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Domination properties in ordered Banach algebras

by

H. du T. Mouton and S. Mouton (Stellenbosch)

Abstract. We recall from [9] the definition and properties of an algebra cone C of a
real or complex Banach algebra A. It can be shown that C induces on A an ordering which
is compatible with the algebraic structure of A. The Banach algebra A is then called an
ordered Banach algebra. An important property that the algebra cone C may have is that
of normality. If C is normal, then the order structure and the topology of A are reconciled
in a certain way. Ordered Banach algebras have interesting spectral properties. If A is
an ordered Banach algebra with a normal algebra cone C, then an important problem is
that of providing conditions under which certain spectral properties of a positive element
b will be inherited by positive elements dominated by b. We are particularly interested in
the property of b being an element of the radical of A. Some interesting answers can be
obtained by the use of subharmonic analysis and Cartan’s theorem.

1. Introduction. In [9] and [8] some spectral theory of positive ele-
ments in ordered Banach algebras was developed. An interesting problem
in this theory is that of finding conditions under which properties of a posi-
tive element b will be inherited by any positive element “smaller than”, i.e.
dominated by, b. This problem has originally been studied in the context of
Banach lattices; i.e. if E is a Banach lattice and S and T are bounded linear
operators on E, which properties of T are inherited by S if we know that
0 ≤ S ≤ T? Topological properties (e.g. compactness ([3] and [6]), weak
compactness ([2]) and the property of being Dunford–Pettis ([1])) as well
as spectral properties ([5]) have been considered. A survey of some of these
results is given in ([10], Chapter 18). The problem was introduced in the
context of ordered Banach algebras in ([9], Section 6), where some comple-
mentary results to the Aliprantis–Burkinshaw theory for positive operators
were obtained. In this paper we shall consider the following problem: Let
A be an ordered Banach algebra (see Section 3). Under which conditions
does it follow from 0 ≤ a ≤ b in A and b being in the radical of A that a
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is in the radical of A? Some interesting answers will be given by the use of
subharmonic analysis.

2. Preliminaries. Throughout, A will be a Banach algebra with unit.
Unless otherwise stated, A will be over C. The spectrum of an element a
in A will be denoted by σ(a) and the spectral radius of a in A by r(a) (or
by σ(a,A) and r(a,A) if necessary to avoid confusion). We denote the set
of quasinilpotent elements in A by QN(A) and the radical of A by Rad(A).
Recall that Rad(A) = {a ∈ A : aA ⊂ QN(A)}. A Banach algebra is called
semisimple if its radical consists of zero only. We shall denote the linear span
of a set B in A by spanB.

Let D be a domain of C. A function φ : D → R ∪ {−∞} is said to be
subharmonic on D ([4], p. 52) if φ is upper semicontinuous on D and satisfies
the mean inequality φ(λ0) ≤ (2π)−1

� 2π
0 φ(λ0 + reiθ) dθ for all closed disks

B(λ0, r) included in D. For properties of subharmonic functions we refer
to [7]. The following theorem by E. Vesentini has a huge number of applica-
tions in spectral theory and will also be an indispensable tool in this paper:

Theorem 2.1 (E. Vesentini; [4], Theorem 3.4.7). Let f be an analytic
function from a domain D of C into a Banach algebra A. Then λ 7→ r(f(λ))
and λ 7→ log r(f(λ)) are subharmonic on D.

Another concept that we shall need is that of capacity ([4], p. 179) of a
compact set in the complex plane. Let Bn denote the set of polynomials of
the form p(z) = zn + a1z

n−1 + . . .+ an. Let K be a compact set and denote
by tn(K) the quantity infp∈Bn maxz∈K |p(z)|. Since K is compact and Bn is
finite-dimensional, tn(K) = maxz∈K |pn(z)| for some (unique) pn ∈ Bn. Let
δn(K) := (tn(K))1/n. Then the capacity c(K) of K is defined by

c(K) = lim
n→∞

δn(K).

It can be shown that closed balls ([4], Corollary A.1.26) and closed line
segments ([4], Corollary A.1.27) have nonzero capacities.

The concept of capacity can be extended to bounded subsets of the
complex plane. A subset of C is locally of capacity zero ([4], p. 180) if all
its bounded subsets have zero capacity. Therefore open balls and closed line
segments are not locally of capacity zero. Also, a subset of a set which is
locally of capacity zero is also locally of capacity zero.

