Domination properties in ordered Banach algebras

by

H. DU T. MOUTON and S. MOUTON (Stellenbosch)

Abstract. We recall from [9] the definition and properties of an algebra cone C of a real or complex Banach algebra A. It can be shown that C induces on A an ordering which is compatible with the algebraic structure of A. The Banach algebra A is then called an ordered Banach algebra. An important property that the algebra cone C may have is that of normality. If C is normal, then the order structure and the topology of A are reconciled in a certain way. Ordered Banach algebras have interesting spectral properties. If A is an ordered Banach algebra with a normal algebra cone C, then an important problem is that of providing conditions under which certain spectral properties of a positive element b will be inherited by positive elements dominated by b. We are particularly interested in the property of b being an element of the radical of A. Some interesting answers can be obtained by the use of subharmonic analysis and Cartan's theorem.

1. Introduction. In [9] and [8] some spectral theory of positive elements in ordered Banach algebras was developed. An interesting problem in this theory is that of finding conditions under which properties of a positive element b will be inherited by any positive element "smaller than", i.e. dominated by, b. This problem has originally been studied in the context of Banach lattices; i.e. if E is a Banach lattice and S and T are bounded linear operators on E, which properties of T are inherited by S if we know that $0 \leq S \leq T$? Topological properties (e.g. compactness ([3] and [6]), weak compactness ([2]) and the property of being Dunford–Pettis ([1]) as well as spectral properties ([5]) have been considered. A survey of some of these results is given in ([10], Chapter 18). The problem was introduced in the context of ordered Banach algebras in ([9], Section 6), where some complementary results to the Aliprantis–Burkinshaw theory for positive operators were obtained. In this paper we shall consider the following problem: Let A be an ordered Banach algebra (see Section 3). Under which conditions does it follow from $0 \le a \le b$ in A and b being in the radical of A that a

²⁰⁰⁰ Mathematics Subject Classification: 46H05, 47A10, 47B65, 06F25.

Key words and phrases: ordered Banach algebra, positive element, subharmonic analysis.

is in the radical of A? Some interesting answers will be given by the use of subharmonic analysis.

2. Preliminaries. Throughout, A will be a Banach algebra with unit. Unless otherwise stated, A will be over \mathbb{C} . The spectrum of an element a in A will be denoted by $\sigma(a)$ and the spectral radius of a in A by r(a) (or by $\sigma(a, A)$ and r(a, A) if necessary to avoid confusion). We denote the set of quasinilpotent elements in A by QN(A) and the radical of A by Rad(A). Recall that $Rad(A) = \{a \in A : aA \subset QN(A)\}$. A Banach algebra is called *semisimple* if its radical consists of zero only. We shall denote the linear span of a set B in A by span B.

Let \mathcal{D} be a domain of \mathbb{C} . A function $\phi : \mathcal{D} \to \mathbb{R} \cup \{-\infty\}$ is said to be subharmonic on \mathcal{D} ([4], p. 52) if ϕ is upper semicontinuous on \mathcal{D} and satisfies the mean inequality $\phi(\lambda_0) \leq (2\pi)^{-1} \int_0^{2\pi} \phi(\lambda_0 + re^{i\theta}) d\theta$ for all closed disks $\overline{B}(\lambda_0, r)$ included in \mathcal{D} . For properties of subharmonic functions we refer to [7]. The following theorem by E. Vesentini has a huge number of applications in spectral theory and will also be an indispensable tool in this paper:

THEOREM 2.1 (E. Vesentini; [4], Theorem 3.4.7). Let f be an analytic function from a domain \mathcal{D} of \mathbb{C} into a Banach algebra A. Then $\lambda \mapsto r(f(\lambda))$ and $\lambda \mapsto \log r(f(\lambda))$ are subharmonic on \mathcal{D} .

