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Sequences of 0’s and 1’s

by

Grahame Bennett (Bloomington, IN), Johann Boos (Hagen)
and Toivo Leiger (Tartu)

Abstract. We investigate the extent to which sequence spaces are determined by the
sequences of 0’s and 1’s that they contain.

1. Introduction. Given a sequence space E we denote by χ(E) the
linear span of the sequences of 0’s and 1’s contained in E and we ask to
what extent χ(E) determines E.

Several degrees of precision are possible, as described below, but the
sharpest (and most interesting) formulation of our problem is to ask whether

(1.1) χ(E) ⊆ F ⇒ E ⊆ F
whenever F is an arbitrary FK-space. We say then that E has the Hahn
property (or that E is a Hahn space). If E itself is an FK-space, then (1.1)
implies that E is the smallest such space containing χ(E).

The theory of FK-spaces may be found in [36] or [39], but its essential
features are described in Section 2. We merely recall here that the most
commonly encountered sequence spaces of Analysis are all FK-spaces, so
that (1.1) is indeed a sensible interpretation of our requirement that E be
determined by χ(E).

The Hahn property is, in a sense, completely understood, at least for
FK-spaces:

Theorem 1.1 ([7], Theorem 1). Let E be an FK-space. Then the follow-
ing conditions are equivalent :

(i) E has the Hahn property ;
(ii) χ(E) is a dense, barrelled subspace of E.
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Yet there is only one application of the theorem in the literature:

Corollary 1.2 ([7], Corollary to Theorem 1). `∞ has the Hahn prop-
erty.

The problem with Theorem 1.1 is that its hypotheses are difficult to
check. The density of χ(E) in E is obvious in the corollary, but it may be
far less transparent in other cases (bs+ c, for example). The real difficulty,
however, lies in checking that χ(E) is barrelled in E. This is a non-trivial
task even when E = `∞. The solution in that case, due independently to
Dieudonné [14, 15], Darst [13], Seever [32], and Rosenthal [30], [31], re-
quires an extension to finitely additive set functions of a celebrated theorem
of Nikodym ([37], 14.4.11). Nikodym’s result, in turn, has been hailed by
Dunford and Schwartz ([16], page 309) as a “striking improvement of the
principle of uniform boundedness”.

The basic properties of Hahn spaces are described in Section 2. In par-
ticular, it is shown there that any FK-space with the Hahn property must
be non-separable.

Sections 3 and 4 provide examples of spaces with the Hahn property. Our
results contain new versions of the uniform boundedness principle (courtesy
of Theorem 1.1) and it is an intriguing exercise to try to prove these from
scratch. See problems 8 and 9 in Section 7.

In Section 5 we investigate the so-called matrix Hahn and separable Hahn
properties. These are weaker than the Hahn property itself, and hence are
more generally applicable, yet they maintain the same philosophy: “if certain
spaces contain many sequences of 0’s and 1’s, they must also contain. . .”.

Applications are given in Section 6 and a list of problems is discussed in
Section 7.

2. Notation and preliminary results. We denote by ω the space of
all real-valued sequences, and any vector subspace of ω is called a sequence
space. An FK-space is a sequence space endowed with a complete, metriz-
able, locally convex topology under which the coordinate mappings x 7→ xk
(k = 1, 2, . . .) are all continuous.

Familiar examples of FK-spaces are `∞ (bounded sequences), with the
sup norm ‖ ‖∞, and its closed subspaces c (convergent sequences) and c0

(null sequences); `p, 1 ≤ p <∞ (absolutely p-summable sequences), with its
usual norm; and ω under the topology of coordinatewise convergence. The
space bs of bounded series, defined by

bs =
{
x ∈ ω : sup

n

∣∣∣
n∑

k=1

xk

∣∣∣ <∞
}
,
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is another example, one that plays a decisive and unexpected role in our
investigations.

Not all sequence spaces can be equipped with an FK-topology. The sim-
plest such example is ϕ, the space of all sequences of finite support ; χ(`∞)
is another.

A fundamental property of FK-spaces (courtesy of the closed graph theo-
rem) is that their topologies are monotonic: if E ⊆ F , then E is continuously
embedded in F . This means that a sequence space can have at most one
FK-topology, and we take advantage of this fact, on several occasions, by
not actually specifying the topology under consideration.

Proposition 2.1. If Eα is a Hahn space for each α in some index set
A, then

∑
α∈AEα is also a Hahn space.

Proposition 2.2. If E is a Hahn space, then E ⊆ `∞ and χ(E) is
dense in E with respect to the sup norm topology.

Proof. To see that E ⊆ `∞, we apply (1.1) with F = `∞. To check
the density, we apply (1.1) again, with F replaced by the closure of χ(E)
in `∞.

There are various “algebraic” notions of duality in sequence space theory
that do not depend on the presence of an underlying topology. We shall work
with just one of these, the β-dual, though our results have obvious analogues
for the others (α- and γ-duals).

The β-dual of a sequence space E is defined by

Eβ =
{
y ∈ ω :

∑

k

xkyk converges for all x ∈ E
}
.

If E is one-dimensional, say E = Sp{x}, we shall write xβ in place of
(Sp{x})β. Obviously, xβ is an FK-space with seminorms defined by

y 7→ |yk|, k = 1, 2, . . . , and y 7→ sup
n

∣∣∣
n∑

k=1

xkyk

∣∣∣.

Proposition 2.3. If E is a Hahn space, then χ(E)β = Eβ .

Proof. If χ(E)β 6= Eβ , we may choose x ∈ χ(E)β \ Eβ . But then xβ is
an FK-space which contains χ(E) and not E, so that E cannot be a Hahn
space.