For further information regarding capacity we refer to [4]. We now for-
mulate the important Cartan’s Theorem, which, together with Theorem 2.1,
will provide the basis for the results in this paper:

Theorem 2.2 (H. Cartan; [4], Theorem A.1.29). Let φ be subharmonic
on a domain D of C and not identically −∞. Then {λ ∈ D : φ(λ) = −∞}
is a Gδ-set which is locally of capacity zero.
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For our purposes we provide the following corollary:

Corollary 2.3. Let f be an analytic function from a domain D of C
into a Banach algebra A. Suppose E is either an open ball or a closed line
segment with E ⊂ {λ ∈ D : r(f(λ)) = 0}. Then r(f(λ)) = 0 for all λ in D.

Proof. If f is analytic on D, then by Theorem 2.1, φ = log(r ◦ f) is
subharmonic on D. Suppose there exists a λ ∈ D with r(f(λ)) 6= 0. Then
φ(λ) 6= −∞ so that Cartan’s Theorem shows that {λ ∈ D : r(f(λ)) = 0} =
{λ ∈ D : φ(λ) = −∞} is locally of capacity zero. Since E is contained in
the first set, it follows that E is locally of capacity zero as well. However,
as E is known to be either an open ball or a closed line segment, we have a
contradiction.

3. Ordered Banach algebras. In ([9], Section 3) we defined an algebra
cone C of a complex Banach algebra A and showed that C induced on A
an ordering which was compatible with the algebraic structure of A. Such a
Banach algebra is called an ordered Banach algebra (OBA). We recall those
definitions now and also the additional properties that C may have. Of these
properties normality is the most significant one, as it reconciles the order
structure and the topology of A.

Let A be a complex Banach algebra with unit 1. We call a nonempty
subset C of A a cone of A if C satisfies the following:

(1) C + C ⊆ C,
(2) λC ⊆ C for all λ ≥ 0.

If in addition C satisfies C ∩ −C = {0}, then C is called a proper cone.
Any cone C of A induces an ordering “≤” on A in the following way:

a ≤ b if and only if b− a ∈ C(3.1)

(a, b ∈ A). It can be shown that this ordering is a partial order on A, i.e.,
for every a, b, c ∈ A,

(a) a ≤ a (≤ is reflexive),
(b) if a ≤ b and b ≤ c, then a ≤ c (≤ is transitive).

Furthermore, C is proper if and only if this partial order has the additional
property of being antisymmetric, i.e. if a ≤ b and b ≤ a, then a = b.
Considering the partial order that C induces we find that C = {a ∈ A :
a ≥ 0} and therefore we call the elements of C positive.

A cone C of a Banach algebra A is called an algebra cone of A if C
satisfies the following conditions:

(3) C.C ⊆ C,
(4) 1 ∈ C.
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Motivated by this concept we call a complex Banach algebra with unit 1 an
ordered Banach algebra (OBA) if A is partially ordered by a relation “≤” in
such a manner that for every a, b, c ∈ A and λ ∈ C,

(1′) a, b ≥ 0⇒ a+ b ≥ 0,
(2′) a ≥ 0, λ ≥ 0⇒ λa ≥ 0,
(3′) a, b ≥ 0⇒ ab ≥ 0,
(4′) 1 ≥ 0.

Therefore if A is ordered by an algebra cone C, then A, or more specifically
(A,C), is an OBA.

An algebra cone C of A is called proper if C is a proper cone of A, and
closed if it is a closed subset of A. Furthermore, C is said to be normal if
there exists a constant α > 0 such that it follows from 0 ≤ a ≤ b in A that
‖a‖ ≤ α‖b‖. It is well known that if C is a normal algebra cone, then C is
proper.

If an algebra cone C has the property that r(a) ≤ r(b) whenever 0 ≤
a ≤ b, then we say that the spectral radius is monotone (relative to C). It
is always the case that if C is normal, then the spectral radius is monotone
([9], Theorem 4.1).

Let A and B be Banach algebras such that 1 ∈ B ⊂ A. If C is an algebra
cone of A, then C ∩ B is an algebra cone of B. Moreover, if C is a proper
algebra cone of A, then C ∩ B is a proper algebra cone of B. In the case
where B has a finer norm than A (i.e. ‖b‖A ≤ ‖b‖B for all b ∈ B), we have
the additional fact that if the algebra cone C of A is closed in A, then the
algebra cone C ∩ B of B is closed in B. If B is a closed subalgebra of A,
then normality of C in A implies normality of C ∩B in B.