Another concept that we shall need is that of *capacity* ([4], p. 179) of a compact set in the complex plane. Let \mathcal{B}_n denote the set of polynomials of the form $p(z) = z^n + a_1 z^{n-1} + \ldots + a_n$. Let K be a compact set and denote by $t_n(K)$ the quantity $\inf_{p \in \mathcal{B}_n} \max_{z \in K} |p(z)|$. Since K is compact and \mathcal{B}_n is finite-dimensional, $t_n(K) = \max_{z \in K} |p_n(z)|$ for some (unique) $p_n \in \mathcal{B}_n$. Let $\delta_n(K) := (t_n(K))^{1/n}$. Then the *capacity* c(K) of K is defined by

$$c(K) = \lim_{n \to \infty} \delta_n(K).$$

It can be shown that closed balls ([4], Corollary A.1.26) and closed line segments ([4], Corollary A.1.27) have nonzero capacities.

The concept of capacity can be extended to bounded subsets of the complex plane. A subset of \mathbb{C} is *locally of capacity zero* ([4], p. 180) if all its bounded subsets have zero capacity. Therefore open balls and closed line segments are not locally of capacity zero. Also, a subset of a set which is locally of capacity zero is also locally of capacity zero.

For further information regarding capacity we refer to [4]. We now formulate the important Cartan's Theorem, which, together with Theorem 2.1, will provide the basis for the results in this paper:

THEOREM 2.2 (H. Cartan; [4], Theorem A.1.29). Let ϕ be subharmonic on a domain \mathcal{D} of \mathbb{C} and not identically $-\infty$. Then $\{\lambda \in \mathcal{D} : \phi(\lambda) = -\infty\}$ is a G_{δ} -set which is locally of capacity zero. For our purposes we provide the following corollary:

COROLLARY 2.3. Let f be an analytic function from a domain \mathcal{D} of \mathbb{C} into a Banach algebra A. Suppose E is either an open ball or a closed line segment with $E \subset \{\lambda \in \mathcal{D} : r(f(\lambda)) = 0\}$. Then $r(f(\lambda)) = 0$ for all λ in \mathcal{D} .

Proof. If f is analytic on \mathcal{D} , then by Theorem 2.1, $\phi = \log(r \circ f)$ is subharmonic on \mathcal{D} . Suppose there exists a $\lambda \in \mathcal{D}$ with $r(f(\lambda)) \neq 0$. Then $\phi(\lambda) \neq -\infty$ so that Cartan's Theorem shows that $\{\lambda \in \mathcal{D} : r(f(\lambda)) = 0\} = \{\lambda \in \mathcal{D} : \phi(\lambda) = -\infty\}$ is locally of capacity zero. Since E is contained in the first set, it follows that E is locally of capacity zero as well. However, as E is known to be either an open ball or a closed line segment, we have a contradiction.

3. Ordered Banach algebras. In ([9], Section 3) we defined an algebra cone C of a complex Banach algebra A and showed that C induced on A an ordering which was compatible with the algebraic structure of A. Such a Banach algebra is called an ordered Banach algebra (OBA). We recall those definitions now and also the additional properties that C may have. Of these properties normality is the most significant one, as it reconciles the order structure and the topology of A.

Let A be a complex Banach algebra with unit 1. We call a nonempty subset C of A a *cone* of A if C satisfies the following:

(1)
$$C + C \subseteq C$$
,

(2)
$$\lambda C \subseteq C$$
 for all $\lambda \geq 0$.

If in addition C satisfies $C \cap -C = \{0\}$, then C is called a *proper* cone.

Any cone C of A induces an ordering " \leq " on A in the following way:

(3.1) $a \le b$ if and only if $b - a \in C$

 $(a, b \in A)$. It can be shown that this ordering is a partial order on A, i.e., for every $a, b, c \in A$,

(a)
$$a \leq a$$
 (\leq is reflexive),

(b) if $a \leq b$ and $b \leq c$, then $a \leq c$ (\leq is *transitive*).

Furthermore, C is proper if and only if this partial order has the additional property of being *antisymmetric*, i.e. if $a \leq b$ and $b \leq a$, then a = b. Considering the partial order that C induces we find that $C = \{a \in A : a \geq 0\}$ and therefore we call the elements of C positive.