Lemma 2.4. Let F be a sequence space containing ϕ and suppose that F
is the linear span of a countable set of sequences. Then F is an intersection
of FK-spaces.
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Proof. We may suppose that F has the form F = Sp{a(1), a(2), . . .},
where

a
(n)
k =

{
0 if k < n,
1 if k = n,

since F ⊇ ϕ. The matrix A defined by ank = a
(k)
n is lower triangular with

non-zero diagonal entries and so has a unique two-sided inverse. It follows
that

F = A(ϕ) = A
( ⋂

x∈ω
xβ
)

=
⋂

x∈ω
A(xβ),

and the last expression is an intersection of FK-spaces.

Theorem 2.5. Let E be an FK-space containing ϕ. If E has the Hahn
property , then E is non-separable.

Proof. E ⊆ `∞ by Proposition 2.2, and it suffices, via the monotonicity
of FK-topologies, to show that E is non-separable in the sup norm.

Suppose not. Then E contains only countably many sequences of 0’s and
1’s (since such sequences are pairwise separated by sup norm distance 1).
It follows from Lemma 2.4 that χ(E) is an intersection of FK-spaces, and
then, from (1.1), that χ(E) = E. But this is impossible since

χ(E) ⊆ χ(`∞) ∩ E = {x ∈ E : x has finite range}(2.1)

=
∞⋃

n=1

{x ∈ E : range of x has cardinality n}

and the last set is of first category in E.

It is important to realize that the inclusion (2.1) may be strict. This is
seen, for example, by taking E = bs, and by observing that the sequence
(1,−1, 1,−1, . . .) belongs to χ(`∞) ∩E but not to χ(E). A partial converse
to (2.1) is possible, however, and this is given in Lemma 3.2 below.

3. Big Hahn spaces. In this section we exhibit a large class of sequence
spaces having the Hahn property. Such spaces, in view of Theorem 2.5, must
be “big” subsets of `∞, and it makes sense, while searching for examples,
to ask whether “bigness” implies “Hahn”. Our main result, Theorem 3.4
below, gives a very satisfactory answer to this question.

Proposition 3.1. If E is a sequence space satisfying

bs+ Sp{e} ⊆ E ⊆ `∞,
where e = (1, 1, . . . , 1), then, in fact ,

E = bs+ χ(E).
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Proof. Let x ∈ E be given. We construct a sequence y ∈ χ(E) such that
z = x−y ∈ bs. By adding a suitable constant sequence to x (and then to y),
we may assume that xk ≥ 0 for k = 1, 2, . . . Furthermore, multiplying x by
a suitable scalar (and doing the same for y and z) allows us to assume that
0 ≤ xk < 1 for k = 1, 2, . . . Now take y1 = 0 and define z1, y2, z2, y3, . . .
inductively as follows:

zk = xk − yk and yk+1 =
{

1 if
∑k
j=1 yj <

∑k
j=1 xj ,

0 otherwise.
Then z ∈ bs, in fact ‖z‖bs ≤ 1, and y = x − z ∈ E + bs = E, so that
y ∈ χ(E).

Lemma 3.2. If E is a sequence space containing bs, and x ∈ E takes
only the values {0, 1, . . . , N}, then x ∈ χ(E).

Proof. Let Uj = {ν : xν = j} for j = 0, 1, . . . , N and let L be the least
common multiple of {1, . . . , N}. Define sets V1, . . . , VL as follows:

the nth member of Uj (in the usual ordering of the integers) goes into
Vk if and only if k ≡ n mod(L/j).

(Some members go into more than one Vk, and the process terminates if Uj
is finite.) From the construction it follows that

m∑

n=1

χUj∩Vk(n) differs from
j

L

m∑

n=1

χUj (n)

by no more than 1 (m = 1, 2, . . .). Summing over j, we deduce that
m∑

n=1

χVk(n) differs from
1
L

m∑

n=1

xn

by no more than N (m = 1, 2, . . .), since x =
∑N
j=1 jχUj . In other words,

χVk − (1/L)x ∈ bs, so that χVk ∈ E, and hence x ∈ χ(E), since x =∑L
k=1 χVk .

Our next result provides a representation of the space χ(`∞) in terms of
the partial sums operator , Σ:

(3.1) Σx = (x1, x1 + x2, x1 + x2 + x3, . . .).

It is obvious that Σ(E) is an FK-space precisely when E is.

Lemma 3.3. χ(`∞) ⊆ Σ(χ(bs+ Sp{e})).

Proof. Suppose x is an arbitrary sequence of 0’s and 1’s. The sequence
y defined by

(3.2) y = Σ−1x = (x1, x2 − x1, x3 − x2, . . .)
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belongs to bs and takes only the values −1, 0, 1. It follows from Lemma 3.2
that

y + e ∈ χ(bs+ Sp{e})
and consequently that

y ∈ χ(bs+ Sp{e}).
Therefore

x (= Σy) ∈ Σχ(bs+ Sp{e}).
Theorem 3.4. If E is a sequence space satisfying

bs+ Sp{e} ⊆ E ⊆ `∞,
then E has the Hahn property.

Proof. Proposition 3.1 shows that

E = bs+ Sp{e}+ χ(E).

Since χ(E) certainly has the Hahn property, it suffices, in view of Propo-
sition 2.1, to show that so does bs + Sp{e}. Suppose, then, that F is an
FK-space containing χ(bs + Sp{e}); we must show that F contains all of
bs+ Sp{e}. For this it is sufficient to check that bs ⊆ F , or, what is equiva-
lent, that `∞ ⊆ Σ(F ). But this last assertion follows from Corollary 1.2, it
being plain, from Lemma 3.3, that χ(`∞) ⊆ Σ(F ).

As an immediate consequence of Theorems 1.1 and 3.4 we get:

Corollary 3.5. Let E be any FK-space with bs + Sp{e} ⊆ E ⊆ `∞.
Then χ(E) is both dense and barrelled in E.

