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Formulae for joint spectral radii of sets of operators

by

Victor S. Shulman (Vologda and London) and
Yurĭı V. Turovskĭı (Baku)

Abstract. The formula %(M) = max{%χ(M), r(M)} is proved for precompact sets
M of weakly compact operators on a Banach space. Here %(M) is the joint spectral radius
(the Rota–Strang radius), %χ(M) is the Hausdorff spectral radius (connected with the
Hausdorff measure of noncompactness) and r(M) is the Berger–Wang radius.

1. Notations and preliminaries. In 1960 J.-C. Rota and W. G. Strang
[10] defined the joint spectral radius for a bounded set M of operators (or
elements of a Banach algebra):

%(M) = lim sup ‖Mn‖1/n.(1.1)

Here Mn denotes the set of all products of n elements of M , the norm of
a set is the supremum of the norms of its elements. As is well known, since
‖ · ‖ is submultiplicative, lim sup in (1.1) may be replaced by lim or inf.

This notion has found various applications to operator theory, represen-
tation theory of semigroups and Lie algebras, invariant subspaces, geometry
of orbits and attractors, evolution dynamics, difference equations, wavelets
theory (see [4], [3], [8], [9], [12], [11]). In particular, the importance of the
joint spectral radius technique for invariant subspace theory depends pri-
marily on the following simple result: if %(M) = 0 then all polynomials in
elements of M are quasinilpotent (see [11], Corollary 2.10).

For a one-element set M = {T}, the number %(M) coincides with the
usual spectral radius r(T ) = sup{|t| : t ∈ σ(T )}. For a bounded set M
in a Banach algebra, put rsup(M) = sup{%(T ) : T ∈ M}. In 1992 M.
A. Berger and Y. Wang established in [2] that if M is a bounded set of
operators on a finite-dimensional space then the norm ‖ · ‖ in the defini-
tion of %(M) can be replaced by rsup(·). More transparently, if we define
r(M) = lim sup rsup(Mn)1/n, then

%(M) = r(M).(1.2)
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We will call (1.2) the Berger–Wang formula and r(M) the Berger–Wang
radius of M . The formula is important because it relates joint spectral radii
to spectra of operators.

It was proved in [11] that (1.2) extends to precompact sets of compact
operators on an infinite-dimensional Banach space. To see the convenience
of such extension, notice that it easily implies the solution of the Volterra
Semigroup Problem: each semigroup of compact quasinilpotent operators
has an invariant subspace [12]. Indeed, if a semigroup G consists of compact
quasinilpotent operators, then r(M) = 0 for each finite set M ⊂ G. Hence
%(M) = 0 and all linear combinations of elements of M are quasinilpotent.
Thus G is contained in an algebra of quasinilpotent operators and then it
has an invariant subspace by the Lomonosov Theorem [7].

The Berger–Wang formula fails in general. P. S. Guinand [6] has con-
structed a semigroup G of nilpotent operators that contains two operators
T, S with nonquasinilpotent T + S. Clearly, %({T, S}) 6= 0, r({T, S}) = 0.

It was found in [11] that in some important cases the following “gener-
alized Berger–Wang formula” for precompact M holds:

%(M) = max{%e(M), r(M)} = max{%χ(M), r(M)}(1.3)

where %e(M) is the joint spectral radius of the canonical image of M in the
Calkin algebra B(X)/K(X) (called the essential spectral radius) and %χ(M)
is the Hausdorff spectral radius (see the definition below). In particular (1.3)
is true if one of the following conditions is valid:

(1) M has no invariant subspaces;
(2) the semigroup SG(t−1M) with t = %(M) > 0 is bounded;
(3) the closed algebra generated by M has no compact operators in its

Jacobson radical.

The aim of the present work is to prove (1.3) for any precompact set M
of operators on a reflexive Banach space and, more generally, of weakly com-
pact operators on an arbitrary Banach space. In general, for any precompact
set M of bounded linear operators on a Banach space, we will establish the
other formulae of Berger–Wang type.

In what follows, X(1) denotes the unit ball of a Banach space X, B(X)
the algebra of all bounded linear operators on X, K(X) the ideal of com-
pact operators, πK the canonical surjection from B(X) onto B(X)/K(X),
|||T ||| = ‖πK(T )‖ the essential norm of an operator T ∈ B(X). Clearly, |||T |||
can be regarded as a measure of noncompactness of T ; we will also need
another measure of noncompactness ‖T‖χ = χ(TX(1)), where χ(E) for a
bounded set E means the infimum of all ε such that E contains a finite
ε-net. Clearly, ‖T‖χ ≤ |||T ||| and ‖T‖χ = 0 if and only if T ∈ K(X). The
advantage of the submultiplicative seminorm ‖ · ‖χ is that it cannot grow
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if we pass to restrictions or quotients of operators; this is not quite clear
for ||| · |||.

The restriction of an operator T to an invariant subspace Y is denoted
by T |Y . Similarly, if Y1 ⊂ Y2 are T -invariant subspaces then T |(Y2/Y1) is
the operator induced by T on the quotient space Y2/Y1.