A cone C of a Banach algebra A is called an *algebra cone* of A if C satisfies the following conditions:

$$(3) C.C \subseteq C, (4) 1 \in C.$$

Motivated by this concept we call a complex Banach algebra with unit 1 an ordered Banach algebra (OBA) if A is partially ordered by a relation " \leq " in such a manner that for every $a, b, c \in A$ and $\lambda \in \mathbb{C}$,

 $\begin{array}{l} (1') \ a,b \geq 0 \Rightarrow a+b \geq 0, \\ (2') \ a \geq 0, \lambda \geq 0 \Rightarrow \lambda a \geq 0, \\ (3') \ a,b \geq 0 \Rightarrow ab \geq 0, \\ (4') \ 1 \geq 0. \end{array}$

Therefore if A is ordered by an algebra cone C, then A, or more specifically (A, C), is an OBA.

An algebra cone C of A is called *proper* if C is a proper cone of A, and *closed* if it is a closed subset of A. Furthermore, C is said to be *normal* if there exists a constant $\alpha > 0$ such that it follows from $0 \le a \le b$ in A that $||a|| \le \alpha ||b||$. It is well known that if C is a normal algebra cone, then C is proper.

If an algebra cone C has the property that $r(a) \leq r(b)$ whenever $0 \leq a \leq b$, then we say that the spectral radius is *monotone* (relative to C). It is always the case that if C is normal, then the spectral radius is monotone ([9], Theorem 4.1).

Let A and B be Banach algebras such that $1 \in B \subset A$. If C is an algebra cone of A, then $C \cap B$ is an algebra cone of B. Moreover, if C is a proper algebra cone of A, then $C \cap B$ is a proper algebra cone of B. In the case where B has a finer norm than A (i.e. $||b||_A \leq ||b||_B$ for all $b \in B$), we have the additional fact that if the algebra cone C of A is closed in A, then the algebra cone $C \cap B$ of B is closed in B. If B is a closed subalgebra of A, then normality of C in A implies normality of $C \cap B$ in B.

4. Domination properties. Let A be an OBA with a normal algebra cone C. If $0 \le a \le b$, which properties of b are inherited by a? This problem has originally been investigated for bounded linear operators on a Banach lattice (see [1], [2], [3], [6], [5], [10]). It was introduced in the context of ordered Banach algebras in [9]. In this section we are specifically interested in the property of being an element of the radical of A. Hence the problem becomes: If A is an OBA with a normal algebra cone C, which conditions ensure that if $0 \le a \le b$ and $b \in \operatorname{Rad}(A)$, then $a \in \operatorname{Rad}(A)$? We will show that a number of interesting results can be obtained by the use of Cartan's Theorem.

LEMMA 4.1. Let A be an OBA with a normal algebra cone C. If $0 \le a \le b$ and $b \in \operatorname{Rad}(A)$, then $aC \subset \operatorname{QN}(A)$.

Proof. If $b \in \operatorname{Rad}(A)$, then $bA \subset \operatorname{QN}(A)$, so that $bC \subset \operatorname{QN}(A)$. Since $0 \le a \le b$, it follows that $0 \le ac \le bc$ for all $c \in C$. The normality of C

implies that the spectral radius is monotone, so that $r(ac) \leq r(bc)$ for all $c \in C$, but since $bC \subset QN(A)$, it follows that $aC \subset QN(A)$.

The above lemma will lead to a number of results (4.2, 4.3, 4.6, 4.9, 4.10 and 4.13) which give answers to the problem we posed.

THEOREM 4.2. Let A be an OBA with a normal algebra cone C and such that for every $x \in A$ there is a $0 \neq \lambda \in \mathbb{C}$ such that $\lambda x \in C$. Then if $0 \leq a \leq b$ and $b \in \operatorname{Rad}(A)$, then $a \in \operatorname{Rad}(A)$.

Proof. If $0 \le a \le b$ and $b \in \operatorname{Rad}(A)$ then $aC \subset \operatorname{QN}(A)$, by the above lemma. We show that $a \in \operatorname{Rad}(A)$ by showing that $aA \subset \operatorname{QN}(A)$: Let $x \in A$. Then, by the assumption, $\lambda x \in C$ for some $0 \ne \lambda \in \mathbb{C}$. Hence $a(\lambda x) \in aC \subset \operatorname{QN}(A)$, so that $r(a(\lambda x)) = 0$, i.e. $|\lambda|r(ax) = 0$. It follows that r(ax) = 0. Therefore $ax \in \operatorname{QN}(A)$. Since x was arbitrary, we have shown that $aA \subset \operatorname{QN}(A)$.