An interesting illustration of Theorem 3.4 is provided by the space of all
bounded Cesàro limitable sequences:

(3.3) E1 =
{
x ∈ `∞ : lim

n→∞
x1 + . . .+ xn

n
exists

}
.

The sequences of 0’s and 1’s in E1 form a particularly important class, for
they may be identified in an obvious way with the subsets of the positive
integers having a natural density . Theorem 3.4 asserts that E1 is the smallest
FK-space containing this class.

It is instructive to consider also the bounded Cesàro-null sequences:

(3.4) E2 =
{
x ∈ `∞ : lim

n→∞
x1 + . . .+ xn

n
= 0
}
.

The space is not covered by Theorem 3.4, and, indeed, it fails to have the
Hahn property. To see this, we have only to consider

(3.5) F =
{
x ∈ `∞ : lim

n→∞
|x1|+ . . .+ |xn|

n
= 0
}
,
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the space of bounded strongly Cesàro-null sequences, which is an FK-space
containing χ(E2) but not E2.

The two examples, E1 and E2, differ by only a single sequence, e, and
they serve to illustrate the delicate nature of Theorem 3.4.

4. More Hahn spaces

Theorem 4.1. If E is a sequence space satisfying

(4.1) E = `∞ · χ(E) + c0,

then E has the Hahn property if and only if χ(E)β = `1.

Proof. The necessity of χ(E)β = `1 follows from Proposition 2.3, it being
clear from (4.1) that Eβ = `1.

To prove sufficiency, we assume that an FK-space F with

(4.2) χ(E) ⊆ F
is given and we deduce that

(4.3) E ⊆ F.
This is done by considering separately the two component pieces, `∞ ·χ(E)
and c0, of E.

To check

(4.4) `∞ · χ(E) ⊆ F
we have only to observe that

(4.5) χ
(
`∞ · χ(E)

)
⊆ F

and that

(4.6) `∞ · χ(E) has the Hahn property.

Observation (4.5) is a consequence of (4.1) and (4.2); (4.6) follows from
Proposition 2.1 by expressing `∞ · χ(E) as a sum,

`∞ · χ(E) =
∑

`∞ · x,
the summation being taken over all sequences of 0’s and 1’s in E. (That each
`∞ · x is a Hahn space follows from Corollary 1.2 by restricting attention to
sequence spaces “defined on the support of x”.)

Our second inclusion is proved by a standard duality argument, it being
known that

(4.7) c0 ⊆ F
is equivalent to

(4.8)
∞∑

k=1

|f(ek)| <∞ whenever f ∈ F ′,
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where ek (k = 1, 2, . . .) is the sequence (0, . . . , 0, 1, 0, . . .) with the 1 in the
kth position. (See [6], Proposition 5, [35], p. 598, or [36], p. 138.)

For each y ∈ χ(E), `∞ · y is a closed subspace of `∞ and `∞ · y ⊆ F by
(4.4). It follows by the monotonicity of FK-topologies that the restriction
to `∞ · y of any f ∈ F ′ is sup norm continuous. Hence

∣∣∣
n∑

k=1

±ykf(ek)
∣∣∣ = |f(±y1, . . . ,±yn, 0, . . .)| ≤ ‖f |`∞·y‖ · ‖y‖∞.

The upper bound is independent of n, and of the choice of signs, so that
∞∑

k=1

|ykf(ek)| <∞.

Thus (f(ek)) ∈ χ(E)β = `1, and it follows from (4.8) that (4.7) must hold.

By combining the following two beautiful results from classical summa-
bility theory we obtain an interesting illustration of Theorem 4.1. (Other
examples are given in Section 6.)

Buck’s Theorem ([12], Theorem 2.4). A bounded sequence x satisfies
(|x1|+ . . .+ |xn|)/n → 0 precisely when there exists a subset , Z, of the
positive integers, of zero density , such that

lim
k→∞
k 6∈Z

xk = 0.

Agnew’s Theorem ([2], Theorem 2). If
∑∞
k=1 ank converges whenever

k/nk → 0, then
∑∞
n=1 |an| <∞.

Corollary 4.2. The space of bounded strongly Cesàro-null sequences,

(4.9)
{
x ∈ `∞ :

|x1|+ . . .+ |xn|
n

→ 0
}
,

has the Hahn property.

Proof. We denote by E the space (4.9). Each x ∈ E may be represented
in the form

x = x · χZ + x · χN\Z ,
and Buck’s choice of Z shows that

x ∈ `∞ · χ(E) + c0.

Agnew’s theorem, on the other hand, tells us that χ(E)β = `1.

5. Weaker Hahn-type properties. We say that a sequence space E
has the separable Hahn property if (1.1) holds whenever F is a separable
FK-space.
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This concept is less satisfactory than the Hahn property itself because
it does not (seem to) admit a purely functional analytic interpretation like
that exhibited in Theorem 1.1. The two concepts, however, share the same
philosophy, and the new one, as we shall see, is more widely applicable.

Indeed, significant results are obtainable even when F is further re-
stricted to summability domains. It matters not whether we consider varia-
tional domains, bvA ([33], [4]), absolute summability domains, `pA ([3], [4]), or
ordinary domains, cA, the results are the same. For the sake of definiteness,
however, we shall restrict attention to cA.

Given an infinite matrix A = (ank), the convergence domain, cA, is
defined by

(5.1) cA =
{
x ∈ ω : Ax =

( ∞∑

k=1

ankxk

)
n

and lim(Ax) exist
}
.

The space cA is an FK-space when topologized by means of the seminorms

x 7→ |xk| (k = 1, 2, . . .),

x 7→ sup
m

∣∣∣
m∑

k=1

ankxk

∣∣∣ (n = 1, 2, . . .),

x 7→ sup
n

∣∣∣
∞∑

k=1

ankxk

∣∣∣

([36], Theorem 4.3.13) and it is separable in this topology ([36], Theo-
rem 16.2.1).

