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Separate and joint similarity to families
of normal operators

by

Piotr Niemiec (Kraków)

Abstract. Sets of bounded linear operators S,T ⊂ B(H) (H is a Hilbert space) are
similar if there exists an invertible (in B(H)) operator G such that G−1 · S · G = T .
A bounded operator is scalar if it is similar to a normal operator. S is jointly scalar if
there exists a set N ⊂ B(H) of normal operators such that S and N are similar. S is
separately scalar if all its elements are scalar. Some necessary and sufficient conditions for
joint scalarity of a separately scalar abelian set of Hilbert space operators are presented
(Theorems 3.7, 4.4 and 4.6).

Continuous algebra homomorphisms between the algebra of all complex-valued con-
tinuous functions on a compact Hausdorff space and the algebra of all bounded operators
in a Hilbert space are studied.

In this paper we investigate the question of when a commutative family
of (bounded linear) scalar operators on a Hilbert space (in the sense of
Dunford and Schwartz) is (jointly) similar to a family of normal operators
acting on the same space. Section 3 answers the question in case the family is
arbitrary (see Theorem 3.7); the solution is written in terms of quasi-adjoints
of the operators in question. In Section 4 we concentrate on families which
are algebras. The main result (Theorem 4.4) says that any closed abelian
algebra of scalar operators which is invariant under the operation of taking
quasi-adjoints is automatically (jointly) similar to an abelian C∗-algebra of
normal operators. In particular, any closed abelian real algebra of operators
similar to selfadjoint ones is (jointly) similar to the real part of an abelian
C∗-algebra of normal operators (Theorem 4.6).

Sections 1 and 2 deal with a single scalar operator. The literature con-
cerning similarity to a normal operator is still growing and we mention just
a few examples: Dunford and Schwartz [DS3], Sz.-Nagy [SzN], Gokhberg
and Krĕın [G-K], van Casteren [Ca1, Ca2], Naboko [Nab], Benamara and
Nikolski [B-N].
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1. Preliminaries. In this paper H denotes a complex Hilbert space and
B(H) the algebra of all bounded linear operators in H. We denote by G(H)
the multiplicative group of all invertible elements of B(H) and by G+(H)
the subset of G(H) consisting of all strictly positive (i.e. nonnegative and
invertible) operators. For any A ∈ B(H) we denote by σ(A) the spectrum
of A in B(H).

We follow the terminology of Dunford and Schwartz [DS3].

1.1. Definition. Let Ω be a nonempty set and M be a σ-algebra of
subsets of Ω. A mapping E : M→ B(H) is called a spectral measure if:

(1) E is an operator measure,
(2) E(σ ∩ τ) = E(σ)E(τ) for all σ, τ ∈M,
(3) E(Ω) = IH.

If the mapping E satisfies conditions (1)–(3) and all its values are non-
negative operators, then E is said to be a nonnegative spectral measure.

Dunford and Schwartz [DS3] defined a scalar operator as an operator A ∈
B(H) for which there exists a spectral measure E : B(σ(A)) → B(H) such
that A =

�
σ(A) z dE(z). One may easily check that each bounded operator

similar to a normal one is scalar (in the sense of Dunford and Schwartz).
It turns out that the converse is also true—each scalar operator is similar
to a normal one (see [DS3, Theorem XV.6.4]). Therefore we can state the
following definition.

1.2. Definition. We say that a bounded operator is scalar if it is similar
to a normal one.

1.3. Theorem ([DS3, Lemma XV.6.1]). Let F ⊂ G(H) be any abelian
subgroup of G(H) which is bounded , i.e. supF∈F ‖F‖ <∞. Then there exists
G ∈ G+(H) such that for any F ∈ F the operator G−1FG is unitary.

A particular case of the above theorem is the classic Sz.-Nagy theorem
which states that a bounded operator is similar to a unitary one if and only
if it is invertible and the set of all its integer powers is bounded.

The following theorem is also a consequence of Theorem 1.3. It can be
proved by the same argument as in the proof of [DS3, Lemma XV.6.2] (1).

1.4. Theorem. Let P ⊂ B(H) be any abelian (nonempty) set of projec-
tions (i.e. idempotents) such that

P +Q− 2PQ ∈ P, P,Q ∈ P.
Then the following conditions are equivalent :

(1) Apply Theorem 1.3 to the abelian group {I − 2P : P ∈ P}, where P is as in
Theorem 1.4.
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(i) there exists G ∈ G(H) such that G−1PG is an orthogonal projection
for every P ∈ P,

(ii) supP∈P ‖P‖ <∞.

Applying Theorem 1.4 to the range of a spectral measure, and the well
known theorem which states that each spectral measure is bounded (see e.g.
[DS1, Corollary IV.10.2]), we get

1.5. Theorem (Dixmier). Let Ω be a nonempty set and M be a σ-algeb-
ra of subsets of Ω. Let E : M→ B(H) be a spectral measure. Then there exist
a nonnegative spectral measure E0 : M→ B(H) and an operator G ∈ G+(H)
such that

G−1E(τ)G = E0(τ), τ ∈M.

The following theorem is a starting point for our investigations.

1.6. Theorem ([DS3, Theorem XV.6.4 and Corollary XV.6.5]). If A1,
. . . , An ∈ B(H) (n ≥ 2) are commuting scalar operators, then there exists
G ∈ G+(H) such that G−1AjG is normal for every j ∈ {1, . . . , n}. Moreover ,
the operators Aj + Ak and AjAk are scalar (j, k = 1, . . . , n).

The following well known fact is a consequence of Theorem 1.4 (for
terminology see [Day, §3–4]).

1.7. Corollary ([Lor]). Let H be a separable (infinite-dimensional
complex ) Hilbert space and (en)∞n=1 be an orthonormal basis of H. Let
(fn)∞n=1 be an unconditional Schauder basis of H such that supn≥1 ‖fn‖ <∞
and infn≥1 ‖fn‖ > 0. Then there exists G ∈ G(H) such that G(en) = fn
(n ≥ 1).

Proof. It follows from [Day, §3, Th. 1] that there exists a sequence
(ln)∞n=1 ⊂ H such that

x =
∞∑

n=1

〈x, ln〉fn, x ∈ H.

Denote by Pn the mapping

Pn : H 3 x 7→ 〈x, ln〉fn ∈ H, n ≥ 1.

Then (Pn)∞n=1 ⊂ B(H) and PjPk = δjkPj (j, k ≥ 1) (2). Set

P := {a1P1 + . . .+ anPn : n ≥ 1, a1, . . . , an ∈ {0, 1}}.
It is easy to check that P is an abelian set of projections which satisfies
the condition: P + Q − 2PQ ∈ P for P,Q ∈ P. Since the basis (fn)∞n=1 is
unconditional, P is bounded (see [Day, §4, Theorem 1]). By Theorem 1.4
there exists L ∈ G(H) such that L−1PL is an orthogonal projection for any
P ∈ P. Let f̃n := L−1(fn) and P̃n := L−1PnL (n ≥ 1). Then P̃n(f̃n) = f̃n,

(2) δjk denotes the Kronecker delta.
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P̃nP̃m = 0 (n,m ≥ 1, n 6= m). This means that (f̃n)∞n=1 is an orthogonal
basis of H. Moreover, supn≥1 ‖f̃n‖ < ∞ and infn≥1 ‖f̃n‖ > 0. Set ẽn :=
f̃n/‖f̃n‖ (n ≥ 1). Then (ẽn)∞n=1 is an orthonormal basis of H. Let S ∈ B(H)
be defined by S(ẽn) := ‖f̃n‖ẽn = f̃n (n ≥ 1). Then S ∈ G(H) (because
infn≥1 ‖f̃n‖ > 0 and supn≥1 ‖f̃n‖ <∞). We define a unitary operator U by
U(en) = ẽn (n ≥ 1). Finally, we put G := LSU ∈ G(H). Now it is easy to
check that G(en) = fn (n ≥ 1).