COROLLARY 4.3. Let A be an OBA with a normal algebra cone C and such that for every $x \in A$ there is a line segment L in \mathbb{C} such that $\lambda x \in C$ for all $\lambda \in L$. If $0 \le a \le b$ and $b \in \operatorname{Rad}(A)$, then $a \in \operatorname{Rad}(A)$.

It is interesting to note that another (direct) proof of the above fact can be obtained by the use of subharmonic techniques:

Proof. We show that $aA \subset QN(A)$: Let $x \in A$. Then $\lambda x \in C$ for all $\lambda \in L$, where L is some line segment in \mathbb{C} . By Lemma 4.1 it follows that $r(a(\lambda x)) = 0$ for all $\lambda \in L$. This, together with the fact that $f(\lambda) = a(\lambda x)$ is analytic on \mathbb{C} , implies by Corollary 2.3 that $r(a(\lambda x)) = 0$ for all $\lambda \in \mathbb{C}$, and hence for $\lambda = 1$. So $ax \in QN(A)$. Since x was arbitrary, we have shown that $aA \subset QN(A)$, i.e. $a \in Rad(A)$.

In our next theorems subharmonic analysis will be essential. We begin with the following lemma:

LEMMA 4.4. Let A be an OBA with a normal algebra cone C. If $aC \subset QN(A)$, then a span $C \subset QN(A)$.

Proof. Take any $n \in \mathbb{N}$ and any $c_1, \ldots, c_n \in C$. Now take fixed positive real numbers $\lambda_2, \ldots, \lambda_n$ and let $f_1(\lambda_1) = a(\lambda_1c_1 + \ldots + \lambda_nc_n)$, with $\lambda_1 \in \mathbb{C}$. Then f_1 is analytic on \mathbb{C} . For $\lambda_1 \in \mathbb{R}^+$ we have $f_1(\lambda_1) \in aC$, so that, by the assumption, $r(f_1(\lambda_1)) = 0$ for all $\lambda_1 \in \mathbb{R}^+$. By letting E in Corollary 2.3 be the interval [0, 1], it follows from this corollary that $r(f_1(\lambda_1)) = 0$ for all $\lambda_1 \in \mathbb{C}$. The choices of $\lambda_2, \ldots, \lambda_n$ in \mathbb{R}^+ were arbitrary, so that we have shown that

(4.5)
$$r(a(\lambda_1c_1+\ldots+\lambda_nc_n))=0$$
 for all $\lambda_1 \in \mathbb{C}$ and all $\lambda_2,\ldots,\lambda_n \in \mathbb{R}^+$.

In the next step, take a fixed $\lambda_1 \in \mathbb{C}$ and fixed $\lambda_3, \ldots, \lambda_n \in \mathbb{R}^+$ and let $f_2(\lambda_2) = a(\lambda_1c_1 + \ldots + \lambda_nc_n)$, with $\lambda_2 \in \mathbb{C}$. Again, f_2 is analytic on \mathbb{C} and for $\lambda_2 \in \mathbb{R}^+$ we have $r(f_2(\lambda_2)) = 0$, by (4.5). Again it follows from Corollary 2.3 that $r(f_2(\lambda_2)) = 0$ for all $\lambda_2 \in \mathbb{C}$. Since the choices of λ_1 in \mathbb{C} and $\lambda_3, \ldots, \lambda_n$ in \mathbb{R}^+ were arbitrary, we have shown that

 $r(a(\lambda_1c_1 + \ldots + \lambda_nc_n)) = 0$ for all $\lambda_1, \lambda_2 \in \mathbb{C}$ and all $\lambda_3, \ldots, \lambda_n \in \mathbb{R}^+$. After *n* steps we get

 $r(a(\lambda_1c_1 + \ldots + \lambda_nc_n)) = 0$ for all $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$,

i.e. r(ax) = 0 for all $x \in \operatorname{span} C$.

We first consider the case where A is the linear span of C.