The null domain of A,

(5.2) (c0)A = {x ∈ cA : Ax ∈ c0},
and the strong domain

(5.3)
{
x ∈ ω : ∃l, lim

n→∞

∞∑

k=1

|ank| · |xk − l| exists
}

will also play a role in what follows. (These spaces have already been en-
countered in Section 3, A being restricted therein to the Cesàro matrix ,

(5.4) ank =
{

1/n if 1 ≤ k ≤ n,
0 if k > n

(n, k = 1, 2, . . .).)

We say that a sequence space E has the matrix Hahn property if

(5.5) χ(E) ⊆ cA ⇒ E ⊆ cA
for every matrix A. It is clear that

Hahn property ⇒ separable Hahn property ⇒ matrix Hahn property
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and that Proposition 2.1 holds for all three. In fact, all the results of Sec-
tion 2 are preserved, with the possible exception of the density clause of
Proposition 2.2. These observations are summarized in

Theorem 5.1. If E is a matrix Hahn space, then E ⊆ `∞ and χ(E)β

= Eβ. If , in addition, E is an FK-space containing ϕ, then E must be
non-separable.

Proof. To see that E ⊆ `∞ we proceed as in Proposition 2.2, noting that
`∞ is an intersection of convergence domains. To check that χ(E)β = Eβ we
follow the proof of Proposition 2.3, noting that xβ is a convergence domain,
xβ = cB(x) (say), where

B(x) =




x1

x1 x2

x1 x2 x3
...

...
...

. . .


 .

The last part of the theorem calls for an improvement in Lemma 2.4: that
F , in fact, may be expressed as an intersection of convergence domains. We
had

F =
⋂

x∈ω
A(xβ).

But
A(xβ) = A(cB(x)) = cB(x)A−1 ,

the last identity being valid since A and B(x) are both row-finite matrices.
It follows that F is an intersection of convergence domains:

F =
⋂

x∈ω
cB(x)A−1 .

Our next result shows that the matrix Hahn and separable Hahn prop-
erties are equivalent for a large class of spaces.

We recall that a sequence space E is said to be solid if `∞ ·E ⊆ E, and
monotone if just χ(`∞) · E ⊆ E. (The `p-spaces, for example, are all solid,
while χ(`∞) is monotone, but not solid.)

Theorem 5.2. Suppose that E is a monotone sequence space contain-
ing ϕ. Then the following conditions are equivalent :

(i) E has the matrix Hahn property ;
(ii) E has the separable Hahn property ;

(iii) χ(E)β = Eβ .

Proof. We discuss only the implication (iii)⇒(ii). To do this, we suppose
that a separable FK-space, F , with χ(E) ⊆ F is given, and we deduce that
E ⊆ F .
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Now χ(E) is a monotone sequence space (since E is) so that χ(E)β

is σ(χ(E)β, χ(E))-sequentially complete by Proposition 3 of [4]. It follows
from Kalton’s closed graph Theorem ([22], Theorem 2.4) that the natural
injection

i : (χ(E), τ(χ(E), χ(E)β))→ F

is continuous. But (E, τ(E,Eβ)) is an AK-space since E is monotone ([4],
Proposition 2). In particular, χ(E) is dense in (E, τ(E,Eβ)) and there-
fore τ(E,Eβ)|χ(E) = τ(χ(E), Eβ) = τ(χ(E), χ(E)β). Thus for each x ∈ E
we have (x1, . . . , xn, 0, . . .) → x, implying, because i is continuous, that
((x1, . . . , xn, 0, . . .))n is a Cauchy sequence in F with only possible limit x.
Consequently, E ⊆ F .

Theorem 5.2 enables us to show that the separable Hahn property does
not imply the Hahn property.

Theorem 5.3. Let s=(sn) be a sequence of positive integers with s1 =1
and (sn+1 − sn) unbounded. Then the space

E =
{
x ∈ ω : ‖x‖E = sup

n

sn+1−1∑

k=sn

|xk| <∞
}

has the separable Hahn property , but not the Hahn property.

(These spaces are discussed in some detail in [4]; they have interesting
applications in classical summability theory.)

Proof. E is a solid sequence space containing ϕ, and χ(E)β = Eβ since
both dual spaces coincide with {y ∈ ω :

∑
n maxsn≤k<sn+1 |yk| < ∞}. It

follows from Theorem 5.2 that E has the separable Hahn property.
On the other hand, E is an FK-space under the indicated norm, and

χ(E), as we shall see, fails to be dense in E. Theorem 1.1 then implies that
E cannot be a Hahn space. To see that χ(E) is not dense in (E, ‖ ‖E), we
consider the sequence x defined by

xk =
1

sn+1 − sn
if sn ≤ k < sn+1 (n = 1, 2, . . .).

It is clear that x ∈ E and we shall show that ‖x − y‖E ≥ 1 for every
y ∈ χ(E). If y = 0, then obviously

‖x− y‖E = ‖x‖E = 1.

On the other hand, if y 6= 0, we set α = minyk 6=0 |yk| > 0 and choose n so
large that sn+1 − sn > 1/α. If sn ≤ k < sn+1, then
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|xk − yk|





= |xk| =
1

sn+1 − sn
if yk = 0,

≥ |yk| − |xk| ≥
1

sn+1 − sn
if yk 6= 0.

In either case we have

‖x− y‖E ≥
∑

sn≤k<sn+1

|xk − yk| ≥ 1.

Remark 5.4. If the sequence s in Theorem 5.3 is geometric, say sn =
rn−1 (n = 1, 2, . . .), then the space E does not depend on the actual value
of r (> 0). The sequences of 0’s and 1’s in E may then be identified with the
subsets of the positive integers that are lacunary in the sense of Hadamard
([40], pp. 131 ff.).