It is worthwhile to mention here that there exists a Schauder basis in l2
which is not unconditional (see [Bab]).

1.8. Lemma. Let A be a scalar operator and G1, G2 ∈ G(H) be such that
G−1

1 AG1 and G−1
2 AG2 are normal. Then

G1(G−1
1 AG1)∗G−1

1 = G2(G−1
2 AG2)∗G−1

2 .

Proof. Set M := G−1
1 AG1 and N := G−1

2 AG2. By assumption, M and
N are normal and G1MG−1

1 = A = G2NG
−1
2 , which gives (G−1

2 G1)M =
N(G−1

2 G1). By Putnam’s theorem we get (G−1
2 G1)M∗ = N∗(G−1

2 G1), so
G1M

∗G−1
1 = G2N

∗G−1
2 .

Now we can define the main notion of this paper.

1.9. Definition. Let A be a scalar operator and G ∈ G(H) be such
that G−1AG is normal. We define the quasi-adjoint of A via

A(∗) := G(G−1AG)∗G−1.

By Lemma 1.8 the quasi-adjoint is well defined, i.e. it does not depend
on the choice of the operator G. In particular, the quasi-adjoint and the
adjoint of a normal operator coincide.

Until the end of this section Ω denotes a compact (nonempty) Hausdorff
space, C(Ω) the algebra of all complex-valued continuous functions on Ω,
B(Ω) the σ-algebra of all Borel subsets of Ω and Φ : C(Ω) → B(H) an
algebra homomorphism preserving units. C(Ω,R) stands for the real algebra
of all real-valued continuous functions on Ω.

1.10. Theorem ([DS3, Theorem XVII.2.5]). Let Φ : C(Ω)→ B(H) be a
continuous algebra homomorphism preserving units. Then there exists a
spectral measure E : B(Ω)→ B(H) such that

Φ(f) = �
Ω

f dE, f ∈ C(Ω).

Theorem 1.10 is also true for continuous algebra homomorphisms Φ :
C(Ω,R)→ B(H) preserving units.

The following theorem is well known and its proof is easy.
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1.11. Theorem. Let A be a Banach algebra with unit and Φ : C(Ω)→ A
be a continuous algebra homomorphism preserving units. Then there exists
a unique pair (F,Φ0), where F is a closed subset of Ω and Φ0 : C(F ) → A
is a continuous algebra monomorphism preserving units, such that

Φ(f) = Φ0(f |F ), f ∈ C(Ω).

Moreover , kerΦ = {f ∈ C(Ω) : f |F ≡ 0}.
1.12. Proposition. Let A be a (complex ) Banach algebra with unit and

Φ0 : C(Ω,R)→ A be an algebra homomorphism preserving units. Then there
exists a unique (complex ) algebra homomorphism Φ : C(Ω) → A such that
Φ
∣∣
C(Ω,R) = Φ0. Moreover , if Φ0 is continuous, then so is Φ.

Proof. Let Φ(f) := Φ0(Re f) + iΦ0(Im f) (f ∈ C(Ω)). It is easy to check
that Φ is a unique homomorphic extension of Φ0; moreover, the extension
preserves continuity.

1.13. Theorem (the homomorphism theorem). Let Ω be a compact
Hausdorff space. If Φ : C(Ω) → B(H) is a continuous algebra homomor-
phism preserving units, then:

(a) there exists a closed subset A ⊂ Ω such that kerΦ = {f ∈ C(Ω) :
f |A ≡ 0},

(b) there exists an algebra monomorphism Φ0 : C(A) → B(H), which
preserves units and is a homeomorphism onto its range, such that Φ(f) =
Φ0(f |A) for f ∈ C(Ω),

(c) σ(Φ(f)) = f(A) for f ∈ C(Ω),
(d) the range of Φ is closed ,
(e) Φ is an open mapping between its domain and its range,
(f) A and the carrier space of the range of Φ are homeomorphic,
(g) Φ(f) is scalar for f ∈ C(Ω),
(h) Φ(f) = (Φ(f))(∗) for f ∈ C(Ω),
(i) there exists G ∈ G(H) such that G−1Φ(f)G is normal for f ∈ C(Ω),
(j) there exist a ∗-representation π : C(Ω) → B(H) (preserving units)

and G ∈ G(H) such that Φ(f) = G−1π(f)G for f ∈ C(Ω).

Proof. First we assume that Φ is a monomorphism. This means that (a)
holds for A := Ω. We put Φ0 := Φ. By Theorem 1.10, there exists a spectral
measure E : B(Ω)→ B(H) such that

Φ(f) = �
Ω

f dE, f ∈ C(Ω).

Further, by Theorem 1.5, there exists G ∈ G(H) such that G−1E(σ)G is an
orthogonal projection for σ ∈ B(Ω). Let F denote the nonnegative spectral
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measure given by

F (σ) := G−1E(σ)G, σ ∈ B(Ω).

Then
G−1Φ(f)G = �

Ω

f dF, f ∈ C(Ω).

Hence we get (g), (i) and (j). Moreover

Φ(f) = G ·
( �
Ω

f dF
)
·G−1 = G ·

( �
Ω

f dF
)∗
·G−1 =

(
G ·
( �
Ω

f dF
)
·G−1

)(∗)
.

This gives (h). Furthermore, if F := {G−1Φ(f)G : f ∈ C(Ω)}, then F is an
abelian ∗-algebra with unit and the mapping Ψ : C(Ω) 3 f 7→ G−1Φ(f)G
∈ F is a ∗-algebra isomorphism preserving units. Hence Ψ is an isometry, F
is closed and Ψ , considered as a homomorphism between C(Ω) and B(H),
preserves spectra (since each noninvertible element of C(Ω) is a topological
divisor of zero). This gives (b) (and (e) as well), (c) and (d). The property
(f) follows from (b) and (d).

Now let Φ be any continuous homomorphism. By Theorem 1.11 there
exist a closed subset A ⊂ Ω and a continuous algebra monomorphism pre-
serving units Φ0 : C(A) → B(H) such that kerΦ = {f ∈ C(Ω) : f |A ≡ 0}
and Φ(f) = Φ0(f |A) for f ∈ C(Ω). It is easy to check that Φ satisfies all
conditions (a)–(j) ((e) follows from the open mapping theorem).

1.14. Corollary. Let K ⊂ C be a (nonempty) compact subset and
ϕ : K 3 z 7→ z ∈ C. Let Φ, Ψ : C(K) → B(H) be continuous algebra
homomorphisms preserving units. If Φ(ϕ) = Ψ(ϕ), then Φ = Ψ .

Proof. Theorem 1.13 says that Φ(ϕ) = Ψ(ϕ) (3). Thus the conclusion
follows from the Stone–Weierstrass theorem.

2. Scalar operators. In this section we give a characterization of scalar
operators. First we give some of their properties which are simple genera-
lizations of the properties of normal operators.

2.1. Proposition. For a scalar operator A ∈ B(H) the following con-
ditions hold true:

(1) if σ(A) = {0}, then A = 0,
(2) A∗ is scalar ,
(3) p(A) is scalar for every p ∈ C[Z],
(4) if A ∈ G(H), then A−1 is scalar ,
(5) for every G ∈ G(H), G−1AG is scalar ,
(6) for every B ∈ {A}CC , B is scalar (4).