THEOREM 4.6. Let A be an OBA with a normal algebra cone C and suppose that $A = \operatorname{span} C$. If $0 \le a \le b$ and $b \in \operatorname{Rad}(A)$, then $a \in \operatorname{Rad}(A)$.

Proof. If $0 \le a \le b$ and $b \in \operatorname{Rad}(A)$, then, by Lemma 4.1, $aC \subset \operatorname{QN}(A)$. Since each $x \in A$ is in span C, it follows from Lemma 4.4 that $aA \subset \operatorname{QN}(A)$. Therefore $a \in \operatorname{Rad}(A)$.

The condition $A = \operatorname{span} C$ in the above theorem means that A has a Hamel basis consisting of positive elements. Referring to Theorem 4.2, Corollary 4.3 and Theorem 4.6, we give the following

EXAMPLE 4.7. Let $A = \mathbb{C}$ and $C = \mathbb{R}^+$. Then (A, C) is an ordered Banach algebra, C is normal and

(1) for each $x \in A$ there is a $0 \neq \lambda \in \mathbb{C}$ with $\lambda x \in C$;

(2) for every $x \in A$ there is a line segment L in \mathbb{C} such that $\lambda x \in C$ for all $\lambda \in L$;

(3) $A = \operatorname{span}\{1\}$, so that $A = \operatorname{span} C$.

Note, however, that A is semisimple. This means that $\operatorname{Rad}(A) = \{0\}$, so that $0 \le a \le b$ and $b \in \operatorname{Rad}(A)$ implies that $0 \le a \le 0$. Since C is normal, C is proper, so that \le is antisymmetric. Hence a = 0 so that $a \in \operatorname{Rad}(A)$. It follows that in this case $b \in \operatorname{Rad}(A) \Rightarrow a \in \operatorname{Rad}(A)$ is trivial.

We proceed to give another example, one where A is not semisimple, so that the above-mentioned implication is not trivial and thus better illustrates the applicability of the previous theorem:

EXAMPLE 4.8. Let A be the set of upper triangular 2×2 complex matrices and C the subset of A of matrices with only nonnegative entries. Then (A, C) is an ordered Banach algebra, C is normal and $A = \operatorname{span} C$, since A is the linear span of

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Proof. That (A, C) is an ordered Banach algebra with C normal follows either directly, or by using the properties of the algebra cone of the Banach algebra of all 2×2 complex matrices, together with the properties of the algebra cone of a subalgebra (in this case A), as mentioned in the last paragraph of Section 3.

Note that A is not semisimple, since $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \operatorname{Rad}(A)$.

In the case where the linear span of C is dense in A we can say the following:

THEOREM 4.9. Let A be an OBA with a normal algebra cone C. Suppose that $A = \overline{\operatorname{span} C}$ and the spectral radius function r is continuous on A. If $0 \le a \le b$ and $b \in \operatorname{Rad}(A)$, then $a \in \operatorname{Rad}(A)$.

Proof. If $0 \le a \le b$ and $b \in \operatorname{Rad}(A)$, Lemma 4.1 yields $aC \subset \operatorname{QN}(A)$. For each $x \in A$ there is a sequence of the form $(\lambda_{n1}c_{n1} + \ldots + \lambda_{nm_n}c_{nm_n})$, with the $c_{nj} \in C$, which converges to x as $n \to \infty$. Hence

$$a(\lambda_{n1}c_{n1}+\ldots+\lambda_{nm_n}c_{nm_n}) \to ax \quad \text{as } n \to \infty.$$

The elements $\lambda_{n1}c_{n1}+\ldots+\lambda_{nm_n}c_{nm_n}$ are in span C and therefore, by Lemma 4.4, $r(a(\lambda_{n1}c_{n1}+\ldots+\lambda_{nm_n}c_{nm_n})) = 0$. Since r is continuous, $r(ax) = \lim_{n\to\infty} r(a(\lambda_{n1}c_{n1}+\ldots+\lambda_{nm_n}c_{nm_n}) = 0$, i.e. $ax \in QN(A)$. Since x was arbitrary in A, we have shown that $aA \subset QN(A)$, i.e. $a \in Rad(A)$.