4. Domination properties. Let A be an OBA with a normal algebra
cone C. If 0 ≤ a ≤ b, which properties of b are inherited by a? This problem
has originally been investigated for bounded linear operators on a Banach
lattice (see [1], [2], [3], [6], [5], [10]). It was introduced in the context of
ordered Banach algebras in [9]. In this section we are specifically interested
in the property of being an element of the radical of A. Hence the problem
becomes: If A is an OBA with a normal algebra cone C, which conditions
ensure that if 0 ≤ a ≤ b and b ∈ Rad(A), then a ∈ Rad(A)? We will show
that a number of interesting results can be obtained by the use of Cartan’s
Theorem.

Lemma 4.1. Let A be an OBA with a normal algebra cone C. If 0 ≤
a ≤ b and b ∈ Rad(A), then aC ⊂ QN(A).

Proof. If b ∈ Rad(A), then bA ⊂ QN(A), so that bC ⊂ QN(A). Since
0 ≤ a ≤ b, it follows that 0 ≤ ac ≤ bc for all c ∈ C. The normality of C
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implies that the spectral radius is monotone, so that r(ac) ≤ r(bc) for all
c ∈ C, but since bC ⊂ QN(A), it follows that aC ⊂ QN(A).

The above lemma will lead to a number of results (4.2, 4.3, 4.6, 4.9, 4.10
and 4.13) which give answers to the problem we posed.

Theorem 4.2. Let A be an OBA with a normal algebra cone C and
such that for every x ∈ A there is a 0 6= λ ∈ C such that λx ∈ C. Then if
0 ≤ a ≤ b and b ∈ Rad(A), then a ∈ Rad(A).

Proof. If 0 ≤ a ≤ b and b ∈ Rad(A) then aC ⊂ QN(A), by the above
lemma. We show that a ∈ Rad(A) by showing that aA ⊂ QN(A): Let
x ∈ A. Then, by the assumption, λx ∈ C for some 0 6= λ ∈ C. Hence
a(λx) ∈ aC ⊂ QN(A), so that r(a(λx)) = 0, i.e. |λ|r(ax) = 0. It follows
that r(ax) = 0. Therefore ax ∈ QN(A). Since x was arbitrary, we have
shown that aA ⊂ QN(A).

Corollary 4.3. Let A be an OBA with a normal algebra cone C and
such that for every x ∈ A there is a line segment L in C such that λx ∈ C
for all λ ∈ L. If 0 ≤ a ≤ b and b ∈ Rad(A), then a ∈ Rad(A).

It is interesting to note that another (direct) proof of the above fact can
be obtained by the use of subharmonic techniques:

Proof. We show that aA ⊂ QN(A): Let x ∈ A. Then λx ∈ C for all
λ ∈ L, where L is some line segment in C. By Lemma 4.1 it follows that
r(a(λx)) = 0 for all λ ∈ L. This, together with the fact that f(λ) = a(λx)
is analytic on C, implies by Corollary 2.3 that r(a(λx)) = 0 for all λ ∈ C,
and hence for λ = 1. So ax ∈ QN(A). Since x was arbitrary, we have shown
that aA ⊂ QN(A), i.e. a ∈ Rad(A).

In our next theorems subharmonic analysis will be essential. We begin
with the following lemma:

Lemma 4.4. Let A be an OBA with a normal algebra cone C. If aC ⊂
QN(A), then a spanC ⊂ QN(A).

Proof. Take any n ∈ N and any c1, . . . , cn ∈ C. Now take fixed positive
real numbers λ2, . . . , λn and let f1(λ1) = a(λ1c1 + . . .+ λncn), with λ1 ∈ C.
Then f1 is analytic on C. For λ1 ∈ R+ we have f1(λ1) ∈ aC, so that, by the
assumption, r(f1(λ1)) = 0 for all λ1 ∈ R+. By letting E in Corollary 2.3
be the interval [0, 1], it follows from this corollary that r(f1(λ1)) = 0 for
all λ1 ∈ C. The choices of λ2, . . . , λn in R+ were arbitrary, so that we have
shown that