(3) This follows from the uniqueness of the quasi-adjoint of a scalar operator.
(4) XCC denotes the double commutant of a set X.
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2.2. Proposition. Let A ∈ B(H) be a scalar operator. Then:

(1) (Fuglede’s type theorem) A(∗) ∈ {A}CC ,
(2) for every G ∈ G(H), (G−1AG)(∗) = G−1A(∗)G,
(3) for every λ ∈ C, (λA)(∗) = λA(∗),
(4) A(∗) is scalar ,
(5) (A(∗))(∗) = A,
(6) (A(∗))∗ = (A∗)(∗),
(7) there exists G ∈ G+(H) such that A(∗) = G−1A∗G,
(8) (Putnam’s type theorem) if moreover B is a scalar operator , X ∈

B(H) and XA = BX, then XA(∗) = B(∗)X.

Proof. Condition (1) follows from the Fuglede theorem; conditions
(2)–(6) are easily seen to be true.

(7) Let S ∈ G(H) be such that N := SAS−1 is normal. Then

A(∗) = S−1N∗S, A∗ = S∗N∗(S∗)−1,

and hence
A(∗) = (S∗S)−1A∗(S∗S).

Thus G := S∗S gives the required similarity.
(8) Let N and M be normal operators and G1, G2 ∈ G(H) be such that

A = G1MG−1
1 and B = G2NG

−1
2 . Then, since XA = BX, we have

(G−1
2 XG1)M = N(G−1

2 XG1).

Applying the Putnam theorem we obtain

(G−1
2 XG1)M∗ = N∗(G−1

2 XG1).

This completes the proof.

2.3. Theorem. Let M be a scalar operator. Then there exist U,A ∈
B(H) such that:

(i) U,A ∈ {M}CC ,
(ii) U is similar to a unitary operator and U |N (M) = IN (M) (5),

(iii) A is similar to a nonnegative operator , N (A) = N (M) and A2 =
M (∗)M ,

(iv) M = UA (= AU).

Moreover , if M is invertible and M = U1A1, where U1 is similar to a unitary
operator , A1 is similar to a selfadjoint one, and U1 and A1 commute, then
U1 = U and A1 = A.

Proof. There exist a normal operator N and G ∈ G(H) such that M =
GNG−1. Let N = QB be the polar decomposition of N . Since N is normal,
Q,B ∈ {N}CC . Put V := Q|R(N)⊕IN (N). Then V is a unitary operator such

(5) N (R) denotes the kernel of R ∈ B(H) and R(R) its range.
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that N = V B and V |N (N) = IN (N). Let P denote the orthogonal projection
onto N (N). Then P also belongs to the double commutant of N , which in
turn implies that V ∈ {N}CC . Set U := GV G−1 and A := GBG−1. Then
U and A satisfy all the requirements.

Now suppose that M is invertible and U1 and A1 are as in the statement
of the theorem. Since A1 and U1 commute, M commutes with U1 and A1.
Moreover, M is invertible and so are U,U1, A,A1 (6). But U,A ∈ {M}CC , so
U commutes with U1 and A with A1. Moreover, U−1U1 = AA−1

1 . It remains
to show that U−1U1 = I. Put U0 := U−1U1 and A0 := AA−1

1 . We know
that σ(U) ∪ σ(U1) ⊂ T and σ(A) ∪ σ(A1) ⊂ R+ (7). By commutativity we
get σ(U0) ⊂ T and σ(A0) ⊂ R+ (for commuting operators C and D we
have σ(CD) ⊂ σ(C) · σ(D), by the properties of the Gelfand transform).
But U0 = A0, so σ(U0) = {1}. Since U−1 and U1 are scalar and commute,
we deduce from Theorem 1.6 that U0 is also scalar. But σ(U0) = {1}, so
U0 = I.

It follows from Theorem 1.6 that each operator for which there exist
U,A ∈ B(H) as in the above theorem, is scalar. In the particular case when
this operator is invertible, such a decomposition is unique and we call it the
quasi-polar decomposition of the invertible operator.

The following result is a consequence of Theorem 1.3.

2.4. Corollary. If A ∈ B(H), then the following conditions are equiv-
alent :

(1) A is similar to a selfadjoint operator ,
(2) supt∈R ‖exp(itA)‖ <∞,
(3) there exists t ∈ (0,∞) such that ‖A‖ < π/t and

sup
k∈Z
‖exp(iktA)‖ <∞,

(4) σ(A) ⊂ R and

sup
λ∈C\R
k∈Z

‖[(A− λ)(A− λ)−1]k‖ <∞,

(5) there exists λ ∈ C \ R such that λ, λ ∈ %(A) (8) and

sup
k∈Z
‖[(A− λ)(A− λ)−1]k‖ <∞.

Proof. The implications (1)⇒(2)⇒(3), (1)⇒(4)⇒(5) are obvious (they
hold for selfadjoint operators).

(6) Here the fact that the operators commute is important.
(7) Here T := {z ∈ C : |z| = 1}.
(8) %(R) denotes the resolvent set of R ∈ B(H).
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(3)⇒(1). Set U := exp(itA). Then, by Theorem 1.3, U is similar to
a unitary operator, so σ(U) ⊂ T. Hence σ(A) ⊂ R. But ‖itA‖ < π, so
σ(tA) ⊂ (−π, π). This gives σ(U) ⊂ T \ {−1}. If D := C \ {t ∈ R : t ≤ 0},
then there exists a holomorphic mapping log : D → C such that log 1 =
0 and exp ◦ log = idD. Then, by the Dunford–Riesz functional calculus,
logU = itA. Hence itA is similar to a selfadjoint operator and so is A
(t 6= 0).

(5)⇒(1). Set U := (A−λ)(A−λ)−1. Then, by Theorem 1.3, U is similar
to a unitary operator. Hence A is similar to a selfadjoint one because A =
(λ− λU)(1− U)−1.

Now we can state the characterization of scalar operators.

2.5. Theorem. If A ∈ B(H), then the following conditions are equiva-
lent :

(1) A is a scalar operator ,
(2) there exists a (nonempty) compact Hausdorff space Ω and a contin-

uous algebra homomorphism Φ : C(Ω) → B(H) preserving units such that
A ∈ Φ(C(Ω)),

(3) there exists a continuous algebra homomorphism Φ : C(σ(A)) →
B(H) preserving units such that Φ(idσ(A)) = A,

(4) there exists a spectral measure E : B(σ(A)) → B(H) such that A =�
σ(A) z E(dz),

(5) there exists B ∈ B(H) such that AB = BA and

sup
z∈C
‖exp(zA− zB)‖ <∞,

(6) there exist B ∈ B(H) and p, q ∈ (0,∞) such that AB = BA, ‖A+B‖
< π/p, ‖A−B‖ < π/q and

sup
k∈Z
‖exp[ikp(A+B)]‖ <∞, sup

k∈Z
‖exp[kq(A−B)]‖ <∞,

(7) there exists B ∈ B(H) such that

sup
z∈C
‖exp(zA) · exp(−zB)‖ <∞,

(8) there exist B ∈ B(H) and λ ∈ C \ R such that AB = BA, λ, λ ∈
%(A+B) ∩ %(i(A−B)) and

sup
k∈Z
‖[(A+B − λ)(A+B − λ)−1]k‖ <∞,

sup
k∈Z
‖[(i(A−B)− λ)(i(A−B)− λ)−1]k‖ <∞.

Moreover , if A is scalar , then the operator B which appears in each of
(5)–(8) is unique and B = A(∗) (9).

