinear operators on C(K1)× . . .×
C(Kk) are weakly compact. The proof is a refinement of the proof of Propo-
sition 2.12. We apply induction on k. For k = 2 the result has already been
proved. Suppose it is true for k−1, and let T : C(K1)× . . .×C(Kk)→ X be
an unconditionally converging multilinear operator and T̂ its linearization.
We define

S : C(K1)× (C(K2) ⊗̂π . . . ⊗̂π C(Kk))→ X

by
S(f1, y) := T̂ (f1 ⊗ y).

Clearly, S is bilinear and continuous, with ‖S‖ = ‖T̂‖ = ‖T‖. Let

Ŝ : C(K1) ⊗̂π C(K2) ⊗̂π . . . ⊗̂π C(Kk)→ X

be the linear operator associated to S. Clearly, we just have to check that
Ŝ∗ : X∗ → K(C(K1); (C(K2) ⊗̂π . . . ⊗̂π C(Kk))∗) is weakly compact. As
before, let M = Ŝ∗(BX∗), let (ϕn)n ⊂ BX∗ and let hn = Ŝ∗(ϕn). We
just need to extract a weakly converging subsequence from (hn)n. Let H =
span [hn(f1) : f1 ∈ C(K1), n ∈ N]. Then H is a separable closed subspace
of (C(K2) ⊗̂π . . . ⊗̂π C(Kk))∗. As before, let Y ⊂ C(K2) ⊗̂π . . . ⊗̂π C(Kk) be
a countable norming set of H and let y ∈ Y .

Let us prove that Sy = S(·, y) : C(K1) → X is unconditionally con-
verging. Since T is separately unconditionally converging, this is clear when
y = f2⊗. . .⊗fk, and it follows readily for y =

∑n
i=1 f

i
2⊗. . .⊗f ik. For the gen-

eral case it suffices to take into account the density of C(K2)⊗ . . .⊗C(Kk)
in C(K2) ⊗̂π . . . ⊗̂π C(Kk) and the fact that the canonical continuous linear
map

C(K2) ⊗̂π . . . ⊗̂π C(Kk) 3 y 7→ Sy ∈ L(C(K1);X)

takes values in the closed subspace of unconditionally converging operators
when y ∈ C(K2)⊗ . . .⊗ C(Kk).

Using this, we can reason as in the proof of Proposition 2.12 to establish
that the set {h∗n(y); n ∈ N} ⊂ C(K1)∗ is a V-set.
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So {h∗n(y); n ∈ N} ⊂ C(K1)∗ is relatively weakly compact and we can
suppose that, for every y ∈ Y , (h∗n(y))n ⊂ C(K1)∗ is a weakly Cauchy
sequence. Let now z ∈ C(K1)∗∗.

Claim. The set {h∗∗n (z); n ∈ N} ⊂ (C(K2)⊗̂π . . .⊗̂πC(Kk))∗ is a V-set.

Proof. Let
∑

n yn ⊂ C(K2) ⊗̂π . . . ⊗̂π C(Kk) be a w.u.C. series. As in
the proof of Proposition 2.12, we get

|h∗∗n (z)(ym)| ≤ ‖AB(Ŝ)(z, ym)‖.
Since T is unconditionally converging, so is AB(T ) (Lemma 2.9). There-

fore AB(T )z : C(K2)× . . .× C(Kk)→ X defined by

AB(T )z(f2, . . . , fk) = AB(T )(z, f2, . . . , fk)

is unconditionally converging. Let ̂AB(T )z : C(K2) ⊗̂π . . . ⊗̂π C(Kk) → X

be the associated linear operator. By the induction hypothesis, ̂AB(T )z is
weakly compact, hence unconditionally converging. Clearly, for every y ∈
C(K2) ⊗̂π . . . ⊗̂πC(Kk), we have AB(S)(z, y) = ̂AB(T )z(y) and so the claim
follows.