(4.5) r(a(λ1c1 + . . .+λncn)) = 0 for all λ1 ∈ C and all λ2, . . . , λn ∈ R+.
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In the next step, take a fixed λ1 ∈ C and fixed λ3, . . . , λn ∈ R+ and let
f2(λ2) = a(λ1c1 + . . . + λncn), with λ2 ∈ C. Again, f2 is analytic on C
and for λ2 ∈ R+ we have r(f2(λ2)) = 0, by (4.5). Again it follows from
Corollary 2.3 that r(f2(λ2)) = 0 for all λ2 ∈ C. Since the choices of λ1 in C
and λ3, . . . , λn in R+ were arbitrary, we have shown that

r(a(λ1c1 + . . .+ λncn)) = 0 for all λ1, λ2 ∈ C and all λ3, . . . , λn ∈ R+.

After n steps we get

r(a(λ1c1 + . . .+ λncn)) = 0 for all λ1, . . . , λn ∈ C,
i.e. r(ax) = 0 for all x ∈ spanC.

We first consider the case where A is the linear span of C.

Theorem 4.6. Let A be an OBA with a normal algebra cone C and
suppose that A = spanC. If 0 ≤ a ≤ b and b ∈ Rad(A), then a ∈ Rad(A).

Proof. If 0 ≤ a ≤ b and b ∈ Rad(A), then, by Lemma 4.1, aC ⊂ QN(A).
Since each x ∈ A is in spanC, it follows from Lemma 4.4 that aA ⊂ QN(A).
Therefore a ∈ Rad(A).

The condition A = spanC in the above theorem means that A has
a Hamel basis consisting of positive elements. Referring to Theorem 4.2,
Corollary 4.3 and Theorem 4.6, we give the following

Example 4.7. Let A = C and C = R+. Then (A,C) is an ordered
Banach algebra, C is normal and

(1) for each x ∈ A there is a 0 6= λ ∈ C with λx ∈ C;
(2) for every x ∈ A there is a line segment L in C such that λx ∈ C for

all λ ∈ L;
(3) A = span{1}, so that A = spanC.

Note, however, that A is semisimple. This means that Rad(A) = {0}, so
that 0 ≤ a ≤ b and b ∈ Rad(A) implies that 0 ≤ a ≤ 0. Since C is normal,
C is proper, so that ≤ is antisymmetric. Hence a = 0 so that a ∈ Rad(A).
It follows that in this case b ∈ Rad(A)⇒ a ∈ Rad(A) is trivial.

We proceed to give another example, one where A is not semisimple, so
that the above-mentioned implication is not trivial and thus better illus-
trates the applicability of the previous theorem:

Example 4.8. Let A be the set of upper triangular 2×2 complex matri-
ces and C the subset of A of matrices with only nonnegative entries. Then
(A,C) is an ordered Banach algebra, C is normal and A = spanC, since A
is the linear span of {(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)}
.
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Proof. That (A,C) is an ordered Banach algebra with C normal follows
either directly, or by using the properties of the algebra cone of the Banach
algebra of all 2 × 2 complex matrices, together with the properties of the
algebra cone of a subalgebra (in this case A), as mentioned in the last
paragraph of Section 3.

Note that A is not semisimple, since
(0 1

0 0

)
∈ Rad(A).

In the case where the linear span of C is dense in A we can say the
following:

Theorem 4.9. Let A be an OBA with a normal algebra cone C. Suppose
that A = spanC and the spectral radius function r is continuous on A. If
0 ≤ a ≤ b and b ∈ Rad(A), then a ∈ Rad(A).

Proof. If 0 ≤ a ≤ b and b ∈ Rad(A), Lemma 4.1 yields aC ⊂ QN(A).
For each x ∈ A there is a sequence of the form (λn1cn1 + . . .+ λnmncnmn),
with the cnj ∈ C, which converges to x as n→∞. Hence

a(λn1cn1 + . . .+ λnmncnmn)→ ax as n→∞.
The elements λn1cn1+. . .+λnmncnmn are in spanC and therefore, by Lemma
4.4, r(a(λn1cn1 + . . . + λnmncnmn)) = 0. Since r is continuous, r(ax) =
limn→∞ r(a(λn1cn1 + . . . + λnmncnmn) = 0, i.e. ax ∈ QN(A). Since x was
arbitrary in A, we have shown that aA ⊂ QN(A), i.e. a ∈ Rad(A).