Let M denote a set of operators. The individual characteristics ‖T‖,
|||T |||, ‖T‖χ extend to M via supremum: ‖M‖χ = sup{‖T‖χ : T ∈ M}
and so on. We say that M is Hausdorff-bounded if ‖M‖χ < ∞. Similarly
to r (with respect to rsup), % (with respect to the usual norm), %e (with
respect to the essential norm) we define the Hausdorff spectral radius %χ for
a Hausdorff-bounded set M as follows:

%χ(M) = lim sup ‖Mn‖1/nχ .

A chain is any set of closed subspaces of X linearly ordered by inclusion.
A nest is a chain which is complete with respect to inf and sup and contains
(0) and X. A gap in a chain Γ is a pair Y ⊂ Z of subspaces without
intermediate subspaces in Γ . The space Z/Y is called a gap-quotient and
is usually denoted by Z∼ (it is completely determined by Z). The set of
all gap-quotients for Γ is denoted by gap(Γ ); if gap(Γ ) is empty, Γ is said
to be continuous. Each continuous nest is maximal (it is not contained in
a greater nest); more generally, a nest is maximal iff its gap-quotients are
one-dimensional.

The lattice of allM -invariant subspaces is denoted by latM . If Y ∈ latM
we write M |Y = {T |Y : T ∈ M} and similarly for quotients. If Γ is a set
of closed subspaces of X, then algΓ denotes the algebra of all operators
T ∈ B(X) such that Γ ⊂ latT . Given an operator T ∈ B(X) and a subspace
Z ⊂ X, we write TZ(1) for T (Z(1)) ≡ {Tx : x ∈ Z(1)}.

If Γ ⊂ latM is a chain, we set

‖M |Γ‖ = sup{‖T |V ‖ : V ∈ gap(Γ )},
%̂(M |Γ ) = sup{%(M |V ) : V ∈ gap(Γ )};

both values are assumed to be zero if Γ is continuous. We also define %(M |Γ )
as follows: %(M |Γ ) = lim sup ‖Mn|Γ‖1/n. Since ‖ · |Γ‖ is a submultiplica-
tive seminorm on algΓ , as above we obtain %(M |Γ ) = lim ‖Mn|Γ‖1/n =
inf ‖Mn|Γ‖1/n. It is clear that %̂(M |Γ ) ≤ %(M |Γ ).

We need the following results of [11].

Lemma 1.1 ([11], Corollary 4.3). If M ⊂ B(X) is bounded and F ⊂
latM is a finite nest , then %(M) = %̂(M |F).

Given a Banach space X, a set G ⊂ X and a closed subspace Y ⊂ X,
G/Y denotes the image of G under the canonical map X→ X/Y (we adopt
this notation to avoid the confusion with G+Y ; here we understand G+Y
as a sum of two sets, namely G+ Y = {x+ y : x ∈ G, y ∈ Y }).
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Lemma 1.2 ([11], Lemma 6.9). Let G be a precompact subset of a Ba-
nach space X, and let Y be a closed subspace of X. Then for any ε > 0
there exist precompact sets G1 ⊂ X and G2 ⊂ Y such that G ⊂ G1 +G2 and
‖G1‖ ≤ ‖G/Y ‖+ ε.

Recall that M ⊂ B(X) is irreducible if latM is trivial.

Lemma 1.3 ([11], Theorem 9.4). If M ⊂ B(X) is irreducible and pre-
compact , then %(M) = max{%χ(M), r(M)}.

2. Auxiliary lemmas. As a rule, in what follows, M denotes a set of
operators on a Banach space X.

Lemma 2.1. If M is precompact then ‖M‖χ = χ(MX(1)).

Proof. Since TX(1) ⊂MX(1) for T ∈M , the inequality ≤ is evident. Let
‖M‖χ ≤ α. For ε > 0 choose an ε-net T1, . . . , Tn in M and for any j ≤ n a
finite α-net in TjX(1); their union will be a finite (α+ε)-net in MX(1). Thus
χ(MX(1)) ≤ α+ ε; taking the infimum we obtain the inequality ≥.

Lemma 2.2. Let M be precompact , and let Γ ⊂ latM be an infinite
chain of nonzero subspaces with zero intersection. Then for any α > ‖M‖χ
there exists Z0 in Γ such that ‖M |(Z0/Z)‖ ≤ 2α for all Z ⊂ Z0 in Γ .

Proof. Note first that the interval ((0), Z]Γ ≡ {Y ∈ Γ : Y ⊂ Z} contains
an infinite number of elements for any Z ⊂ Γ . So, if the assertion is not valid
then there exists a decreasing sequence (Zn) in Γ such that

‖M |(Zn/Zn+1)‖ > 2α.

Hence there are xn in (Zn)(1) and Tn in M with ‖Tnxn − y‖ > 2α for any y
in Zn+1. It follows that

‖Tnxn − Tkxk‖ > 2α(2.1)

for n 6= k. This implies that MX(1) does not contain a finite α-net, in
contradiction to Lemma 2.1.