Theorem 5.3 contains several interesting summability results; the follow-
ing corollary is typical.

Corollary 5.5. A matrix A = (ank) satisfies

(5.6) lim
n→∞

∑

k∈H
ank = 0

whenever H is an Hadamard lacunary subset of N, if and only if

(5.7) lim
n→∞

∞∑

m=0

max
2m≤k<2m+1

|ank| = 0.

Proof. (5.6) is equivalent to the assertion that

χH ∈ (c0)A

whenever H is lacunary in the sense of Hadamard. It follows from Theo-
rem 5.3 that

E ⊆ (c0)A

where

E =
{
x ∈ ω : sup

m

2m+1−1∑

k=2m
|xk| <∞

}
.

The rows of A, {a(n) : n ∈ N}, are therefore σ(Eβ, E)-convergent to zero in
Eβ . But Eβ is a Schur space ([4], corollary to Theorem 16) so that a(n) → 0
in the norm of Eβ , and this is equivalent to (5.7).

6. Examples. We list here several concrete illustrations of our results.

(A) Hahn’s theorem. The prototypical example is due to Hahn ([20], Satz
Vb):

(6.1) χ(`∞) ⊆ cA ⇒ `∞ ⊆ cA,
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and our terminology has been chosen in his honor. His result asserts that
`∞ has the matrix Hahn property; it is superseded by Corollary 1.2.

(B) Cesàro summability. Kuttner and Maddox ([23], Theorem 2) show
that the space of bounded Cesàro-convergent sequences, (3.3), has the ma-
trix Hahn property. Their result is superseded by Theorem 3.4. It must be
said, however, that the present paper owes much to the incisive analysis
of [23].

(C) Structure of certain sequence spaces.

(6.2) A bounded sequence may be expressed as a finite linear combination
of sequences of 0’s and 1’s plus a bounded series.

This is a special case of Proposition 3.1. The proposition itself gave us the
first hint that bs had a significant role to play in the study of Hahn spaces.

(D) Almost convergent sequences. We recall that a sequence x is said to
be almost convergent provided that

(6.3) lim
n→∞

1
n

m+n−1∑

k=m

xk exists uniformly in m.

The space, ac, of almost convergent sequences was introduced by Lorentz
[26]. He showed that all Banach limits coincide at x precisely when (6.3)
holds. It is clear that

(6.4) bs+ Sp{e} ⊆ ac ⊆ `∞

so that

(6.5) ac has the Hahn property,

courtesy of Theorem 3.4.
Lorentz [26] calls a summability matrix, A, strongly regular provided

that ac ⊆ cA and lim(Ax) = l whenever x is almost convergent to l.

(E) Strongly conservative matrices. Bennett [5] and Kuttner–Parameswa-
ran [24] show that the bounded convergence domain of any strongly conser-
vative matrix, i.e., a matrix A with ac ⊆ cA, has the matrix Hahn property:

(6.6)
ac ⊆ cA
χ(cA) ⊆ cB

}
⇒ `∞ ∩ cA ⊆ cB.

Theorem 3.4 allows us to weaken their hypotheses and strengthen their con-
clusion:

(6.7)
bs ⊆ cA, e ∈ cA
χ(cA) ⊆ F

}
⇒ `∞ ∩ cA ⊆ F,

F being an arbitrary FK-space. In particular, we have
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Theorem 6.1. The bounded convergence domain of any strongly conser-
vative matrix is a Hahn space.

One of the deepest results about general, regular matrix transformations
is the celebrated bounded consistency theorem ([27], [28], [11]; for more de-
tails see, for instance, [9], p. 81):

(6.8) If A and B are regular matrices with `∞∩cA ⊆ cB, then lim(Bx) =
lim(Ax) whenever x ∈ `∞ ∩ cA.

An amusing consequence of (6.6) is the following result.

(F) The 0, 1-consistency theorem.

(6.9) If A is a strongly regular matrix and B is consistent with A on the
A-limitable sequences of 0’s and 1’s, then `∞ ∩ cA ⊆ cB and B is
consistent with A on all of `∞ ∩ cA.

Proof. We are assuming that

(6.10) χ(cA) ⊆ cB
and

(6.11) lim(Bx) = lim(Ax) whenever x ∈ χ(cA).

Since `∞∩cA has the matrix Hahn property (by (6.6)), it follows from (6.10)
that

(6.12) `∞ ∩ cA ⊆ cB
and then from (6.11) and (6.12) that

(6.13) B is regular.

We deduce from (6.12), (6.13) and the bounded consistency theorem, (6.8),
that

lim(Bx) = lim(Ax) whenever x ∈ `∞ ∩ cA.
(G) Strong almost convergence. Freedman and Sember ([34], Corollary

6.3) show that the space of strongly almost-null sequences,

(6.14) |ac|0 :=
{
x ∈ ω : lim

n→∞
sup
m

1
n

m+n−1∑

k=m

|xk| = 0
}
,

has the matrix Hahn property. |ac|0 is solid and so, by Theorem 5.2, it
must also have the separable Hahn property. We have been unable to decide
whether |ac|0 is a Hahn space.

(H) Strong summability. Freedman and Sember ([34], Corollary 6.2)
show that the space of bounded strongly Cesàro-null sequences, (4.9), has
the matrix Hahn property. Their result is superseded by Corollary 4.2.
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If A is any regular matrix with non-negative entries the strong summa-
bility domain of A is defined by

(6.15)
{
x ∈ ω : ∃l ∈ R, lim

n→∞

∞∑

k=1

ank|xk − l| = 0
}
.