(9) In particular, B in condition (7) commutes with A.
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Proof. The equivalences (1)⇔(2)⇔(3)⇔(4) can be deduced from the
theorems of Section 1 and properties of normal operators.

The implications (1)⇒(5)⇒(6), (1)⇒(7), (1)⇒(8) are clear.
(6)⇒(1). As in the proof of Corollary 2.4 we see that the operators A+B

and (A−B)/i are similar to selfadjoint ones. This means that (A+B)(∗) =
A+B and ((A−B)/i)(∗) = (A−B)/i. Since A and B commute, A is scalar
and

A(∗) =
(
A+B

2

)(∗)
− i
(
A−B

2i

)(∗)
=
A+B

2
− iA−B

2i
= B.

This gives (1) and the uniqueness of B.
(7)⇒(1). It suffices to prove that B and A commute (then we apply (6)).

Consider the mapping
ϕ : C 3 z 7→ exp(zA) ·B · exp(−zA) ∈ B(H).

It is an entire function which is bounded because

‖ϕ(z)‖ = ‖exp(zA) · exp(−zB) ·B · exp(zB) · exp(−zA)‖
≤ ‖exp(zA) · exp(−zB)‖ · ‖B‖ · ‖exp(zB) · exp(−zA)‖
≤ (sup

z∈C
‖ exp(zA) · exp(−zB)‖)2 · ‖B‖ <∞, z ∈ C.

Hence, by the Liouville theorem, ϕ is constant. This means that

exp(zA) ·B = B · exp(zA), z ∈ C.
So the coefficients of both power series coincide and hence AB = BA.

The proof of (8)⇒(1) is similar to that of (6)⇒(1).

If K ⊂ C is an infinite compact subset, then we denote by R0(K) the
algebra of rational functions with poles off K and consider it as a subalgebra
of C(K) with the supremum norm ‖ · ‖K . R(K) denotes the uniform closure
of R0(K).

2.6. Corollary. Let A ∈ B(H) with cardσ(A) ≥ ℵ0 and K := σ(A).
If R(K) = C(K), then the following conditions are equivalent :

(1) A is scalar ,
(2) there exists a constant M > 0 such that

‖W (A)‖ ≤M‖W‖K , W ∈ R0(K).

Proof. The implication (1)⇒(2) is clear.
(2)⇒(1). The condition (2) tells us that the mapping

R0(K) 3W 7→W (A) ∈ B(H)

is a continuous algebra homomorphism preserving units. So it can be ex-
tended to a continuous algebra homomorphism between C(K) and B(H) (10).
Now it remains to apply Theorem 2.5.

(10) Since R(K) = C(K).
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2.7. Theorem. The following conditions hold true:

(1) each projection is a scalar operator ,
(2) for A ∈ B(H) with σ(A) = {λ1, . . . , λn}, where λ1, . . . , λn are dis-

tinct , the following conditions are equivalent :

(a) A is a scalar operator ,
(b) (A− λ1) . . . (A− λn) = 0,
(c) there exist P1, . . . , Pn ∈ B(H) such that PjPk = δjkPj for all

j, k ∈ {1, . . . , n}, P1 + . . .+ Pn = I and A = λ1P1 + . . .+ λnPn.

Proof. (1) follows easily from Theorem 1.4.
(2), (b)⇔(c). This is a well known theorem of the theory of Banach

algebras (see [B-D, Proposition I.8.10] for the proof of (b)⇒(c), the converse
implication is a simple algebraic calculation).

The implication (a)⇒(c) is true for normal operators, hence also for
scalar ones; (c)⇒(a) follows from (1) and Theorem 1.6.

For more results concerning similarity to a unitary or selfadjoint operator
see also [Nab, Ca1, Ca2, G-K, B-N].

2.8. Theorem. Any scalar operator A is the norm limit of a sequence
of scalar operators belonging to the double commutant of A each of which
has a finite spectrum.

Proof. Normal operators have this property.

2.9. Proposition. If A ∈ B(Cn) (n ≥ 1) and cardσ(A) = n, then A is
a scalar operator.

Proof. By Jordan theory, A is similar to a diagonal normal operator.

3. Abelian families of operators

3.1. Definition. Families S, T ⊂ B(H) are said to be similar if there
exists G ∈ G(H) such that

G−1SG ∈ T , S ∈ S,
GTG−1 ∈ S, T ∈ T .

If A,B ∈ B(H), then A and B are similar if {A} and {B} are similar.

3.2. Definition. Let S ⊂ B(H). We say that the set S is:

• abelian if all elements of S commute,
• separately scalar if each element of S is a scalar operator,
• jointly scalar if S is similar to a set of normal operators.

In other words:

S is separately scalar ⇔ ∀S ∈ S ∃G ∈ G(H) : G−1SG is normal,

S is jointly scalar ⇔ ∃G ∈ G(H) ∀S ∈ S : G−1SG is normal.



50 P. Niemiec

3.3. Definition. Let A ⊂ B(H). We say that:

• A is a “quasi-star” algebra (for short: (∗)-algebra) if it is a subalgebra of
B(H) which is separately scalar and invariant under the operation of taking
quasi-adjoints,
• A is a C(∗)-algebra if it is a closed (∗)-algebra.

A subalgebra of B(H) is called an algebra with unit if it contains the unit of
B(H).

3.4. Theorem. Let S ⊂ B(H) be any abelian jointly scalar set and
G ∈ G(H) be such that G−1SG is normal for every S ∈ S. Then G−1SG is
normal for every S ∈ SCC and SCC is a commutative C(∗)-algebra with unit
containing S.

Proof. Set N := {G−1SG : S ∈ S}. By assumptions, N is an abelian set
of normal operators. Hence NCC is a commutative C∗-algebra (in particular,
its elements are normal operators) with unit, containing N . But NCC =
G−1 · SCC ·G, which completes the proof.

3.5. Corollary. (a) Any abelian separately scalar set is contained in
an abelian (∗)-algebra with unit.

(b) If A is an abelian (∗)-algebra, then (∗) is an involution on A.

Proof. (a) Let S be any abelian separately scalar set. We conclude from
Theorems 1.6 and 3.4 that for all A1, . . . , An ∈ S (n ∈ N∗) the double
commutant of the set {A1, . . . , An} is a commutative (∗)-algebra with unit
which is contained in the commutant of S. Hence the set⋃

A1,...,An∈S
n≥1

{A1, . . . , An}CC

is an abelian (∗)-algebra with unit containing S.
(b) By (a) it remains to show that if A and B are commuting scalar

operators, then

(A+B)(∗) = A(∗) +B(∗) and (AB)(∗) = A(∗)B(∗).

By Proposition 2.2(1), (4), the set {A,B,A(∗), B(∗)} is abelian and sepa-
rately scalar. Hence, by Theorem 1.6, there exists G ∈ G(H) such that the
operators G−1AG,G−1BG,G−1A(∗)G and G−1B(∗)G are normal and com-
muting. Therefore the operators G−1(A+B)G,G−1ABG, G−1(A(∗) +B)G
and G−1A(∗)BG are also normal and consequently (by the definition of the
quasi-adjoint)

(A+B)(∗) = G(G−1(A+B)G)∗G−1

= G(G−1AG)∗G−1 +G(G−1BG)∗G−1 = A(∗) +B(∗),
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(AB)(∗) = (G−1ABG)∗G−1 = G[(G−1AG)(G−1BG)]∗G−1

= G(G−1BG)∗(G−1AG)∗G−1

= [G(G−1BG)∗G−1] · [G(G−1AG)∗G−1] = B(∗)A(∗) = A(∗)B(∗),

which completes the proof.