Theorem 4.9 can be applied when A has a positive Schauder basis and
a continuous spectral radius. The theorem is specifically applicable in the
case of the scattered Banach algebras, i.e., the Banach algebras in which
the spectrum of every element is finite or countable, since by ([4], Corollary
3.4.5) the spectral radius function is continuous at all elements having finite
or countable spectrum.

In our main theorem we consider the case where spanC has nonempty
interior:

Theorem 4.10. Let A be an OBA with a normal algebra cone C and
suppose that spanC contains an interior point. If 0 ≤ a ≤ b and b ∈
Rad(A), then a ∈ Rad(A).

Proof. Since spanC contains an interior point, there is a c0 ∈ spanC
and a δ > 0 such that if x ∈ A then

‖c0 − x‖ < δ ⇒ x ∈ spanC.(4.11)

If 0 ≤ a ≤ b and b ∈ Rad(A) then, by Lemma 4.1, aC ⊂ QN(A) and hence,
by Lemma 4.4,

a spanC ⊂ QN(A).(4.12)

Now we show that a ∈ Rad(A) by showing that aA ⊂ QN(A): Let x ∈ A.
Define fx : C → A by fx(λ) = a(c0 + λ(x− c0)). Then fx is analytic on C.
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Let εx ≤ δ/(‖x‖+ ‖c0‖) and let E be the open ball with centre 0 in C
and radius εx. Then ‖c0 − [c0 + λ(x − c0)]‖ < δ for all λ ∈ E. By (4.11),
c0 + λ(x− c0) ∈ spanC so that fx(λ) ∈ a spanC, for all λ ∈ E. By (4.12),
r(fx(λ)) = 0 for all λ ∈ E. It follows from Corollary 2.3 that r(fx(λ)) = 0
for all λ ∈ C and hence for λ = 1. This means that r(ax) = 0. Since x was
arbitrary in A, we have shown that aA ⊂ QN(A).

Corollary 4.13. Let A be an OBA with a normal algebra cone C and
suppose that C contains an interior point. If 0 ≤ a ≤ b and b ∈ Rad(A),
then a ∈ Rad(A).

As a first example we consider the infinite-dimensional but semisimple
Banach algebra l∞ of all bounded sequences of complex numbers:

Example 4.14. Let A = l∞ and C = {(c1, c2, . . .) ∈ l∞ : ci ≥ 0 for
all i ∈ N}. Then (A,C) is an ordered Banach algebra, C is normal and
A = spanC, so that spanC has interior points.

Proof. By defining multiplication coordinatewise, it follows that A is in-
deed a Banach algebra, with unit (1, 1, . . .). Direct calculation shows that C
as defined is an algebra cone. Suppose (0, 0, . . .) ≤ (x1, x2, . . .) ≤ (y1, y2, . . .)
in A. By definition of C this means that 0 ≤ xk ≤ yk for all k ∈ N. Hence
supk∈N |xk| ≤ supk∈N |yk|, that is, ‖(x1, x2, . . .)‖ ≤ ‖(y1, y2, . . .)‖. Choosing
α = 1 in the definition of normality, we see that C is normal. The fact that
each element of A can be written in the form c1 − c2 + ic3 − ic4, where
c1, c2, c3, c4 are elements of C, ensures that A = spanC.

We note that since l∞ is commutative and σ((x1, x2, . . .)) = {x1, x2, . . .}
for (x1, x2, . . .) ∈ l∞, it follows that Rad(l∞) = QN(l∞) = {0}, i.e. l∞ is
semisimple.

To get Banach algebras which are not semisimple we use the 2×2 upper
triangular matrices, as in Example 4.8, obtaining a finite-dimensional but
not semisimple Banach algebra:

Example 4.15. Let A be the set of upper triangular 2× 2 complex ma-
trices and C the subset of A of matrices with only nonnegative entries. Then
(A,C) is an ordered Banach algebra, C is normal and A = spanC, so that
spanC has interior points.

Proof. We already know from Example 4.8 that (A,C) is an ordered
Banach algebra with C normal. Each element of A can be written as c1 −
c2 + ic3 − ic4, with c1, c2, c3, c4 in C, so that A = spanC.