Hill and Sledd ([21], Theorem 4.1) have extended Buck’s theorem (Section 4)
to this general setting:

A bounded sequence x satisfies
∞∑

k=1

ank|xk| → 0 as n→∞

precisely when there exists a subset Z of the positive integers, of zero
A-density,

lim
n→∞

∑

k∈Z
ank = 0,

such that
lim
k→∞
k 6∈Z

xk = 0.

Their theorem leads to the following generalization of Corollary 4.2.

Theorem 6.2. Suppose that A is a strongly regular matrix with non-
negative entries. Then the space of bounded strongly A-null sequences,

(6.16) |A|0 :=
{
x ∈ `∞ : lim

n→∞

∞∑

k=1

ank|xk| = 0
}
,

has the Hahn property. The same is true of the bounded strongly A-limitable
sequences,

(6.17) |A| :=
{
x ∈ `∞ : ∃l ∈ R, lim

n→∞

∞∑

k=1

ank|xk − l| = 0
}
.

Proof. We denote by E the space (6.16). Each x ∈ E may be represented
in the form

x = x · χZ + x · χN\Z
(since E is solid), and the Hill–Sledd choice of Z shows that

x ∈ `∞ · χ(E) + c0,

so that E is a “small” space,

(6.18) E = `∞ · χ(E) + c0.
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On the other hand, E is not too small, for it certainly contains enough
sequences of zeros and ones to guarantee that

(6.19) χ(E)β = `1.

It follows from (6.18), (6.19) and Theorem 4.1 that E is a Hahn space. To
check that (6.19) holds, we have only to observe that |ac|0 ⊆ E (since A is
strongly regular) and that χ(|ac|0)β = `1 ([34], Proposition 1–3).

That |A| = |A|0 ⊕ 〈e〉 has the Hahn property now follows from Proposi-
tion 2.1.

(I) Ordinary summability. Strong regularity is not needed in Theorem
6.1. This is seen most easily by the following construction due to Zeller [38].
He produces a regular matrix A with the property that x ∈ cA precisely
when

(6.20)
1
n

n∑

k=1

|xk − l| → 0 as n→∞,

where l = lim(Ax). It follows from Theorem 6.2 that `∞ ∩ cA has the Hahn
property, yet A is not strongly regular. [The sequence (xn) = ((−1)n), for
instance, is absent from (6.20) and hence from cA.]

(J) A curious summability matrix. One of the most remarkable results
in all of summability theory (see [28]) is this:

A regular matrix A limits no bounded divergent sequences (`∞ ∩ cA = c)
or else it limits many (`∞ ∩ cA is a non-separable subspace of `∞).

There is thus the suggestion that any bounded convergence domain, if not
trivial (`∞∩cA 6= c), might be a Hahn space. This idea is certainly reinforced
by (I). We give here a counter-example of a rather extreme type: a non-trivial
bounded convergence domain which contains no divergent sequences of 0’s
and 1’s. Let A be the regular, tri-diagonal matrix given by

A =




1 0 0 0 0 . . .
−1 1 0 0 0 . . .
1 −1 1 0 0 . . .
0 1 −1 1 0 . . .
...

...
...

...
...

. . .



.

Then A limits the sequence

x = (1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, . . .)

of period 6; indeed, Ax = e, so that

x ∈ χ(`∞) ∩ cA.
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On the other hand, A limits no divergent sequence of 0’s and 1’s. To see
this, let y be any such sequence. Then y contains the patterns

0 1 and 1 0

infinitely often, and so also the patterns

0 1 0 or 0 1 1 and 1 0 0 or 1 0 1

infinitely often. Hence Ay contains

−1 or 0 and 1 or 2

infinitely often, so that y 6∈ cA.

(K) Convergent subseries. Suppose that a = (an) is a sequence of posi-
tive terms with

(6.21)
∑

n

an =∞ and an → 0.

The convergent subseries of a, namely those sequences of positive integers
n1 < n2 < . . . for which

(6.22)
∑

k

ank <∞,

are objects of considerable interest. Let us temporarily denote them by cs(a).
Several authors have shown that cs(a) cannot be too big (else (6.21) fails).
Thus

(6.23)
∑

n

an <∞ if
∑

k

ank <∞ whenever
k

nk
→ 0

is proved in [2], [17] and [19], while the same conclusion is reached from a
weaker hypothesis in [1] and [34]:

(6.24)
∑

n

an <∞ if
∑

k

ank <∞ whenever nk+1 − nk →∞.

(The convergent subseries of the harmonic series are studied in [29], but
from a different viewpoint than the one adopted here.)

Our next result determines when b has more convergent subseries than a,
b being a fixed but arbitrary sequence of real (or complex) numbers. It is sur-
prising that this rather natural problem seems not to have been investigated
till now.

Proposition 6.3. Suppose that (6.21) holds. Then

(6.25)
∑

k

bnk converges whenever
∑

k

ank <∞

if and only if

(6.26) b ∈ `1 + `∞ · a.
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Proof. The sufficiency of (6.26) follows from the well known Compari-
son Test for series. To prove necessity, we first observe that (6.25) may be
replaced by an apparently stronger condition

(6.27)
∑

k

|bnk | <∞ whenever
∑

k

ank <∞.

[If
∑
k ank < ∞, the same is true of all its subseries; thus, by (6.25), all

subseries of
∑
k bnk must converge, forcing

∑ |bnk | < ∞.] This observation
allows us to restrict attention to non-negative sequences [replace b by |b|].
We may further assume that b is a null sequence, bn → 0. [Otherwise, there
would exists a subsequence (bnk) of b with bnk≥ δ>0 (k ∈ N). Since an→0,
a subsequence (mk) of (nk) could be chosen such that

∑
k amk < ∞, and

this would violate (6.25).] We may thus restrict attention to non-negative
and bounded sequences b satisfying

(6.28) sup
n
bn = M (> 0).