The proof of Lemma 2.2 actually establishes the following result.

Lemma 2.3. If M is precompact and α > ‖M‖χ, then any chain Γ ⊂
latM has only a finite number of gap-quotients V ∈ gap(Γ ) with ‖M |V ‖
≥ 2α.

Proof. Indeed, if not, then there exists an infinite set of gaps (Zn, Yn)
with

‖M |(Yn/Zn)‖ ≥ 2α.

Hence there exists an infinite sequence (Tnxn) with xn ∈ (Yn)(1), Tn ∈ M
and with property (2.1), a contradiction.
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Lemma 2.4. If M is precompact and %χ(M) < %(M |Γ ) for a chain
Γ ⊂ latM then %(M |Γ ) = %̂(M |Γ ). In other words, %(M |Γ ) ≤ max{%χ(M),
%̂(M |Γ )}.

Proof. Suppose that %(M |Γ ) = 1 and %χ(M) < α < β < 1 for some
α, β. Then there is a number n such that ‖Mn‖χ ≤ αn ≤ βn/2. By Lemma
2.3, the set

G1 = {V ∈ gap(Γ ) : ‖Mn|V ‖ ≥ 2αn}
is finite. Given G ⊂ gap(Γ ), let

‖M |G‖ = sup{‖Mn|V ‖ : V ∈ G}.
Note that ‖ · |G‖ is a submultiplicative seminorm on algΓ , so that the limit
lim ‖Mm|G‖1/m exists and ‖Mnm|G‖1/(nm) ≤ ‖Mn|G‖1/n for each m > 0.

Put G2 = gap(Γ )\G1. Then, for every m > 0,

‖Mnm|G2‖1/(nm) ≤ ‖Mn|G2‖1/n ≤ β.
Since

%(M |Γ ) = lim
m
‖Mnm|Γ‖1/(nm) = lim

m
‖Mnm|(G1 ∪G2)‖1/(nm)

= max{lim
m
‖Mnm|G1‖1/(nm), lim

m
‖Mnm|G2‖1/(nm)},

we obtain
%(M |Γ ) = max{lim

m
‖Mnm|G1‖1/(nm), β}.

Since β < 1, %(M |Γ ) = limm ‖Mnm|G1‖1/(nm). Since G1 is finite,

%(M |Γ ) = lim
m
‖Mnm|G1‖1/(nm) = max{%(M |V ) : V ∈ G1} ≤ %̂(M |Γ ),

whence %(M |Γ ) = %̂(M |Γ ).

Lemma 2.5. Let M ⊂ B(X) be precompact , and let Y,Z ∈ latM with
Z ⊂ Y . Then ‖M |Y ‖χ ≤ 2‖M‖χ, ‖M |(Y/Z)‖χ ≤ 2‖M‖χ and %χ(M |(Y/Z))
≤ %χ(M). Moreover , ‖M |(X/Z)‖χ ≤ ‖M‖χ.

Proof. If MY(1) has a finite α-net in X then it clearly has a finite 2α-net
in Y . So, by Lemma 2.1,

‖M |Y ‖χ = χ((M |Y )Y(1)) ≤ 2χ(MY(1)) ≤ 2χ(MX(1)) = 2‖M‖χ.
Since images of ε-nets under the canonical map Y → Y/Z are ε-nets, we

easily obtain

‖M |(Y/Z)‖χ = χ(M(Y/Z)(1)) ≤ χ((M |Y )Y(1)) = ‖M |Y ‖χ.
Hence ‖M |(Y/Z)‖χ ≤ 2‖M‖χ and also ‖M |(X/Z)‖χ ≤ ‖M‖χ.

Now %χ(M |(Y/Z))=lim ‖Mn|(Y/Z)‖1/nχ ≤ lim 21/n‖Mn‖1/nχ =%χ(M).
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Let F be a complete lattice of closed subspaces of X, and let Γ ⊂ F be a
chain. We say that Γ is relatively maximal in F if Γ ⊂ Γ0 for a chain Γ0 ⊂ F
implies Γ0 = Γ .

Proposition 2.6. Let M be precompact. If there exists a finite, rela-
tively maximal nest Γ ⊂ latM , then %(M) = max{%χ(M), r(M)}.

Proof. This follows from Lemmas 1.1, 1.3, 2.5 and the obvious inequality
r(M |(Y/Z)) ≤ r(M) for Y,Z ∈ latM with Z ⊂ Y .

So, to obtain the general analogs of Proposition 2.6, we may consider
only the case of infinite nests.

Lemma 2.7. If Q,N are bounded subsets of a Banach algebra A with

[Q,N ] ≡ {ab− ba : a ∈ Q, b ∈ N} = {0},
then |%(Q)− %(N)| ≤ dist(Q,N) (dist here is the Hausdorff distance).