It follows from Corollary 3.5 that for any abelian separately scalar set
S ⊂ B(H) there exists the smallest (not necessarily closed) subalgebra with
unit which is an abelian (∗)-algebra containing S. We denote it by (∗)-Alg(S)
and call it the (∗)-algebra generated by S. For a scalar operator A we write
(∗)-Alg(A) instead of (∗)-Alg({A}).

We shall see below that in general the (norm) closure of an abelian (∗)-
algebra may not be separately scalar (see Remark 4.11). This is the reason
why we do not define the C(∗)-algebra generated by an abelian separately
scalar set.

The following fact belongs to folklore knowledge. For the reader’s con-
venience we sketch its proof.

3.6. Theorem. Let (H, 〈·,−〉) be a Hilbert space and S ⊂ B(H). Then
the following conditions are equivalent :

(1) S is jointly scalar ,
(2) there exists A ∈ G+(H) such that A−1SA is normal for any S ∈ S,
(3) there exists an equivalent scalar product 〈·,−〉S on H such that each

element of S is a normal operator in the Hilbert space (H, 〈·,−〉S).

Proof. The implication (2)⇒(1) is clear.
(1)⇒(2). Let G ∈ G(H) be such that G−1SG is normal for any S ∈ S.

Let G−1 = UB be the polar decomposition; then U is a unitary operator
and B ∈ G+(H) (because G is invertible).

We shall show that A := B−1 is a nonnegative operator realizing the
similarity. Since A ∈ G+(H), it remains to show that A−1SA is normal for
any S ∈ S. Indeed, G−1SG is normal and A−1SA = U−1(G−1SG)U , which
gives (2) because U is unitary.

(2)⇒(3). Let A ∈ G+(H) be as in (2). Define

〈x, y〉S := 〈A−2x, y〉, x, y ∈ H.
Since A ∈ G+(H), 〈·,−〉S is equivalent to 〈·,−〉 and it remains to prove that
each S ∈ S is normal in (H, 〈·,−〉S). Clearly S is ‖ · ‖S-bounded. We know
that A−1SA is normal, so the operators A−1SA and AS∗A−1 = (A−1SA)∗

commute and consequently so do S and A2S∗A−2. Therefore it is enough
to show that the adjoint of S in (H, 〈·,−〉S) is A2S∗A−2. Indeed, for all
x, y ∈ H we have
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〈Sx, y〉S = 〈A−2Sx, y〉 = 〈Sx,A−2y〉 = 〈x, S∗A−2y〉
= 〈A2A−2x, S∗A−2y〉 = 〈A−2x,A2S∗A−2y〉 = 〈x, (A2S∗A−2)y〉S ,

which yields (3).
(3)⇒(2). Let 〈·,−〉S be as in (3). By the Riesz representation theorem

there exists B ∈ B+(H) such that

〈x, y〉S = 〈Bx, y〉, x, y ∈ H.(3-1)

The equivalence of the scalar products implies that B ∈ G+(H) and in
consequence B−1 ∈ G+(H). By the square root theorem there exists A ∈
B+(H) such that A2 = B−1. Since B is invertible, so is A. This means that
A ∈ G+(H). We show that for any S ∈ S the operator A−1SA is normal.
Indeed, for x, y ∈ H we have (by (3-1))

〈Sx, y〉S = 〈BSx, y〉 = 〈A−2Sx, y〉 = 〈Sx,A−2y〉 = 〈x, S∗A−2y〉
= 〈A2A−2x, S∗A−2y〉 = 〈A−2x,A2S∗A−2y〉
= 〈Bx,A2S∗A−2y〉 = 〈x,A2S∗A−2y〉S .

Thus A−2S∗A2 is the adjoint of S in the space (H, 〈·,−〉S). But S is normal
in this space, so S and A2S∗A−2 commute. This means that SA2S∗A−2 =
A2S∗A−2S. Finally, we have (due to A = A∗)

(A−1SA)(A−1SA)∗ = A−1SA ·AS∗A−1 = A−1(SA2S∗A−2)A

= A−1(A2S∗A−2S)A = AS∗A−1 ·A−1SA

= (A−1SA)∗(A−1SA).

Hence A−1SA is normal. This completes the proof.

We now offer a few conditions equivalent to the joint scalarity of abelian
separately scalar sets. Observe that if A is scalar, then A+A(∗) is similar to
a selfadjoint operator (because (A+A(∗))(∗) = A+A(∗)), so its spectrum is
real; in particular, the operators A+A(∗)− i and A+A(∗) + i are invertible.
Likewise, i(A− A(∗))− i and i(A− A(∗)) + i are also invertible.

3.7. Theorem. Let S ⊂ B(H) be an abelian separately scalar set. The
following conditions are equivalent :

(1) S is jointly scalar ,
(2) there exists M ∈ (0,∞) such that for all λ1, . . . , λn ∈ C (n ≥ 1) and

for all A1, . . . , An ∈ S,

‖exp[(λ1A1 − λ1A
(∗)
1 ) + . . .+ (λnAn − λnA(∗)

n )]‖ ≤M,

(3) there exists M ∈ (0,∞) such that for all k1, . . . , kn, l1, . . . , ln ∈ Z
(n ≥ 1) and for all A1, . . . , An ∈ S,
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‖[(A1 + A
(∗)
1 )− i]k1 · [(A1 + A

(∗)
1 ) + i]−k1 · [i(A1 − A(∗)

1 )− i]l1

· [i(A1 −A(∗)
1 ) + i]−l1 . . . [(An +A(∗)

n )− i]kn · [(An + A(∗)
n ) + i]−kn

· [i(An − A(∗)
n )− i]ln · [i(An −A(∗)

n ) + i]−ln‖ ≤M.

Proof. For simplicity, we denote by c(A1, . . . , An; k1, . . . , kn; l1, . . . , ln)
(where A1, . . . , An ∈ S and k1, . . . , kn, l1, . . . , ln ∈ Z (n ≥ 1)) the operator
whose norm appears in (3). By the comment preceding the statement of the
theorem, this operator is well defined.

(1)⇒(2). Since S is abelian and jointly scalar, we conclude from The-
orem 3.4 that (∗)-Alg(S) is an abelian jointly scalar algebra containing S.
Therefore we may assume that S is a commutative (∗)-algebra. Then (2) is
equivalent to

sup
A∈S
‖exp(A− A(∗))‖ <∞.

Let A ∈ A. Since S is a jointly scalar algebra, there exists G ∈ G(H)
such that N := G−1AG is normal. Then A = GNG−1 and A(∗) = GN∗G−1.
The operator (N −N∗)/i is selfadjoint and consequently exp(N − N ∗) is
unitary. Hence

‖exp(A−A(∗))‖ = ‖G exp(N −N∗)G−1‖
≤ ‖G‖ · ‖exp(N −N∗)‖ · ‖G−1‖ = ‖G‖ · ‖G−1‖.

(2)⇒(1). Set

F := {exp[(λ1A1 − λ1A
(∗)
1 ) + . . .+ (λnAn − λnA(∗)

n )] : λ1, . . . , λn ∈ C,
A1, . . . , An ∈ S, n ≥ 1}.

By the commutativity of S and Proposition 2.2(1), F is an abelian subgroup
of G(H). Moreover, by (2), F is bounded. It follows from Theorem 1.3 that
F is similar to an abelian group of unitary operators. Let G ∈ G(H) be such
that G−1TG is unitary for every T ∈ F . Take A ∈ S. It suffices to show
that G−1AG is normal.