[If M = 0, the proposition is trivial.] We complete the proof by deriving a
contradiction from the supposition that (6.25) holds while (6.26) fails. The
sets En (n = 1, 2, . . .), defined by

(6.29) En = {k : bk ≥ nak}
are all infinite; indeed,

(6.30)
∑

k∈En
bk =∞.

[Otherwise (6.26) would be valid, via the representation b = χEn· b+χN\En· b.]
We construct finite disjoint subsets Fn of En satisfying

(6.31) M ≤
∑

k∈Fn
bk < 3M

as follows. Let

(6.32) Fn = En ∩ {mn−1 + 1,mn−1 + 2, . . . ,mn},
where m0 = 0 and mn (n = 1, 2, . . .) is the smallest positive integer r ∈ En,
r > mn−1, such that

(6.33) M ≤
∑

k∈En∩{mn−1+1,...,r}
bk.

It follows from (6.32) that the Fn’s are disjoint, and, from (6.28) and (6.33),
that (6.31) holds. Now let

F =
∞⋃

n=1

Fn2 .
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We see from (6.31) that

∑

k∈F
bk =

∞∑

n=1

∑

k∈Fn2

bk ≥
∞∑

n=1

M =∞.

On the other hand, it follows from (6.29) and (6.31) that

∑

k∈F
ak =

∞∑

n=1

∑

k∈Fn2

ak ≤
∞∑

n=1

1
n2

∑

k∈Fn2

bk ≤ 3M
∞∑

n=1

1
n2 <∞.

Thus (6.25) cannot be valid, and this contradiction finishes the proof.

(L) Köthe duals. We recall that the Köthe dual of a sequence x is defined
by

xα =
{
y ∈ ω :

∑

k

|xkyk| <∞
}
.

It is easy to see that xα fails to have any of the Hahn properties. The subject
springs to life again, however, when we restrict attention to the bounded
sequences in xα.

Theorem 6.4. `∞ ∩ xα has

(i) the Hahn property if and only if x ∈ `1;
(ii) the separable Hahn property if and only if x ∈ c0;

(iii) the matrix Hahn property if and only if x ∈ c0.

Proof. If x ∈ `1, then `∞ ∩ xα coincides with `∞, and so has the Hahn
property by Corollary 1.2.

If x 6∈ c0, there exists a subsequence of x with |xnk | ≥ δ > 0. This forces

ynk → 0 whenever y ∈ xα;

in particular, there can be only finitely many exceptions to the assertion

ynk = 0 whenever y ∈ χ(`∞ ∩ xα).

It follows that
χ(`∞ ∩ xα)β 6= (`∞ ∩ xα)β

and then from Theorem 5.1 that `∞∩xα fails even to have the matrix Hahn
property.

If x ∈ c0 \ `1, Proposition 6.3 shows that

χ(`∞ ∩ xα)β = `1 + `∞ · {x}.
It is easy to check that

`1 + `∞ · {x} ⊆ (`∞ ∩ xα)β

so that all three spaces coincide. Since `∞ ∩ xα is a solid sequence space,
Theorem 5.2 shows that it enjoys the separable Hahn property.



94 G. Bennett et al.

On the other hand, `∞ ∩ xα is an FK-space under the norm

‖y‖ = sup
n
|yn|+

∑

n

|xnyn|

and χ(`∞∩xα) fails to be ‖ ‖-dense in `∞∩xα. It follows from Theorem 1.1
that `∞ ∩ xα is not a Hahn space.

(M) bs+c0 does not have any of the Hahn properties. The result, at first
sight, is hardly surprising. The only sequences of 0’s and 1’s to be found in
either bs or c0 are those having finite support, and the same would seem to
be true of bs+ c0. But this is not the case at all, and it is important to keep
in mind the space bs+ c. Here again, the components, bs and c, contain few
sequences of 0’s and 1’s, but their sum, bs+ c, being a Hahn space, contains
many.

We begin by characterizing χ(bs + c0). A divergent sequence x of 0’s
and 1’s will be called thin if

(6.34) nk+1 − nk →∞ as k →∞,
where nk is the coordinate of the kth “one” in x. (Thin sequences have large
gaps.) We denote by τ the linear span of the thin sequences. As C. Orhan
pointed out, the following result is due to Freedman [18], Theorem 3.

Proposition 6.5. χ(bs+ c0) = τ .

Proof. We show first that τ ⊆ χ(bs + c0). If x is a thin sequence of 0’s
and 1’s, say

(6.35) x = (. . . , 0,

nk
↓
1 , 0, . . . , 0,

nk+1
↓
1 , 0 . . .),

we set

(6.36) z = (. . . ,−εk−1,

nk
↓
1 ,−εk, . . . ,−εk,

nk+1
↓
1 ,−εk+1, . . .),

where

(6.37) εk =
1

nk+1 − nk
,

and

(6.38) y = x− z.
It follows from (6.37) that z ∈ bs, from (6.34) that y ∈ c0, and from (6.38)
that x ∈ χ(bs+ c0).



Sequences of 0’s and 1’s 95

To prove the reverse inclusion, χ(bs + c0) ⊆ τ , we use the following
observation ([8], Theorem 3(ii)): if x ∈ bs+ c0, then

(6.39) sup
m

lim sup
n

∣∣∣
n+m∑

k=n+1

xk

∣∣∣ <∞.

If x is a divergent sequence of 0’s and 1’s in bs+ c0, the functional defined
in (6.39) must be positive-integer-valued, say

sup
m

lim sup
n

∣∣∣
n+m∑

k=n+1

xk

∣∣∣ = r.

For each m = 1, 2, . . . , there exists an integer N(m) such that

sup
n≥N(m)

∣∣∣
n+m∑

k=n+1

xk

∣∣∣ ≤ r.