Proof. Let dist(Q,N) < ε and %(N) < α; it suffices to prove that %(Q) <
α + ε. It follows easily from the definition of % that there exists a constant
C with ‖Nk‖ < Cαk for all k. Let a1, . . . , an belong to Q, and let us find
b1, . . . , bn in N with ‖ai − bi‖ < ε. Setting ci = ai − bi, we have a1 . . . an =
(b1 + c1) . . . (bn + cn) = d0 + . . . + dn, where dk is a sum of

(
n
k

)
elements

that are products of k elements of {ci} and n − k elements of {bi}. Hence
‖dk‖ ≤

(
n
k

)
εk‖Nn−k‖ ≤

(
n
k

)
εkCαn−k and ‖a1 . . . an‖ ≤ C(α + ε)n. Thus

‖Qn‖1/n ≤ C1/n(α+ ε) and %(Q) ≤ α+ ε.

Lemma 2.8. For a precompact set N of commuting elements of a Banach
algebra, %(N) = r(N) = rsup(N).

Proof. If N is finite the result follows by a direct computation. In the
general case take a finite ε-net Q in N ; then dist(Q,N) < ε and by Lemma
2.7, %(N) ≤ %(Q) + ε ≤ rsup(Q) + ε ≤ rsup(N) + ε. Since ε is arbitrary,
%(N) ≤ rsup(N). The inequality rsup(N) ≤ %(N) is evident.

3. Using the weakly compact operators. Let W (X) denote the set
of all weakly compact operators on a Banach space X (see, for example, [5],
Section 3.3). As is known,W (X) is a closed ideal of B(X) andK(X) ⊂W (X).

Let Γ be a chain of closed subspaces in X, and let W (Γ ) = algΓ ∩W (X).
Then W (Γ ) is a closed ideal of algΓ and algΓ/W (Γ ) is a Banach algebra.
Given an operator T ∈ algΓ or a set N ⊂ algΓ , we write for brevity ‖T‖w,Γ
instead of ‖T/W (Γ )‖ = inf{‖T + S‖ : S ∈ W (Γ )} and ‖N‖w,Γ instead of
‖N/W (Γ )‖ = sup{‖T‖w,Γ : T ∈ N}.

Lemma 3.1. Let M be a precompact set , Γ ⊂ latM a chain, and Γ0 ⊂ Γ
a subchain of nonzero subspaces with zero intersection. Then, for any ε > 0,
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one can find Z in Γ0 with

‖M2|Z‖ ≤ 4‖M‖max{‖M‖w,Γ , ‖M‖χ}+ ε.

Proof. One may suppose that ‖M‖ > 0. It suffices to obtain the result
for a finite ε0-net Mε0 ⊂M and, moreover, for any T1, T2 in Mε0 , to find Z
in Γ0 satisfying the condition

‖T1T2|Z‖ ≤ 4‖M‖max{‖M‖χ, ‖M‖w,Γ }+ ε/2(3.1)

and then to take the intersection, say Y , of such subspaces for all pairs. In-
deed, if ε0 < ε(4‖M‖)−1 then the obvious inequality ‖M 2|Y ‖ ≤ ‖M2

ε0 |Y ‖+
ε/2 and (3.1) with Z = Y complete the proof. In other words, the proof
is reduced to the case of a finite set and it suffices to show (3.1) for any
T1, T2 ∈M .

By Lemma 2.2, for ε1 > 0, there exists Z0 in Γ0 such that

‖T2|(Z0/Z)‖ ≤ 2(‖M‖χ + ε1)

for all Z ⊂ Z0 in Γ0. Hence, for any x in (Z0)(1) and for any Z ⊂ Z0 in Γ0,
one can choose y = y(x,Z) in Z with ‖T2x− y(x,Z)‖ ≤ 2(‖M‖χ + ε1). Set
α1 = 2(‖M‖χ + ε1). Then

‖y(x,Z)‖ ≤ ‖T2x− y(x,Z)‖+ ‖T2x‖ ≤ α1 + ‖M‖(3.2)

and
‖T1T2x− T1y(x,Z)‖ ≤ 2‖T1‖(‖M‖χ + ε) ≤ α1‖M‖.(3.3)

It follows from Lemma 1.2 that, for ε2 > 0, there exist precompact
sets M1 ⊂ algΓ and M2 ⊂ W (Γ ) such that ‖M1‖ ≤ ‖M‖w,Γ + ε2 and
M ⊂M1 +M2. Therefore T1 = S1 +S2 for some S1 ∈M1 and S2 ∈M2. Set
α2 = ‖M‖w,Γ + ε2. It follows from (3.2), (3.3) and the inequality ‖S1‖ ≤ α2
that

‖T1T2x− S2y(x,Z)‖ ≤ ‖T1T2x− T1y(x,Z)‖+ ‖S1y(x,Z)‖(3.4)

≤ α1‖M‖+ ‖S1‖ · ‖y(x,Z)‖
≤ α1‖M‖+ α2(α1 + ‖M‖)
≤ (α1 + α2)‖M‖+ α1α2.