Theorem 4.9 can be applied when A has a positive Schauder basis and a continuous spectral radius. The theorem is specifically applicable in the case of the *scattered Banach algebras*, i.e., the Banach algebras in which the spectrum of every element is finite or countable, since by ([4], Corollary 3.4.5) the spectral radius function is continuous at all elements having finite or countable spectrum.

In our main theorem we consider the case where span ${\cal C}$ has nonempty interior:

THEOREM 4.10. Let A be an OBA with a normal algebra cone C and suppose that span C contains an interior point. If $0 \le a \le b$ and $b \in \operatorname{Rad}(A)$, then $a \in \operatorname{Rad}(A)$.

Proof. Since span C contains an interior point, there is a $c_0 \in \text{span } C$ and a $\delta > 0$ such that if $x \in A$ then

(4.11) $||c_0 - x|| < \delta \implies x \in \operatorname{span} C.$

If $0 \le a \le b$ and $b \in \text{Rad}(A)$ then, by Lemma 4.1, $aC \subset \text{QN}(A)$ and hence, by Lemma 4.4,

$$(4.12) a \operatorname{span} C \subset \operatorname{QN}(A).$$

Now we show that $a \in \operatorname{Rad}(A)$ by showing that $aA \subset \operatorname{QN}(A)$: Let $x \in A$. Define $f_x : \mathbb{C} \to A$ by $f_x(\lambda) = a(c_0 + \lambda(x - c_0))$. Then f_x is analytic on \mathbb{C} . Let $\varepsilon_x \leq \delta/(||x|| + ||c_0||)$ and let E be the open ball with centre 0 in \mathbb{C} and radius ε_x . Then $||c_0 - [c_0 + \lambda(x - c_0)]|| < \delta$ for all $\lambda \in E$. By (4.11), $c_0 + \lambda(x - c_0) \in \text{span } C$ so that $f_x(\lambda) \in a$ span C, for all $\lambda \in E$. By (4.12), $r(f_x(\lambda)) = 0$ for all $\lambda \in E$. It follows from Corollary 2.3 that $r(f_x(\lambda)) = 0$ for all $\lambda \in \mathbb{C}$ and hence for $\lambda = 1$. This means that r(ax) = 0. Since x was arbitrary in A, we have shown that $aA \subset \text{QN}(A)$.

COROLLARY 4.13. Let A be an OBA with a normal algebra cone C and suppose that C contains an interior point. If $0 \le a \le b$ and $b \in \operatorname{Rad}(A)$, then $a \in \operatorname{Rad}(A)$.

As a first example we consider the infinite-dimensional but semisimple Banach algebra l^{∞} of all bounded sequences of complex numbers:

EXAMPLE 4.14. Let $A = l^{\infty}$ and $C = \{(c_1, c_2, \ldots) \in l^{\infty} : c_i \geq 0 \text{ for all } i \in \mathbb{N}\}$. Then (A, C) is an ordered Banach algebra, C is normal and $A = \operatorname{span} C$, so that $\operatorname{span} C$ has interior points.

Proof. By defining multiplication coordinatewise, it follows that A is indeed a Banach algebra, with unit (1, 1, ...). Direct calculation shows that C as defined is an algebra cone. Suppose $(0, 0, ...) \leq (x_1, x_2, ...) \leq (y_1, y_2, ...)$ in A. By definition of C this means that $0 \leq x_k \leq y_k$ for all $k \in \mathbb{N}$. Hence $\sup_{k \in \mathbb{N}} |x_k| \leq \sup_{k \in \mathbb{N}} |y_k|$, that is, $||(x_1, x_2, ...)|| \leq ||(y_1, y_2, ...)||$. Choosing $\alpha = 1$ in the definition of normality, we see that C is normal. The fact that each element of A can be written in the form $c_1 - c_2 + ic_3 - ic_4$, where c_1, c_2, c_3, c_4 are elements of C, ensures that $A = \operatorname{span} C$.