Now we can again proceed as in [11] to finish the proof that uncondi-
tionally converging multilinear operators are weakly compact.

For a weakly compact, neither regular nor compact multilinear operator
on C(K1)× . . .×C(Kk) we proceed similarly to the proof of the main result
of [6]: suppose that C(K1) ⊃ `1. Then there exists a surjective operator
q : C(K1)→ `2 ([9, Corollary 4.16]). Let (xn2 ) ⊂ C(K2) and (µn2 ) ⊂ BC(K2)∗

be two sequences such that (xn2 ) converges weakly to 0 and µn2 (xn2 ) = 1 for
every n ∈ N. Choose norm one elements µi ∈ C(Ki)∗ and x0

i ∈ C(Ki) such
that µi(x0

i ) = 1 (3 ≤ i ≤ k). Then we can consider the multilinear operator

T : C(K1)× . . .× C(Kk)→ `2

defined by

T (x1, . . . , xk) =
(
q(x1)nµn2 (x2)

k∏

i=3

µi(xi)
)
n
.

T is clearly weakly compact. Let (xn1 ) ⊂ ‖q‖BC(K1) be a sequence such that
q(xn1 ) = en. The sequence (xn1⊗xn2⊗x0

3⊗. . .⊗x0
k)n ⊂ C(K1)⊗̂π . . .⊗̂πC(Kk)

converges weakly to 0, since (xn1 ⊗ xn2 )n converges weakly to 0 in C(K1) ⊗̂π
C(K2) ([6, Lemma 2.1]). However,

T (xn1 , x
n
2 , x

0
3, . . . , x

0
k) = 1

for every n. So, T̂ is not completely continuous. Hence, T̂ , and consequently
T , cannot be compact.
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Moreover, the operator T1 :C(K2)→Lk−1(C(K1), C(K3), . . . , C(Kk); `2)
associated to T is not completely continuous, because

‖T1(xn2 )‖ ≥ ‖q‖ · ‖T1(xn2 )(xn1 , x
0
3, . . . , x

0
k)‖ = ‖q‖.

So, T1 is not weakly compact, i.e., T is not regular.

Finally, we consider the remaining possibility:

Theorem 3.4. Let K1, . . . ,Kk be infinite compact Hausdorff spaces.
Then the following assertions are equivalent :

(a3) At least two of the spaces K1, . . . ,Kk are not scattered.
(b3) C(K1) ⊗̂π . . . ⊗̂π C(Kk) does not have any of the properties DP ,

RDP and (V).
(c3) C(K1) ⊗̂π . . . ⊗̂π C(Kk) contains a complemented copy of `1.
(d3) There exists a Banach space X and an unconditionally converging

multilinear operator T : C(K1) × . . . × C(Kk) → X which is not weakly
compact.

Proof. We just show that (a3) implies all the others. [13, Proposition 13]
states that, if E ⊃ `1, then the space P(2E) of 2-homogeneous polynomials
contains a copy of `∞. That proof can be easily modified to show that, if
both E and F contain copies of `1, then L2(E,F ) ⊃ `∞. These facts imply
that, in that case, E ⊗̂π,sE and E ⊗̂π F contain complemented copies of `1.
To finish the proof of (c3) we just need to observe that C(Ki) ⊗̂π C(Kj) is
complemented in C(K1) ⊗̂π . . . ⊗̂π C(Kk).

Suppose that (c3) (and (a3)) hold. Since `1 is Schur and not reflexive, the
projection π : C(K1) ⊗̂π . . . ⊗̂π C(Kk) → `1 is an example of a completely
continuous (hence unconditionally converging) operator which is not weakly
compact. So, C(K1) ⊗̂π . . . ⊗̂π C(Kk) has neither property (V) nor RDPP.
The statement about the DP property can be found in [6].

The multilinear operator π̃ : C(K1)× . . .× C(Kk)→ `1 associated to π
above proves (d3).