To improve this example by changing the finite dimensionality to the
more general infinite dimensionality, we look at the set l∞(A) consisting of
all “bounded sequences of upper triangular 2× 2 complex matrices”:
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Example 4.16. Let A be the set of upper triangular 2× 2 complex ma-
trices, l∞(A) the set

{x = (x1, x2, . . .) : xi ∈ A for all i ∈ N and ‖xi‖A ≤ Kx for all i ∈ N},
and C the set

{(c1, c2, . . .) ∈ l∞(A) : ci has only nonnegative entries for all i ∈ N}.
Then (l∞(A), C) is an ordered Banach algebra, C is normal and l∞(A) =
spanC, so that spanC has interior points.

Proof. By defining addition, scalar multiplication and vector multiplica-
tion coordinatewise, and the norm to be ‖(x1, x2, . . .)‖ = supj∈N ‖xj‖ (where
‖xj‖ is the norm of the matrix xj in A), it can be shown that l∞(A) is a
normed algebra, with unit

((1 0
0 1

)
,
(1 0

0 1

)
, . . .

)
. Completeness can be shown

as for l∞. Direct calculation shows that C is an algebra cone of l∞(A).
Suppose 0 ≤ x ≤ y, where

0 =
((

0 0
0 0

)
,

(
0 0
0 0

)
, . . .

)
, x =

((
x11 x12

0 x14

)
,

(
x21 x22

0 x24

)
, . . .

)

and

y =
((

y11 y12
0 y14

)
,

(
y21 y22
0 y24

)
, . . .

)
.

By definition of C this means that 0 ≤ xjk ≤ yjk for all j ∈ N and k = 1, 2, 4.
Therefore max{|xj1|+ |xj2|, |xj4|} ≤ max{|yj1|+ |yj2|, |yj4|}, i.e.

∥∥∥∥
(
xj1 xj2
0 xj4

)∥∥∥∥ ≤
∥∥∥∥
(
yj1 yj2
0 yj4

)∥∥∥∥ ,

for all j ∈ N. It follows that

sup
j∈N

∥∥∥∥
(
xj1 xj2
0 xj4

)∥∥∥∥ ≤ sup
j∈N

∥∥∥∥
(
yj1 yj2
0 yj4

)∥∥∥∥ ,

i.e. ‖x‖ ≤ ‖y‖. Choosing α = 1 in the definition of normality we deduce that
C is normal.

As in the previous example, each element of l∞(A) can be written as a
linear combination of four algebra cone elements, using the scalars 1, −1, i
and −i. Hence l∞(A) = spanC.

Since
((0 1

0 0

)
,
(0 1

0 0

)
, . . .

)
is an element of its radical, l∞(A) is not semi-

simple. Furthermore, l∞(A) is infinite-dimensional.
Finally we observe that, under each of the assumptions in the previous

results, we have a characterization of the radical of A in terms of the algebra
cone:
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Theorem 4.17. Let A be an OBA with a normal algebra cone C and
suppose that at least one of the following conditions holds:

(1) For every x ∈ A there is a 0 6= λ ∈ C such that λx ∈ C.
(2) For every x ∈ A there is a line segment L in C such that λx ∈ C for

all λ ∈ L.
(3) A = spanC.
(4) A = spanC and the spectral radius function r is continuous on A.
(5) spanC contains an interior point.

Then Rad(A) = {a ∈ A : aC ⊂ QN(A)}.

Proof. For the nontrivial implication, let aC ⊂ QN(A). Then Lemma 4.4
implies that a spanC ⊂ QN(A), from which aA ⊂ QN(A), i.e. a ∈ Rad(A),
follows readily in cases (1)–(4).

To prove that a ∈ Rad(A) in case (5), suppose that B(c0, δ) ⊂ spanC.
If x ∈ A, let εx = δ/(‖x‖+ ‖c0‖) and E = B(0, εx). Then c0 + λ(x − c0)
∈ spanC for all λ ∈ E, so that r(fx(λ)) = 0 for all λ ∈ E, where fx(λ) =
a(c0 + λ(x − c0)). It follows from Corollary 2.3 that r(fx(λ)) = 0 for all
λ ∈ C. The case λ = 1 yields ax ∈ QN(A). Since x ∈ A was arbitrary, it
follows that aA ⊂ QN(A), i.e. a ∈ Rad(A).

It is worth noting that all the results in this section will still be valid if
the requirement that the algebra cone C is normal is replaced by the weaker
condition that the spectral radius is monotone relative to C.
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