We note that since l^{∞} is commutative and $\sigma((x_1, x_2, \ldots)) = \{x_1, x_2, \ldots\}$ for $(x_1, x_2, \ldots) \in l^{\infty}$, it follows that $\operatorname{Rad}(l^{\infty}) = \operatorname{QN}(l^{\infty}) = \{0\}$, i.e. l^{∞} is semisimple.

To get Banach algebras which are not semisimple we use the 2×2 upper triangular matrices, as in Example 4.8, obtaining a finite-dimensional but not semisimple Banach algebra:

EXAMPLE 4.15. Let A be the set of upper triangular 2×2 complex matrices and C the subset of A of matrices with only nonnegative entries. Then (A, C) is an ordered Banach algebra, C is normal and A = span C, so that span C has interior points.

Proof. We already know from Example 4.8 that (A, C) is an ordered Banach algebra with C normal. Each element of A can be written as $c_1 - c_2 + ic_3 - ic_4$, with c_1, c_2, c_3, c_4 in C, so that $A = \operatorname{span} C$.

To improve this example by changing the finite dimensionality to the more general infinite dimensionality, we look at the set $l^{\infty}(A)$ consisting of all "bounded sequences of upper triangular 2×2 complex matrices":

EXAMPLE 4.16. Let A be the set of upper triangular 2×2 complex matrices, $l^{\infty}(A)$ the set

 $\{x = (x_1, x_2, \ldots) : x_i \in A \text{ for all } i \in \mathbb{N} \text{ and } \|x_i\|_A \leq K_x \text{ for all } i \in \mathbb{N}\},\$

and C the set

 $\{(c_1, c_2, \ldots) \in l^{\infty}(A) : c_i \text{ has only nonnegative entries for all } i \in \mathbb{N}\}.$

Then $(l^{\infty}(A), C)$ is an ordered Banach algebra, C is normal and $l^{\infty}(A) = \operatorname{span} C$, so that span C has interior points.

Proof. By defining addition, scalar multiplication and vector multiplication coordinatewise, and the norm to be $||(x_1, x_2, ...)|| = \sup_{j \in \mathbb{N}} ||x_j||$ (where $||x_j||$ is the norm of the matrix x_j in A), it can be shown that $l^{\infty}(A)$ is a normed algebra, with unit $(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, ...)$. Completeness can be shown as for l^{∞} . Direct calculation shows that C is an algebra cone of $l^{\infty}(A)$.

Suppose $0 \le x \le y$, where

$$0 = \left(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \ldots \right), \quad x = \left(\begin{pmatrix} x_{11} & x_{12} \\ 0 & x_{14} \end{pmatrix}, \begin{pmatrix} x_{21} & x_{22} \\ 0 & x_{24} \end{pmatrix}, \ldots \right)$$

and

$$y = \left(\begin{pmatrix} y_{11} & y_{12} \\ 0 & y_{14} \end{pmatrix}, \begin{pmatrix} y_{21} & y_{22} \\ 0 & y_{24} \end{pmatrix}, \ldots \right).$$

By definition of C this means that $0 \le x_{jk} \le y_{jk}$ for all $j \in \mathbb{N}$ and k = 1, 2, 4. Therefore $\max\{|x_{j1}| + |x_{j2}|, |x_{j4}|\} \le \max\{|y_{j1}| + |y_{j2}|, |y_{j4}|\}$, i.e.

$$\left\| \begin{pmatrix} x_{j1} & x_{j2} \\ 0 & x_{j4} \end{pmatrix} \right\| \le \left\| \begin{pmatrix} y_{j1} & y_{j2} \\ 0 & y_{j4} \end{pmatrix} \right\|,$$

for all $j \in \mathbb{N}$. It follows that

$$\sup_{j\in\mathbb{N}} \left\| \begin{pmatrix} x_{j1} & x_{j2} \\ 0 & x_{j4} \end{pmatrix} \right\| \le \sup_{j\in\mathbb{N}} \left\| \begin{pmatrix} y_{j1} & y_{j2} \\ 0 & y_{j4} \end{pmatrix} \right\|,$$

i.e. $||x|| \leq ||y||$. Choosing $\alpha = 1$ in the definition of normality we deduce that C is normal.