Corollary 3.5. Let K be an infinite compact Hausdorff space and 2 ≤
k ∈ N. Then the following assertions are equivalent :

(a) K is not scattered.
(b) ⊗̂kπ,sC(K) does not have properties DP , RDPP and (V).

(c) ⊗̂kπ,sC(K) contains a complemented copy of `1.
(d) There exists a k-homogeneous unconditionally converging polynomial

on C(K) which is not weakly compact.

Proof. As we already said in Corollary 3.2, we only have to show that
(a) implies all the others. As above, (c) follows from [13, Proposition 13]
and the fact that ⊗̂2

π,sC(K) is complemented in ⊗̂kπ,sC(K).
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Let us prove (b): The statement about the DP property can again be
found in [6]. As before, the projection π : ⊗̂kπ,sC(K) → `1 is a completely
continuous and unconditionally converging operator which is not weakly
compact.

The multilinear symmetric operator π̃ : C(K)× (k). . . ×C(K) → `1 as-
sociated to π proves (d).

4. Relationships between some classes of multilinear operators
and their linearizations. Let us start this section with a simple and es-
sentially known result which relates the complete continuity of a multilinear
operator T and its linearization T̂ :

Proposition 4.1. Let E1, . . . , Ek be Banach spaces. Then the following
assertions are equivalent :

(a) For every Banach space X, if T̂ : E1 ⊗̂π . . . ⊗̂πEk → X is completely
continuous then the associated multilinear operator T : E1 × . . .× Ek → X
is completely continuous.

(b) Every multilinear form ϕ ∈ Lk(E1, . . . , Ek) is weakly sequentially
continuous.

(c) If (xni )n ⊂ Ei (1 ≤ i ≤ k) is a weakly Cauchy sequence, then
(xn1 ⊗ . . .⊗ xnk)n ⊂ E1 ⊗̂π . . . ⊗̂π Ek is weakly Cauchy.

Moreover , if k = 2, then the condition

(d) L(E1;E∗2) = Lcc(E1;E∗2)

implies all the others.

Proof. The equivalence of (a), (b) and (c) is easy and can be left to the
reader. Under hypothesis (d), if (xn1 ) ⊂ E1 is a weakly Cauchy sequence and
(xn2 ) ⊂ E2 is bounded, then xn1 ⊗ xn2 ⊂ E1 ⊗̂π E2 is weakly Cauchy, which is
(c).

So we see that if T̂ is completely continuous, T does not need to be
completely continuous. Conversely if T is completely continuous, T̂ need
not be completely continuous, even if E and F have the DP (see [6]).

We now study the relation between T being an unconditionally converg-
ing multilinear operator and T̂ being an unconditionally converging linear
operator. From the previous section it follows that, for every Banach space
X and k ∈ N, T ∈ Lk(c0;X) is unconditionally converging if and only if
T̂ ∈ L(c0 ⊗̂π (k). . . ⊗̂πc0;X) is unconditionally converging (if and only if both
are weakly compact).

As a consequence we have
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Theorem 4.2. Let E1, . . . , Ek and X be Banach spaces. If the opera-
tor T̂ : E1 ⊗̂π . . . ⊗̂π Ek → X is unconditionally converging , then so is
T : E1 × . . .× Ek → X.

Proof. If T is not unconditionally converging, then there exist w.u.C. se-
ries

∑
n x

n
1 ⊂ E1, . . . ,

∑
n x

n
k ⊂ Ek such that (T (

∑m
n=1 x

n
1 , . . . ,

∑m
n=1 x

n
k))m

is not a Cauchy sequence. Let ij : c0 → Ej be defined by ij(en) = xnj
(1 ≤ j ≤ k). Then the multilinear operator

V : c0× (k). . . × c0 → X

defined by
V (y1, . . . , yk) = T (i1(y1), . . . , ik(yk))

is not unconditionally converging. Hence, V̂ is not unconditionally converg-
ing. On the other hand, it is easy to check that V̂ = T̂ ◦ (i1⊗ . . .⊗ ik), which
is unconditionally converging by hypothesis. This contradiction finishes the
proof.