By the definition of F we have exp(zA − zA(∗)) ∈ F for z ∈ C. Hence
G−1 exp(zA− zA(∗))G is unitary for z ∈ C. The operator i(A+A(∗)) (resp.
A − A(∗)) is the strong generator (11) of the group {exp(itA − itA(∗))}t∈R
(resp. {exp(tA − tA(∗))}t∈R). So iG−1(A + A(∗))G (resp. G−1(A − A(∗))G)
is the strong generator of the group {G−1 exp(itA − itA(∗))G}t∈R (resp.
{G−1 exp(tA−tA(∗))G}t∈R) of unitary operators. Thus both iG−1(A+A(∗))G
and G−1(A− A(∗))G are normal. Moreover, they commute (because A and
A(∗) commute). Hence G−1AG = 1

2 [−i · iG−1(A+A(∗))G+G−1(A−A(∗))G]
is normal, which gives (1).

(11) The relevant convergence is in the norm topology.
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(1)⇒(3). Set

F := {c(A1, . . . , An; k1, . . . , kn; l1, . . . , ln) : n ≥ 1, A1, . . . , An ∈ S,
k1, . . . , kn, l1, . . . , ln ∈ Z}.

We have to prove that F is bounded. Let G ∈ G(H) be such that G−1AG is
normal for all A ∈ S. Then the operators G−1[(A+A(∗)−i)(A+A(∗)+i)−1]G
and G−1[(i(A−A(∗))− i)(i(A−A(∗)) + i)−1]G are unitary (A ∈ S). Now it
is easy to check that the set G−1 · F ·G consists of unitary operators. This
means that F is bounded.

(3)⇒(1). Let F be as in the proof of (1)⇒(3). It is clear that F is
an abelian subgroup of G(H). Moreover, by (3), F is bounded. Applying
Theorem 1.3, we get an operator G ∈ G(H) such that G−1TG is unitary
for T ∈ F . In particular, G−1[(A + A(∗) − i)(A + A(∗) + i)−1]G and
G−1[(i(A − A(∗)) − i)(i(A − A(∗)) + i)−1]G are unitary operators (A ∈ S).
This means that the operators G−1(A + A(∗))G and iG−1(A − A(∗))G are
selfadjoint and commute for all A ∈ S (because we know the inverse of the
Cayley transform). Hence

G−1AG =
G−1(A+ A(∗))G

2
− i iG

−1(A− A(∗))G
2

is normal, which completes the proof.

Theorem 3.7 is based on the following idea: studying joint scalarity can
be replaced by studying similarity to a set of selfadjoint operators (by using
the operators A + A(∗) and i(A − A(∗)) instead of A); this problem can
be replaced by studying similarity to a set of unitary operators (by using
holomorphic mappings which send the real line into the unit circle T) and
then by applying Theorem 1.3. In part (2) of Theorem 3.7 we used the
mapping C 3 z 7→ exp(iz) ∈ C, while in (3) the Cayley transform, i.e.
the mapping C \ {−i} 3 z 7→ (z − i)/(z + i) ∈ C. Using other holomorphic
mappings with the above mentioned property one can obtain other results
concerning joint scalarity.

3.8. Remark. An abelian set S ⊂ B(H) is jointly scalar if and only if
there exists a mapping A 7→ Â from S into B(H) such that

sup
A1,...,An∈S
λ1,...,λn∈C

n≥1

‖exp(λ1A1) · exp(−λ1Â1) · . . . · exp(λnAn) · exp(−λnÂn)‖ <∞.

Moreover, if S is jointly scalar, then the mapping A 7→ Â is unique and
Â = A(∗) (A ∈ S).

Proof. By Theorem 2.5(7) we see that S is separately scalar and Â =
A(∗) (A ∈ S). So it remains to apply Theorem 3.7.
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3.9. Corollary. An abelian separately scalar set is jointly scalar if and
only if each of its countable (infinite) subsets is jointly scalar.

Proof. This follows from Theorems 3.7 and 1.6.

Now we can state a generalization of Theorem 1.6.

3.10. Theorem. Let S1, . . . ,Sm (m ≥ 2) be jointly scalar sets and S :=
S1 ∪ . . . ∪ Sm. If S is abelian, then it is jointly scalar.

Proof. Notice that S is separately scalar and, by assumption, abelian.
For any j ∈ {1, . . . ,m} there exists Mj ∈ (1,∞) such that

∀n ≥ 1, ∀λ1, . . . , λn ∈ C, ∀A1, . . . , An ∈ Sj :

‖exp[(λ1A1 − λ1A
(∗)
1 ) + . . .+ (λnAn − λnA(∗)

n )]‖ ≤Mj (12).

Take λ1, . . . , λn ∈ C and A1, . . . , An ∈ S (n ≥ 1). We may assume that (for
some 0 ≤ k1 ≤ . . . ≤ km−1 ≤ n)

Ap ∈ S1, 1 ≤ p ≤ k1,

∀j ∈ {2, . . . ,m− 1} : Ap ∈ Sj , kj−1 + 1 ≤ p ≤ kj ,
Ap ∈ Sm, km−1 + 1 ≤ p ≤ n.

Then

‖exp[(λ1A1 − λ1A
(∗)
1 ) + . . .+ (λnAn − λnA(∗)

n )]‖
≤ ‖exp[(λ1A1 − λ1A

(∗)
1 ) + . . .+ (λk1Ak1 − λk1A

(∗)
k1

)]‖ . . .
. . . ‖exp[(λkm−1+1Akm−1+1 − λkm−1+1A

(∗)
km−1+1) + . . .+ (λnAn − λnA(∗)

n )]‖
≤M1 . . .Mm <∞.

Now it suffices to apply Theorem 3.7.

4. Abelian C(∗)-algebras. For the proof of the following theorem see
[Kat].

4.1. Theorem (Katznelson). Let A be a (complex ) commutative Ba-
nach algebra with unit. Let Ω denote the carrier space of the algebra A
and Φ : A → C(Ω) be its Gelfand transform. The following conditions are
equivalent :

(1) Φ is an isomorphism between A and C(Ω),
(2) A is a semisimple algebra which admits a Hermitian involution and

each element of A with nonnegative spectrum has a square root (in A) with
nonnegative spectrum.

We state a real version of the Katznelson theorem. As it may be un-
known, we give the proof.

(12) Because Sj (j = 1, . . . , n) is jointly scalar.
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Let A be a real Banach algebra with unit. To simplify the statements
we introduce the following notions:

• a ∈ A is invertible if there exists b ∈ A such that ab = ba = 1,
• a ∈ A is nonnegative if a− t is invertible for every t ∈ (−∞, 0).

4.2. Theorem. Let A be a real commutative Banach algebra with unit
satisfying the following conditions:

(1) 1 + x2 is invertible in A for every x ∈ A,
(2) for every nonnegative a ∈ A there exists a nonnegative b ∈ A such

that b2 = a,
(3) for every a ∈ A \ {0} there exists t ∈ R \ {0} such that a − t is not

invertible in A.

Then there exists a compact Hausdorff space Ω such that A and C(Ω,R)
are isomorphic as real Banach algebras.

Proof. Let A×A be the complexification of the real Banach algebra A.
Then A×A becomes a commutative Banach algebra with unit. It is known
that the mapping A 3 a 7→ (a, 0) ∈ A×A is a real algebra monomorphism
which preserves units and invertibility of elements (i.e. if (a, 0) is invertible
in A × A, then a is invertible in A) and it is a homeomorphism onto its
range. Define a continuous involution on A×A by

A×A 3 (a, b) 7→ (a, b)∗ := (a,−b) ∈ A×A.(4-1)

We show that A × A satisfies condition (2) of Theorem 4.1. Let Ω denote
the carrier space of A×A and Φ : A×A → C(Ω) be its Gelfand transform.