As in the previous example, each element of $l^{\infty}(A)$ can be written as a linear combination of four algebra cone elements, using the scalars 1, -1, *i* and -i. Hence $l^{\infty}(A) = \operatorname{span} C$.

Since $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \dots$ is an element of its radical, $l^{\infty}(A)$ is not semisimple. Furthermore, $l^{\infty}(A)$ is infinite-dimensional.

Finally we observe that, under each of the assumptions in the previous results, we have a characterization of the radical of A in terms of the algebra cone:

THEOREM 4.17. Let A be an OBA with a normal algebra cone C and suppose that at least one of the following conditions holds:

(1) For every $x \in A$ there is a $0 \neq \lambda \in \mathbb{C}$ such that $\lambda x \in C$.

(2) For every $x \in A$ there is a line segment L in \mathbb{C} such that $\lambda x \in C$ for all $\lambda \in L$.

(3) $A = \operatorname{span} C$.

(4) $A = \overline{\operatorname{span} C}$ and the spectral radius function r is continuous on A.

(5) span C contains an interior point.

Then $\operatorname{Rad}(A) = \{a \in A : aC \subset \operatorname{QN}(A)\}.$

Proof. For the nontrivial implication, let $aC \subset QN(A)$. Then Lemma 4.4 implies that $a \operatorname{span} C \subset QN(A)$, from which $aA \subset QN(A)$, i.e. $a \in \operatorname{Rad}(A)$, follows readily in cases (1)–(4).

To prove that $a \in \operatorname{Rad}(A)$ in case (5), suppose that $B(c_0, \delta) \subset \operatorname{span} C$. If $x \in A$, let $\varepsilon_x = \delta/(\|x\| + \|c_0\|)$ and $E = B(0, \varepsilon_x)$. Then $c_0 + \lambda(x - c_0) \in \operatorname{span} C$ for all $\lambda \in E$, so that $r(f_x(\lambda)) = 0$ for all $\lambda \in E$, where $f_x(\lambda) = a(c_0 + \lambda(x - c_0))$. It follows from Corollary 2.3 that $r(f_x(\lambda)) = 0$ for all $\lambda \in \mathbb{C}$. The case $\lambda = 1$ yields $ax \in \operatorname{QN}(A)$. Since $x \in A$ was arbitrary, it follows that $aA \subset \operatorname{QN}(A)$, i.e. $a \in \operatorname{Rad}(A)$.

It is worth noting that all the results in this section will still be valid if the requirement that the algebra cone C is normal is replaced by the weaker condition that the spectral radius is monotone relative to C.

References

- C. D. Aliprantis and O. Burkinshaw, Dunford-Pettis operators on Banach lattices, Trans. Amer. Math. Soc. 274 (1982), 227–238.
- [2] —, —, On weakly compact operators on Banach lattices, Proc. Amer. Math. Soc. 83 (1981), 573—587.
- [3] —, —, Positive compact operators on Banach lattices, Math. Z. 174 (1980), 289–298.
- [4] B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.
- [5] V. Caselles, On the peripheral spectrum of positive operators, Israel J. Math. 58 (1987), 144–160.
- [6] P. G. Dodds and D. H. Fremlin, Compact operators in Banach lattices, ibid. 34 (1979), 287–320.
- [7] W. K. Hayman and P. B. Kennedy, Subharmonic Functions I, London Math. Soc. Monogr. 9, Academic Press, London, 1976.
- [8] S. Mouton (née Rode) and H. Raubenheimer, More spectral theory in ordered Banach algebras, Positivity 1 (1997), 305–317.
- H. Raubenheimer and S. Rode, Cones in Banach algebras, Indag. Math. (N.S.) 7 (4) (1996), 489–502.
- [10] A. C. Zaanen, *Riesz Spaces II*, North-Holland, Amsterdam, 1983.

H. du T. Mouton	S. Mouton
Department of Electrical and Electronic Engineering	Department of Mathematics
University of Stellenbosch	University of Stellenbosch
Private Bag X1	Private Bag X1
Matieland 7602, South Africa	Matieland 7602, South Africa
E-mail: dtmouton@ing.sun.ac.za	E-mail: smo@akad.sun.ac.za

Received November 20, 2000 Revised version April 17, 2001

(4640)