The converse of Theorem 4.2 is not true, as the following example shows.

Example 4.3. In [7], the authors provide an example of a Banach space
X with the RNP (hence not containing c0) such that X ⊗̂π X contains c0.
Consider the operator

γ : X ×X → X ⊗̂π X
defined by

γ(x, y) = x⊗ y.
Since X 6⊃ c0, γ is unconditionally converging (see [4, Proposition 2.10]),
but γ̂, which is the identity on X ⊗̂π X, is not unconditionally converging,
since it fixes a copy of c0.

We have not been able to find a less exotic example. Observe that one
can prove that every bilinear operator T : `∞ × `∞ → c0 is unconditionally
converging, so any non-unconditionally converging operator (for example
any projection) P : `∞ ⊗̂π `∞ → c0 would provide a more familiar coun-
terexample. We have not been able to find such an object, in particular we
do not know if `∞ ⊗̂π `∞ contains complemented copies of c0.

From Theorem 4.2 it follows easily that if every unconditionally con-
verging bilinear operator on E × F is weakly compact, then E ⊗̂π F has
property (V). We do not believe the converse to be true, but we do not
have a counterexample. For a wide variety of spaces the converse is true.
For C(K) spaces, this follows from Section 3, but more generally we have

Proposition 4.4. Let E and F be Banach spaces such that E ⊗̂π F has
property (V). Assume further that at least one of the following conditions
holds:
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(1) E∗ or F ∗ has the metric approximation property.
(2) E or F has an unconditional compact expansion of the identity.
(3) E∗ or F ∗ has the compact approximation property and is a subspace

of a Banach space Z possessing an unconditional compact expansion of the
identity.

Then every unconditionally converging bilinear operator on E × F is
weakly compact.

Proof. Clearly, both E and F have property (V). Moreover, [11, Theo-
rem 7] states that, under the hypothesis, L(E;F ∗) = K(E;F ∗) (or L(F ;E∗)
= K(F ;E∗)). Now, Proposition 2.12 applies.

For `p spaces we can make this last result a little more precise:

Proposition 4.5. Let 1 < pi <∞. Then the following are equivalent :

(a) `p1 ⊗̂π . . . ⊗̂π `pk has property (V).
(b) L(`p1 ⊗̂π . . .⊗̂π`pk−1 ; `qk) = K(`p1 ⊗̂π . . .⊗̂π`pk−1 ; `qk), where `∗pk = `qk .
(c) `p1 ⊗̂π . . . ⊗̂π `pk is reflexive.
(d)

∑k
i=1 1/pi < 1.

(e) Every unconditionally converging multilinear operator on `p1 × . . .×
`pk is weakly compact.

Proof. If (a) holds, then (b) follows from [11, Theorem 7]. The equiva-
lence of (b), (c) and (d) can be found in [1, Section 4].

Observe that, in general, if E1, . . . , Ek are reflexive spaces, then E1 ⊗̂π
. . .⊗̂πEk is reflexive if and only if every unconditionally converging multilin-
ear operator defined on E1× . . .×Ek is weakly compact. For the non-trivial
implication of this statement, it suffices to realize that the multilinear op-
erator

T : E1 × . . .× Ek → E1 ⊗̂π . . . ⊗̂π Ek
given by

T (x1, . . . xk) = x1 ⊗ . . .⊗ xk
is unconditionally converging (this can be seen, for instance, by applying
[4, Proposition 2.10] as in Example 4.3). Therefore, (c) and (e) are equiva-
lent. We already mentioned that (e) implies (a) always, i.e., not only for `p
spaces.
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Universidad Complutense de Madrid
Madrid 28040, Spain
E-mail: bombal@eucmax.sim.ucm.es

ignacio villanueva@mat.ucm.es

CIMAT, A.P. 402
Guanajuato, Gto. 36000, México
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