First we prove that the involution (4-1) is Hermitian. Take (a, b)∈A×
A such that (a, b)∗ = (a, b). Then clearly b = 0. We have to show that
σ((a, 0)) ⊂ R. It suffices to prove that (a, 0) − i is invertible in A × A. By
(1), 1 + a2 is invertible in A. Let c ∈ A be the inverse of 1 + a2. Then

((a, 0)−i)·[((a, 0)+i)·(c, 0)] = (a,−1)·(a, 1)·(c, 0) = (a2+1, 0)·(c, 0) = (1, 0).

Now we prove that the algebra A×A is semisimple. Suppose that (a, b) ∈
A × A and σ((a, b)) = {0}. By commutativity, we have σ((a2 + b2, 0)) =
σ((a, b) · (a, b)∗) = {0}, so Φ((a, 0))2 + Φ((b, 0))2 = Φ((a2, 0)) + Φ((b2, 0)) =
Φ((a2 + b2, 0)) = 0. Since the involution is Hermitian and (x, 0)∗ = (x, 0)
for x ∈ A, the functions Φ((a, 0)) and Φ((b, 0)) are real-valued. But the sum
of their squares equals 0, so Φ((a, 0)) = Φ((b, 0)) = 0. If a 6= 0, then, by
(3), there exists a real t 6= 0 such that a − t is not invertible in A. Then
(a, 0)− t = (a− t, 0) is not invertible in A×A and consequently t belongs to
the range of Φ((a, 0)), a contradiction. Therefore a = 0 and similarly b = 0.

It remains to prove that each (a, b) ∈ A×A with nonnegative spectrum
has a square root with nonnegative spectrum. Since the involution is Her-
mitian and A × A is semisimple, (a, b)∗ = (a, b), which gives b = 0. Thus
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σ((a, 0)) ⊂ [0,∞). This means that a is nonnegative in A. By (2), there
exists c ∈ A which is nonnegative in A and c2 = a. Then σ((c, 0)) ⊂ [0,∞)
and (c, 0)2 = (c2, 0) = (a, 0) = (a, b), which completes the proof of our claim.

Finally, A × A satisfies condition (2) of Katznelson’s theorem. Thus
Φ is an isomorphism between A × A and C(Ω). It is easy to check that
Φ(A × {0}) = C(Ω,R) (13). So the required isomorphism is A 3 a 7→
Φ((a, 0)) ∈ C(Ω,R).

4.3. Lemma. Let A be a (∗)-algebra such that cl[(∗)-Alg(A)] ⊂ A for
A ∈ A. Then

σB(H)(A) = σA(A), A ∈ A,
where σA(A) = C \ {λ ∈ C : A− λ ∈ G(H), (A− λ)−1 ∈ A} (A ∈ A).

Proof. The inclusion “⊂” is clear. Let A0 := cl[(∗)-Alg(A)]. Then, by
assumption, A0 ⊂ A. Therefore it suffices to prove that σA0(A) ⊂ σ(A).
Let G ∈ G(H) be any operator such that N := G−1AG is normal. Then
A0 = G · C∗(N) ·G−1 (14). Now the conclusion follows from the well known
equality σ(N) = σC∗(N)(N) (which is a consequence of the fact that each
noninvertible element in C∗(N) is a topological divisor of zero).

Given a scalar operator A we denote by C(∗)(A) the closure (in B(H)) of
(∗)-Alg(A). A simple argument (as in the proof of Lemma 4.3) shows that
C(∗)(A) is a jointly scalar C(∗)-algebra.

4.4. Theorem. Every abelian C(∗)-algebra is jointly scalar (15).

Proof. Let A be an abelian C(∗)-algebra. We may assume that I ∈ A
(because we can always take A + C · I which is a C(∗)-algebra with unit).
Then, by Lemma 4.3, the spectrum (in B(H)) of each element of A is equal
to its spectrum with respect to A. Hence A is a (commutative) semisimple
algebra (Proposition 2.1) and (∗) is a Hermitian involution on A (Corol-
lary 3.5).

If A ∈ A has a nonnegative spectrum, then there exists B ∈ C(∗)(A),
also with nonnegative spectrum, such that B2 = A (because A is similar to
nonnegative operator). Since A is closed, we conclude that C(∗)(A) ⊂ A and
hence B ∈ A. This means that each element ofA with nonnegative spectrum
has a square root with nonnegative spectrum. By Theorem 4.1, there exists
a compact Hausdorff space Ω and an algebra isomorphism Φ : C(Ω) → A.
Hence Theorem 1.13(i) completes the proof.

(13) Since the algebra is semisimple and the involution is Hermitian, Φ preserves the
involution.

(14) Here C∗(N) = C∗({N, I}).
(15) The assumption that the algebra is abelian is not restrictive since any algebra of

normal operators is commutative; we do not know if this hypothesis can be omitted (see
Example 4.10).
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4.5. Corollary. (1) The operation of taking quasi-adjoints is continu-
ous on any abelian C(∗)-algebra (16).

(2) If A0 is an abelian C(∗)-algebra, then A := {A ∈ A0 : A = A(∗)}
is a closed abelian real algebra of operators similar to selfadjoint ones and
A0 = A+ iA.

Proof. By Theorem 4.4, the operation of taking quasi-adjoints on abelian
C(∗)-algebras is similar to the operation of taking standard adjoints, which
is continuous. This yields (1) and (2).

According to Corollary 4.5, if the closure of a (∗)-algebra is a (∗)-algebra,
then taking quasi-adjoints is continuous on it. But this property may not be
true in general (see Remark 4.11).

We now state a generalization of Theorem 4.4.

4.6. Theorem. Let A ⊂ B(H) be an abelian real algebra of operators
similar to selfadjoint ones. If A is closed , then A is jointly scalar.

Proof. We may assume that I ∈ A (consider A+R·I instead of A). So A
is an abelian real Banach algebra with unit. It is easy to check (arguing as in
the proof of Theorem 4.4) that A satisfies the assumptions of Theorem 4.2:
it is invariant under taking inverses (i.e. if A ∈ A is invertible in B(H), then
A−1 belongs to A); also the square root of any nonnegative element in A
belongs to A (we can approximate the square root by polynomials with real
coefficients). Hence A is isomorphic (and homeomorphic) to the algebra
C(Ω,R), where Ω is a compact Hausdorff space. By Proposition 1.12 we
can extend the isomorphism from C(Ω,R) onto A to a continuous algebra
homomorphism between C(Ω) and B(H). Hence Theorem 1.13 completes
the proof.

4.7. Corollary. Let A be an abelian (∗)-algebra. Then

(1) ACC is jointly scalar provided A is closed ,
(2) there exists a maximal (with respect to inclusion) commutative C(∗)-

algebra A0 with unit such that A ⊂ A0 provided A is closed ,
(3) A is a maximal abelian C(∗)-algebra if and only if A = AC ,
(4) A is jointly scalar if and only if clA is a separately scalar set and

the operation of taking quasi-adjoints is continuous on A.

Proof. (1) follows from Theorems 4.4 and 3.4.
(2) If A is closed, then, by Theorem 4.4, there exists G ∈ G(H) such

that G−1AG is normal for all A ∈ A. Then F := {G−1AG : A ∈ A} is a
commutative C∗-algebra and there exists a C∗-algebra F0 such that F ⊂ F0
and F0 = (F0)C . Put A0 := {GNG−1 : N ∈ F0}. Then A0 is a C(∗)-algebra

(16) There is a much stronger theorem which states that involutions on semisimple (not
necessarily commutative) Banach algebras are continuous (see [B-D, Theorem V.36.2]).
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with unit such that A ⊂ A0 and A0 = (A0)C . Now it is easy to show that
A0 is maximal.