Fixing m, we see that any “block” xn+1, . . . , xn+m of terms of x, of length
not exceeding m, contains no more than r “ones”. Therefore

nk+r − nk > m if nk ≥ N(m)

so that
nk+r − nk →∞ as k →∞.

Thus x may be expressed as a sum of r thin sequences (or fewer).

It is now easy to show that bs + c0 does not have the matrix Hahn
property. The convergence domain (6.20), for example, contains χ(bs+ c0),
by Proposition 6.5, but not bs.

7. Problems

1. Must the intersection of two Hahn spaces be a Hahn space? What
about arbitrary intersections?

The first problem persists if we consider the separable Hahn or matrix
Hahn properties, while the second admits a negative solution in those cases.
[The spaces `∞ ∩ xα (x ∈ c0) all have the separable Hahn property by
Theorem 6.4, whereas their intersection

⋂

x∈c0
(`∞ ∩ xα) = `1

fails the matrix Hahn property because of Theorem 5.1.]

2. Does the space |ac|0 have the Hahn property? (See (G), Section 6 and
Problem 9 below.)
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3. Which bounded sequences x are such that bs+Sp{x} is a Hahn space?
We recall that bs + Sp{e} is a Hahn space (Theorem 3.4), whereas bs + c0

is not (Proposition 6.5).

4. What is the closed linear span of the set of sequences of 0’s and 1’s in
{x∈ω :‖x‖=supn

∑2n−1
k=2n−1 |xk|<∞}? (See Section 5.) Is it a Hahn space?

5. Do the thin sequences have a smallest containing FK-space? (See (M),
Section 6.)

6. Does the matrix Hahn property imply the separable Hahn property?
Theorem 5.2 shows that the answer is affirmative for solid (or monotone) se-
quence spaces. The following closely related problem has a negative solution.

Must a separable FK-space be the intersection of the convergence domains
containing it?

A counterexample has been constructed by M. Zeltser (student of Leiger)
and it will be presented elsewhere.

7. Which bounded domains have the Hahn property? It follows from an
observation of Kuttner and Parameswaran ([24], Theorem 2) that the con-
verse of Theorem 6.1 is valid for conservative Hausdorff matrices. (See [9]
for definitions.)

They show that the bounded convergence domain of such a matrix has
the matrix Hahn property precisely when the diagonal entries converge to
zero. The last condition forces the matrix to be strongly conservative ([26],
Theorem 13) and permits Theorem 6.1 to be applied.

An analogue of the Kuttner/Parameswaran result has been given for
weighted mean matrices ([25], Theorem 1), but the details are here much
more troublesome (see [10]):

if A is a conservative weighted mean matrix , then `∞∩cA has the matrix
Hahn property precisely when limn ann = 0.

Does `∞ ∩ cA have the Hahn property? What can be said about Nörlund
matrices?

8. Uniform Boundedness Principles. Behind any FK-space, E, that is
known to enjoy the Hahn property, there lies a uniform boundedness prin-
ciple:

(7.1) χ(E) is barrelled in E.

The principle may be difficult to enunciate, for sure, owing to the non-
separability of E and the attendant intractability of its dual space, E ′. But
if we suppose that E is a closed subspace of `∞, then E′, just like (`∞)′,
becomes manageable, and there is the enticing possibility that (7.1) may
lead to new forms of the Uniform Boundedness Principle.
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Such is the case with

E =
{
x ∈ `∞ :

|x1|+ . . .+ |xn|
n

→ 0
}
.

The sequences of 0’s and 1’s in E may be identified with the subsets of N
having zero density. Let us denote this class of sets by ∆0. Then ∆0 is a ring
(i.e. closed under finite unions and under differences), but not a σ-ring.

A direct proof of (7.1) demands that we find an extension of Nikodym’s
theorem and the following concept is exactly what is needed here.

We say that a collection C of subsets of N has the σ-density property if
whenever

S1, S2, . . . are pairwise disjoint members of C,
there exists a subsequence of the S’s, say T1, T2, . . . , such that Tn admits a
partition into 2n−1 subsets,

Tn = Tn,1 ∪ Tn,2 ∪ . . . ∪ Tn,2n−1 with
⋃

i∈I
Ti,j(i) ∈ C

for every I ⊆ N and every choice of j(i) ∈ {1, 2, . . . , 2i − 1}.
We omit the proof that ∆0 has the σ-density property as well as the

proof of the following theorem.

Theorem 7.1. Suppose that R is a ring of subsets of N with the σ-
density property. If (µn)∞n=1 is a sequence of bounded , finitely additive (real-
valued) set functions on R that is “pointwise” bounded ,

sup
n
|µn(S)| <∞ for each S ∈ R,

then (µn)∞n=1 is “uniformly” bounded ,

sup
S∈R

sup
n
|µn(S)| <∞.

Nikodym’s version of Theorem 7.1 requires that R be a σ-algebra and
that the µn’s be countably additive. The remarkable extension of Nikodym’s
theorem to finitely additive set functions is due to Dieudonné [14]. His result
was rediscovered by Darst [13] and Seever [32]. Our contribution is to remove
the restriction that R be a σ-algebra.

9. What is Nikodym’s theorem for ∆? The space of bounded Cesàro
limitable sequences, (3.3), has the Hahn property so there must exist an
analogue of Theorem 7.1 for ∆, the subsets of N having density. ∆ certainly
has the σ-density property, but Theorem 7.1 does not apply, because ∆ is
not a ring. The same comments apply when the Cesàro matrix is replaced
by any strongly regular matrix (see Theorem 6.2). Problem 2 remains open
because the ring of subsets of N associated with |ac|0 does not have the
σ-density property.
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Paris 196 (1933), 32–34.

[28] —, —, On linear methods of summability , Studia Math. 14 (1955), 129–160.
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