Since α1 ≤ 2‖M‖(1+ε1‖M‖−1) and α2 ≤ ‖M‖(1+ε2‖M‖−1), we obtain
α1α2 ≤

√
2α1α2 ‖M‖(1 + ε3), where

1 + ε3 =
√

(1 + ε1‖M‖−1)(1 + ε2‖M‖−1) ≤
√

2

if ε1 and ε2 are small enough. Therefore α1α2 ≤ 2
√
α1α2 ‖M‖ and

(α1 + α2)‖M‖+ α1α2 ≤ (
√
α1 +

√
α2)2‖M‖(3.5)

≤ (2 max{√α1,
√
α2})2‖M‖

≤ 4‖M‖max{α1, α2}.
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It follows from (3.4) and (3.5) that

‖T1T2x− S2y(x,Z)‖ ≤ 4‖M‖max{α1, α2}.(3.6)

Since the set {y(x,Z) : Z ⊂ Z0, Z ∈ Γ0} is bounded (see (3.2)), S2 is
weakly compact and D = {Z ∈ Γ0 : Z ⊂ Z0} is a directed set (with respect
to ⊂), we deduce that the net (S2y(x,Z))Z∈D has a weak limit point, say z.
Since S2y(x,Z) ∈ Z for each subspace Z ∈ D which is weakly closed, the
point z must belong to all Z in Γ0, hence must be zero. So T1T2x is a weak
limit point of the net Z 7→ T1T2x− S2y(x,Z). Then

‖T1T2x‖ ≤ lim inf(‖T1T2x− S2y(x,Z)‖)Z∈D,
and it follows from (3.6) that ‖T1T2x‖ ≤ 4‖M‖max{α1, α2}. Since x in
(Z0)(1) is arbitrary,

‖T1T2|Z0‖ ≤ 4‖M‖max{α1, α2}.
Now Z0 is a subspace we looked for (i.e., Z = Z0 satisfies (3.1)) if max{ε1, ε2}
≤ ε(8‖M‖)−1.

Lemma 3.2. Let Γ be a chain of closed subspaces in X and Z, Y ∈ Γ
with Z ⊂ Y . Let Γ |(Y/Z) ≡ {V/Z : V ∈ Γ, Z ⊂ V ⊂ Y }. If N ⊂ algΓ
then N |(Y/Z) ⊂ alg(Γ |(Y/Z)) and ‖N |(Y/Z)‖w,Γ |(Y/Z) ≤ ‖N‖w,Γ .

Proof. Set F = Γ |(Y/Z). For ε > 0, let T ∈ N be arbitrary, and choose
S ∈ W (Γ ) with ‖T‖w,Γ ≥ ‖T + S‖ − ε. Note that Γ ⊂ lat{T, S}, and
standard arguments show that S|(Y/Z) is weakly compact. Hence T |(Y/Z) ∈
alg F and S|(Y/Z) ∈W (F). So

‖T |(Y/Z)‖w,F ≤ ‖(T + S)|(Y/Z)‖ ≤ ‖T + S‖ ≤ ‖T‖w,Γ + ε.

Taking suprema, we obtain ‖N |(Y/Z)‖w,F ≤ ‖N‖w,Γ + ε and therefore

‖N |(Y/Z)‖w,F ≤ ‖N‖w,Γ .
Lemma 3.3. Let M be a precompact set and Γ a nest in latM . Then

for any ε > 0 there exists a finite subnest F ⊂ Γ such that

‖M2|F‖ ≤ max{4‖M‖ · ‖M‖w,Γ , 4‖M‖ · ‖M‖χ, ‖M2|Γ‖}+ ε.(3.7)

Proof. Denote by 4α the right hand side of (3.7). As above (see the
beginning of the proof of Lemma 3.1), the problem reduces to the case of
finite M and, moreover, it suffices to find, for any T ∈M 2, a finite subnest
F of Γ with ‖T |F‖ ≤ 4α. The union of such finite subnests (when T runs
over the finite set M) is required for the completeness of the proof.

Since α > ‖M‖ · ‖M‖χ ≥ ‖M2‖χ ≥ ‖T‖χ, there exists by Lemma 2.1 a
finite α-net E = {u1, . . . , un} in the closure of TX(1). For Z ∈ Γ , let

g(Z) = {uj ∈ E : dist(uj , TZ(1)) ≤ α}
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(here, as usual, dist(uj , TZ(1)) = inf{‖uj − x‖ : x ∈ TZ(1)}). Then

dist(TZ(1), g(Z)) ≤ α,(3.8)

where we also use dist to denote the Hausdorff distance on the set of all
bounded subsets of X. Indeed, dist(u, TZ(1)) ≤ α for each u in g(Z) by
the definition. Furthermore, for any y ∈ TZ(1) there exists uj ∈ E with
‖y − uj‖ ≤ α. Hence uj ∈ g(Z) and dist(y, g(Z)) ≤ α.