(3) By the proof of (2), we see that any abelian C(∗)-algebra is con-
tained in some abelian C(∗)-algebra which coincides with its commutant.
This proves the “only if” part of (3). The other implication is clear.

(4) The “only if” implication follows from Theorem 3.4.
To prove the converse, take A0 := clA. Then A0 is an abelian closed

algebra which, by assumption, is separately scalar. By Theorem 4.4, it is
enough to prove that A0 is invariant under taking quasi-adjoints. If A ∈ A0,
then there exists a sequence (An)∞n=1 ⊂ A such that limn→∞An = A. Since
taking quasi-adjoints is continuous (and R-linear) on A, there exists B ∈ A0

such that limn→∞A
(∗)
n = B. Then

An + A
(∗)
n

2
→ A+B

2
(n→∞),

An − A(∗)
n

2i
→ A−B

2i
(n→∞).

In each of these two relations, the left-hand side operators commute and are
similar to selfadjoint operators, so their spectra are subsets of the real line;
hence (17) σ

(
A+B

2

)
⊂ R and σ

(
A−B

2i

)
⊂ R. But both A+B

2 and A−B
2i are

scalar and therefore similar to selfadjoint operators (because their spectra
are real). This means that

(
A+B

2

)(∗)
=
A+B

2
and

(
A−B

2i

)(∗)
=
A−B

2i
.

Finally, we have (recall that the operators commute)

A(∗) =
(
A+B

2
+ i

A−B
2i

)(∗)
=
(
A+B

2

)(∗)
− i
(
A−B

2i

)(∗)

=
A+B

2
− i · A−B

2i
= B ∈ A0.

Therefore A0 is a closed (∗)-algebra, so we can apply Theorem 4.4.

We now state the converse to part (2) of Corollary 4.5.

4.8. Corollary. Let A ⊂ B(H) be an abelian real algebra of operators
similar to selfadjoint ones. If A is closed , then A0 := A+ iA is an abelian
C(∗)-algebra (18) such that A = {A ∈ A0 : A = A(∗)}.

(17) Here it is important that the operators commute (then the spectrum of the limit
is the limit of the spectra in the Hausdorff distance on the space of all nonempty compact
subsets of the complex plane; this property follows from [B-D, Propositions I.5.17 and
I.5.18]).

(18) In particular, it is a closed set.
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Proof. By Theorem 4.6,A is similar to some closed abelian (real) algebra
of selfadjoint operators, say A′. Then A′ + iA′ is a C∗-algebra such that
A′ = {A ∈ A′ + iA′ : A = A∗}. This completes the proof.

The following fact can be deduced from Theorems 1.13 and 4.4.

4.9. Corollary. Let A ⊂ B(H) be an abelian algebra with unit. Then
the following conditions are equivalent :

(1) A is a C(∗)-algebra,
(2) A is closed and the Gelfand transform of A is an algebra isomorphism

between A and the algebra of all complex-valued continuous functions on its
carrier space,

(3) there exists a (nonempty) compact Hausdorff space Ω and a contin-
uous algebra homomorphism Φ : C(Ω) → B(H) preserving units such that
Φ(C(Ω)) = A.

We conclude the paper with two examples.

4.10. Examples. (I) For normal operators M,N the following implica-
tion holds true: if M + N and M + iN are normal, then M and N com-
mute. This is no longer true for scalar operators as the following example
shows. Let H := C2, P :=

(1 1
0 0

)
and Q :=

(1 0
0 0

)
. It is easy to check that

P 2 = P , Q2 = Q, PQ 6= QP and, by Proposition 2.9, P + λQ is scalar for
λ ∈ C \ {−1}.

(II) As the following example shows, the operation of taking quasi-
adjoints is not additive in general, where the additivity would mean that
if A,B,A + B are scalar, then (A + B)(∗) = A(∗) + B(∗). Let H := C2,
P :=

(1 0
1 0

)
and Q :=

(1 −2
0 0

)
. It is easy to check that P 2 = P , Q2 = Q (so

P (∗) = P , Q(∗) = Q) and P +Q is scalar but not similar to any selfadjoint
operator (because σ(P +Q) 6⊂ R).

4.11. Remark. Notice that

(a) the operation of taking quasi-adjoints is not continuous on abelian
(∗)-algebras in general,

(b) the norm limit of a sequence of commuting scalar operators is not a
scalar operator in general.

Proof. First we construct an auxiliary sequence of scalar operators. Let
H := C3. Set

U :=




0 0 1
1 0 0
0 1 0


 , An :=




1 0 0
0 1/n 0
0 0 n


 , n ≥ 1.

One can check that U is unitary and each An belongs to G+(H). Therefore
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each Un := A−1
n UAn (n ≥ 1) is scalar. It is clear that

Un =




0 0 n
n 0 0
0 1/n2 0


 , U (∗)

n = U−1
n =




0 1/n 0
0 0 n2

1/n 0 0


 , n ≥ 1.

Moreover, ‖Un‖ = n and ‖U (∗)
n ‖ = n2 (n ≥ 1) (19). Finally, we define

Vn := (1/n2)Un (n ≥ 1). Then (Vn)∞n=1 is a sequence of scalar operators
such that limn→∞ ‖Vn‖ = 0 though ‖V (∗)

n ‖ = 1 (n ≥ 1).
We can now prove both parts of the Remark. Clearly, neither part can

be realized in a finite-dimensional Hilbert space. Let H be any infinite-
dimensional complex Hilbert space.

(a) There exists a sequence {Hn}∞n=0 of closed linear subspaces of H such
that dimHn = 3 for n ≥ 1 and

H =
∞⊕

n=0

Hn.

We can identify Hn with C3 and consider Vn, defined above, as an operator
on Hn (n ≥ 1). Then we define a sequence (Mn)∞n=1 ⊂ B(H) by

Mn|Hk :=
{

0Hk if n 6= k,
Vn if n = k,

(n ≥ 1, k ≥ 0).

It is easy to check that this is a sequence of scalar operators which commute
and limn→∞ ‖Mn‖= limn→∞ ‖Vn‖= 0 though ‖M (∗)

n ‖= ‖V (∗)
n ‖= 1 (n≥ 1).

This means that (∗) is not continuous in general (by Corollary 3.5).
(b) Suppose, contrary to our claim, that the norm limit of any sequence

of commuting scalar operators is always scalar. We show that (∗) is then
continuous on any abelian (∗)-algebra, which is impossible (by (a)).

Let A0 be any abelian (∗)-algebra. By the Kuratowski–Zorn lemma there
exists a maximal abelian (∗)-algebra A with unit containing A0.

Let A ∈ cl B(H)A. By our assumptions, A is scalar (because A is abelian).
It is easy to check that A ∈ AC , so the set A∪{A} is abelian and separately
scalar and therefore there exists an abelian (∗)-algebra A1 with unit such
that A ∪ {A} ⊂ A1 (by Corollary 3.5). Since A is maximal, we see that
A = A1 and in consequence A ∈ A. This means that A is closed, i.e. it is a
commutative C(∗)-algebra. Hence, by Corollary 4.5, taking quasi-adjoints is
continuous on A and hence on A0. But this contradicts (a).

The author would like to thank Prof. Jan Stochel for helpful information
and advice.

(19)

∥∥∥∥
(

0 0 t
u 0 0
0 v 0

)∥∥∥∥ = max{|t|, |u|, |v|} (t, u, v ∈ C).
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