The set of all subsets g(Z) of E is finite and linearly ordered by inclusion.
So it can be enumerated increasingly: E1 ⊂ . . . ⊂ Em. Clearly, E1 = g((0)),
Em = g(X). Set Γj = {Z ∈ Γ : g(Z) = Ej} for any j, 1 ≤ j ≤ m. Then Γ is
the disjoint union of Γj .

Let Y,Z belong to the same Γj . It follows easily from (3.8) that

dist(TY(1), TZ(1)) ≤ 2α.

One may suppose that Z ⊂ Y . Hence

‖T |(Y/Z)‖ = sup{‖Tz/Y ‖ : z ∈ Z(1)}(3.9)

≤ sup{dist(Tz, TY(1)) : z ∈ Z(1)}
≤ dist(TZ(1), TY(1)) ≤ 2α.

Let us examine the “boundary” subspaces. Let X+
j =

⋂{Z : Z ∈ Γj+1},
and let X−j be the closure of

⋃{Z : Z ∈ Γj}. We obtain a finite sequence of
subspaces X+

0 = (0),X−1 ,X
+
1 , . . . ,X

−
m−1,X

+
m−1,X

−
m = X.

Set, for convenience, X−0 = (0), Γ0 = {X−0 } and X+
m = X.

It is clear that X−j ⊂ X+
j . If they do not coincide then X−j ∈ Γj , X+

j ∈
Γj+1 and X+

j /X
−
j ∈ gap(Γ ), whence

‖T |(X+
j /X

−
j )‖ ≤ ‖T |Γ‖ ≤ ‖M2|Γ‖ < 4α.

Assume now that X−j = X+
j for some j, 0 ≤ j ≤ m, and denote them

by Xj . If j = m then it follows from (3.9) that ‖T |(Xm/Z)‖ ≤ 2α for any
Z ∈ Γm (because Xm = X ∈ Γm). So one may suppose that j < m. If
Xj in Γj+1 then g(Xj) = Ej+1. It follows that for any y ∈ T (Xj)(1) we
have y = lim yn with yn ∈ T (Zn)(1), Zn ∈ Γj and dist(yn, Ej) ≤ α. Hence
dist(y,Ej) ≤ α, dist(T (Xj)(1), TZ(1)) ≤ 2α and, as above,

‖T |(Xj/Z)‖ ≤ 2α(3.10)

for any Z in Γj . Note that, in this case, if j = m− 1, we also have

‖T |(Xm/Xm−1)‖ ≤ 2α.

Let Xj belong to Γj for j < m, and let V = X/Xj. Then the chain

Γj+1|V = {Z/Xj : Z ∈ Γj+1, Z ⊃ Xj}
is a chain of nonzero subspaces with zero intersection. Applying Lemma 3.1
to the space V , the operator T |V and the chain Γj+1|V ⊂ Γ |V , we obtain
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Z in Γj+1 with

‖T |(Z/Xj)‖ ≤ 4‖M |V ‖max{‖M |V ‖w,Γ |V , ‖M |V ‖χ}+ ε.(3.11)

We denote the subspace Z by Zj .
It is clear that ‖M |V ‖ ≤ ‖M‖. By Lemmas 3.2 and 2.5, ‖M |V ‖w,Γ |V ≤

‖M‖w,Γ and ‖M |V ‖χ ≤ ‖M‖χ. Then it follows from (3.11) that

‖T |(Zj/Xj)‖ ≤ 4‖M‖max{‖M‖w,Γ , ‖M‖χ}+ ε ≤ 4α.(3.12)

Denote by F the chain consisting of all boundary subspaces X+
0 ,X

−
1 ,X

+
1 ,

. . . ,X−m−1,X
+
m−1,X

−
m and all subspaces Zj defined above. It is clear that

X+
0 = (0) and X−m = X, i.e. F is a finite nest, and F ⊂ Γ . Note that if Zj ∈ F

then X+
j = Xj ⊂ Zj ⊂ X−j+1. We are to prove that ‖T |Z∼‖ ≤ 4α for all

Z∼ ∈ gap(F).
The previous considerations and (3.12) show that it only remains to

consider the possible gap-quotients Z∼ = X−j /Zj−1 for 1 ≤ j ≤ m. Note
that Zj−1 ∈ Γj . Then as we just have showed, the inequality

‖T |(X−j /Zj−1)‖ ≤ 2α

holds in any case, i.e., if X−j ∈ Γj or X−j ∈ Γj+1 (see (3.9) and (3.10)).

Lemma 3.4. Let M be a precompact set and Γ ⊂ latM be a nest. Then

%(M)2 ≤ 4‖M‖max{‖M‖w,Γ , ‖M‖χ, ‖M |Γ‖}.(3.13)

Proof. Let α be the right hand side of (3.13). By Lemma 3.3, for ε > 0
there exists a finite nest F ⊂ Γ satisfying (3.7). Since

‖M2|Γ‖ ≤ ‖M |Γ‖2 ≤ ‖M |Γ‖ · ‖M‖ ≤ 4‖M‖ · ‖M |Γ‖,
we obtain ‖M2|F‖ ≤ α+ ε. By Lemma 1.1, %(M 2) = %(M2|F). Hence

%(M)2 = %(M2) = %(M2|F) ≤ ‖M2|F‖ ≤ α+ ε,

and therefore %(M)2 ≤ α.

4. Main results. Given a chain Γ in X and a subset N ⊂ algΓ , let
%w,Γ (N) denote lim supn→∞ ‖Nn‖1/nw,Γ . Since ‖ · ‖w,Γ is a submultiplicative
seminorm on algΓ , we may also write

%w,Γ (N) = lim
n→∞

‖Nn‖1/nw,Γ = inf
n
‖Nn‖1/nw,Γ .

Theorem 4.1. Let M be a precompact set and Γ ⊂ latM be a nest.
Then

%(M) = max{%w,Γ (M), %χ(M), %̂(M |Γ )}.(4.1)

In particular , if M consists of weakly compact operators then

%(M) = max{%χ(M), %̂(M |Γ )}.(4.2)
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Proof. Note that (4.1) is obvious if %(M) = 0. So we assume that %(M)
> 0. Since Γ ⊂ latM ⊂ latMn for every integer n > 0, we may apply
Lemma 3.4 to Mn. Then

%(Mn)2 ≤ 4‖Mn‖max{‖Mn‖w,Γ , ‖Mn‖χ, ‖Mn|Γ‖}.
Hence

%(M)2 = %(Mn)2/n ≤ 41/n‖Mn‖1/n max{‖Mn‖1/nw,Γ , ‖Mn‖1/nχ , ‖Mn|Γ‖1/n}.
Taking limits as n→∞, we obtain

%(M)2 ≤ %(M) max{%w,Γ (M), %χ(M), %(M |Γ )}.
Taking into account that %(M |Γ ) ≤ max{%χ(M), %̂(M |Γ )} by Lemma 2.4,
we conclude that

%(M) ≤ max{%w,Γ (M), %χ(M), %̂(M |Γ )}.
The opposite inequality is evident.

If M consists of weakly compact operators then %w,Γ (M) = 0 and (4.2)
follows.

Given a complete chain Γ ⊂ latM , let r(M |Γ ) denote sup{r(M |V ) :
V ∈ gap(Γ )} (if Γ is continuous, we set r(M |Γ ) = 0).

Theorem 4.2. Let M be precompact , and let Γ be a relatively maximal
nest in latM . Then

%(M) = max{%w,Γ (M), %χ(M), r(M |Γ )}(4.3)

= max{%w,Γ (M), %χ(M), r(M)}.
In particular , if M consists of weakly compact operators then

%(M) = max{%χ(M), r(M)}.(4.4)

Proof. If Γ is a relatively maximal nest in latM then M |V is irreducible
for every V ∈ gap(Γ ). Since M |V is precompact,

%(M |V ) = max{%χ(M |V ), r(M |V )}
by Lemma 1.3. Since %χ(M |V ) ≤ %χ(M) by Lemma 2.5 and r(M |V ) ≤
r(M |Γ ), we obtain

%(M |V ) ≤ max{%χ(M), r(M |Γ )}
and therefore

%̂(M |Γ ) ≤ max{%χ(M), r(M |Γ )}.
Since r(M |Γ ) ≤ r(M), it follows from (4.1) that

%(M) ≤ max{%w,Γ (M), %χ(M), r(M |Γ )} ≤ max{%w,Γ (M), %χ(M), r(M)}.
The opposite inequalities are evident. Now (4.4) clearly holds if M consists
of weakly compact operators.
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Theorem 4.3. Let M be precompact , let Q be a precompact set of weakly
compact operators, and let N be a precompact set of compact operators (all
sets are subsets of B(X)). Then

%(M ∪Q ∪N) = max{%(M), %χ(M ∪Q), r(M ∪Q ∪N)},(4.5)

and in particular ,

%(M ∪N) = max{%(M), r(M ∪N)}.(4.6)

Proof. Let Γ be a relatively maximal nest in latM ∪N . It is clear that

%w,Γ (M ∪Q ∪N) = %w,Γ (M) ≤ %(M)

and
%χ(M ∪Q ∪N) = %χ(M ∪Q).

It follows from (4.3) that

%(M ∪Q ∪N) ≤ max{%(M), %χ(M ∪Q), r(M ∪Q ∪N)}.
The opposite inequality is evident.

Theorem 4.4. Let M be precompact.

(i) If M is commutative modulo W (X) then

%(M) = max{%χ(M), r(M)}.(4.7)

(ii) If M is commutative modulo K(X) then

%(M) = r(M).(4.8)

Proof. We first prove (i). Let Γ be a relatively maximal nest in latM .
Since [M,M ] ⊂ W (X), we have [M,M ] ⊂ W (Γ ). Since the image of M
in algΓ/W (Γ ), say N , is a commutative precompact subset, we obtain
%w,Γ (M) = %(N) = r(N) by Lemma 2.8. Since the canonical map algΓ →
algΓ/W (Γ ) is a homomorphism of Banach algebras, r(N) ≤ r(M). It fol-
lows from (4.3) that %(M) ≤ max{%χ(M), r(M)}. The opposite inequality
is evident.

If M is commutative modulo K(X), then we already have (4.7) and
a similar argument shows that %χ(M) = r(M/K(X)) ≤ r(M). Therefore
%(M) ≤ r(M), and the opposite inequality is evident.

Corollary 4.5. If M is a precompact set of operators which is commu-
tative modulo W (X) then, for any sequence Mn of bounded sets of operators,
tending to M with respect to the Hausdorff distance,

%(M) = max{%χ(M), lim sup %(Mn)}(4.9)

= max{%χ(M), lim inf %(Mn)}.
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Proof. We should prove that

max{%χ(M), lim sup %(Mn)} ≤ %(M)(4.10)

≤ max{%χ(M), lim inf %(Mn)}.
It is not difficult to check that lim sup %(Mn) ≤ %(M). Indeed, Mm

n → Mm

for any m, whence ‖Mm
n ‖1/m → ‖Mm‖1/m. Since ‖Mm

n ‖1/m ≥ %(Mn), we
see that lim sup %(Mn) ≤ ‖Mm‖1/m and it remains to take the limit as
m→∞. Since %χ(M) ≤ %(M), the first inequality in (4.10) is proved.

Suppose that lim inf %(Mn) < %(M) and %χ(M) < %(M). Passing to a
subsequence, and multiplying by a scalar, one may assume that %(Mn) →
α < 1 < %(M) and %χ(M) < 1. It follows from Theorem 4.4(i) that
%(T ) > 1 for some T ∈ SG(M), say T ∈ Mk. Let Tn ∈ Mk

n , Tn → T . Since
%(T ) > %χ(T ) = %e(T ), T has an isolated eigenvalue λ with |λ| = %(T ). By
Newburgh’s theorem (see Theorem 1.1.4 of [1]), T is a point of continuity of
the usual spectral radius, %(Tn) → %(T ), whence %(Tn) > 1 for sufficiently
large n. On the other hand, %(Tn) ≤ %(Mn)k → αk < 1, a contradiction.

Corollary 4.6. A precompact set M of operators which is commutative
modulo W (X) and satisfies %χ(M) < %(M) or %(M) = 0 is a point of
continuity of the joint spectral radius %.

A simplest example of a set satisfying the hypotheses of Corollary 4.6 is a
precompact set of compact operators. We recall that an operator T ∈ B(X)
is a Riesz operator if %e(T ) = 0. If M ⊂ B(X) is commutative modulo K(X),
one also says that M is an essentially commutative set of operators.

Corollary 4.7. Any essentially commutative precompact set of Riesz
operators is a point of continuity of %.

Proof. Let M be an essentially commutative precompact subset of Riesz
operators. Since M/K(X) is a commutative precompact subset of the Calkin
algebra,

%χ(M) ≤ %e(M) = %(M/K(X)) = rsup(M/K(X))

by Lemma 2.8. As M/K(X) consists of quasinilpotents, rsup(M/K(X)) = 0.
Hence %χ(M) = 0 and, by Corollary 4.6, M is a point of continuity of %.

Let A(M) denote the closed subalgebra generated by M ⊂ B(X).

Corollary 4.8. Let G be an essentially commutative semigroup of
quasinilpotent operators. Then %(M) = 0 for every precompact subset M ⊂
A(G).

Proof. Note that %(N) = r(N) for every precompact subset N ⊂ G by
Theorem 4.4(ii). Since the semigroup generated by N consists of quasinilpo-
tents, r(N) = 0 and therefore %(N) = 0. Let B be the subalgebra generated
by G. If Q is a finite subset of B, then %(Q) = 0 because Q is the set of
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polynomials in elements of some finite subset N ⊂ G (see [11], Corollary
2.10).

Let M be a precompact subset of A(G). Since A(G) is an essentially
commutative algebra of Riesz operators, M is a point of continuity of %
by Corollary 4.7. There exists a sequence (Qn) of finite subsets of B which
tends to M with respect to the Hausdorff distance. Since %(Qn) = 0, we
obtain %(M) = 0.

Here we list some extensions of our results; the proofs need some auxiliary
technique and will be published elsewhere.

(1) The Berger–Wang formula, %(M) = r(M), is valid for precompact
subsets of a Banach algebra if M consists of compact elements. Recall that
an element a of a Banach algebra A is called a compact element of A if the
map x 7→ axa, x ∈ A, is compact.

(2) The Berger–Wang formula is valid for finite subsets of a postliminal
C∗-algebra.

(3) The commutativity conditions modulo W (X) (or K(X)) in Theorem
4.4 can be considerably weakened: one may suppose only that M/W (X)
(or M/K(X)) belongs to the closed associative subalgebra generated by a
nilpotent Lie subalgebra.

Other applications to Banach algebras will also be published separately.
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