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Pointwise inequalities and approximation in
fractional Sobolev spaces

by

David Swanson (College Station, TX)

Abstract. We prove that a function belonging to a fractional Sobolev space Lα,p(Rn)
may be approximated in capacity and norm by smooth functions belonging to Cm,λ(Rn),
0 < m+ λ < α. Our results generalize and extend those of [12], [4], [14], and [11].

1. Introduction. When Ω ⊂ Rn is an open set and p ≥ 1, the Sobolev
space W k,p(Ω) consists of those functions f ∈ Lp(Ω) whose distributional
partial derivatives of order up to and including k are also members of Lp(Ω).
The norm of this space is given by

‖f‖W k,p(Ω) =
∑

|σ|≤k
‖Dσf‖p.

We will assume throughout that 1 < p <∞.
An important property of functions f ∈ W 1,p(Rn) is the Lusin-type

property of quasicontinuity—given ε > 0 it is possible to find a continuous
function g such that f = g off a set with (1, p)-capacity less than ε. This
notion was extended to the higher-order spaces by Bagby and Ziemer [2],
who proved that for f ∈W k,p(Rn), 0 ≤ m ≤ k, and ε > 0 there is a function
g ∈ Cm(Rn) such that f = g off a set whose (k −m, p)-capacity does not
exceed ε. It is worth mentioning that the case m = k was originally treated
by Calderón and Zygmund [5]. Bagby and Ziemer’s result, as well as the
results in the present paper, rely greatly on their techniques. Michael and
Ziemer [12] later showed that the function g, in addition to satisfying the
above-stated properties, may be chosen so that ‖f − g‖m,p < ε.

Recently Bojarski, Hajłasz, and Strzelecki [4] have considered the prob-
lem of obtaining a continuous scale of approximations to functions f ∈
W k,p(Rn). They proved that for ε > 0, 0 ≤ m ≤ k − 1, and 0 < λ < 1 there
exists g ∈ Cm,λ(Rn) such that f = g off a set of (k−m− λ, p)-capacity not
exceeding ε and ‖f−g‖m+1,p < ε. As in the discrete scale of approximations
there is an inverse linear relationship between the order of the approximator
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and the order of the capacity. An interesting aspect of their result, and one
which will be considered in this paper, is that the approximator g belongs
to a higher order Sobolev space than might be expected from the condition
g ∈ Cm,λ(Rn).

It turns out that ifm ≤ k−1, the approximator g in Michael and Ziemer’s
result may also be chosen so that g ∈ Cm(Rn) and ‖f−g‖m+1,p < ε, extend-
ing the result of Bojarski, Hajłasz, and Strzelecki to the case λ = 0. Again
this is surprising in that the condition g ∈ Cm(Rn) gives no information
regarding the order m+ 1 weak differentiability of g. Of course this higher
norm aproximation is no longer possible when m = k. Combining the above
with the result of [4] we obtain the following.

Theorem 1.1. Assume that 1 < p < ∞, m is an integer satisfying
0 ≤ m ≤ k − 1, and 0 ≤ λ < 1. For a function f ∈ W k,p(Rn) and ε > 0,
there exist a function g ∈ Cm,λ(Rn) and an open set Ω with the following
properties:

(1) Bk−m−λ,p(Ω) < ε,
(2) Dσf(x) = Dσg(x) for all x ∈ Rn \Ω and multi-indices |σ| ≤ m, and
(3) ‖f − g‖m+1,p < ε,

where Bα,p denotes the (α, p)-capacity.

As observed in [4] the case k = 1 and 0 < λ < 1 generalizes a theorem
of Malý [11]. The case k = 1 and λ = 0 extends the classical concept of
quasicontinuity by showing that for f ∈ W 1,p(Rn) and ε > 0 there exists
g ∈ C(Rn) such that f and g not only coincide off a set with (1, p)-capacity
less than ε, but also g ∈W 1,p(Rn) and ‖f − g‖1,p < ε.

Theorem 1.1 will be proven as a special case of a more general result
phrased in terms of the fractional Sobolev spaces Lα,p(Rn), the so-called
“Bessel potential spaces”. Recall that Lα,p(Rn) consists of functions f of
the form f = gα ∗ u, with norm ‖gα ∗ u‖α,p := ‖u‖p, where u ∈ Lp(Rn) and
gα, α > 0, is the Bessel kernel whose Fourier transform is

ĝα(x) = (2π)−n/2(1 + |x|2)−α/2.

When α = k is an integer, the spaces W k,p(Rn) and Lk,p(Rn) are equivalent
with equivalent norms. When α is not an integer, a function f belongs
to Lα,p(Rn) if and only if, for every non-negative integer k < α, we have
f ∈ W k,p(Rn) and Dσf ∈ Lα−k,p(Rn) whenever |σ| = k, in which case the
norms

‖f‖α,p and ‖f‖k,p +
∑

|σ|=k
‖Dσf‖α−k,p(1.1)

are equivalent (cf. [13, Ch. V]). The (α, p)-capacity of an arbitrary set
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E ⊂ Rn is defined as

Bα,p(E) = inf{‖u‖pp : u ∈ Lp(Rn), u ≥ 0, gα ∗ u ≥ 1 on E}.(1.2)

It can be shown ([18, Sect. 2.6]) that Bα,p is an outer measure satisfying
Bα,p(E) = inf Bα,p(U) whenever E is non-empty, where the infimum is taken
over all open sets containing E. We are now in a position to state the main
result of this paper.

Theorem 1.2. Assume that 1 < p < ∞, m is an integer satisfying
0 ≤ m ≤ α − 1, and 0 ≤ λ < 1. For a function f ∈ Lα,p(Rn) and ε > 0,
there exist a function g ∈ Cm,λ(Rn) and an open set Ω with the following
properties:

(1) Bα−m−λ,p(Ω) < ε,
(2) Dσf(x) = Dσg(x) for all x ∈ Rn \Ω and multi-indices |σ| ≤ m, and
(3) ‖f − g‖m+1,p < ε.

To compare our result with the existing literature, the following remarks
are in order:

1. When α is an integer and λ = 0, the conclusion that ‖f − g‖m+1,p < ε
strengthens the norm approximation in [12].

2. When α is an integer and 0 < λ < 1, we obtain a new proof of the
result in [4].

3. When α is not an integer and λ = 0, Theorem 1.2 was obtained by
Stocke [14] with the weaker conclusion that ‖f − g‖m,p < ε. However, the
result in [14] holds in the case m < α < m+ 1 not treated by Theorem 1.2.

4. The case m = 0 was first considered by Malý [11], who showed that
a function f ∈ Lα,p(Rn) is Hölder continuous with exponent β off a set of
small (α, q)-capacity for suitable β and q. Our result contains the result in
[11], with no restriction on β and a sharper capacitary estimate.

5. Our result does not require that (α − m − λ)p < n. Although The-
orem 1.2 follows from the Sobolev theorems when (α − m − λ)p > n, we
obtain a new approximation in the borderline case (α−m− λ)p = n.

The main idea of the proofs of the Michael–Ziemer and Stocke theorems
is to show that for f ∈ Lα,p(Rn), m < α, and ε > 0 there is an open set Ω
such that Bα−m,p(Ω) < ε and

( �

B(x,r)

|f(y)− Tmx f(y)|p dy
)1/p

= o(rm) as r → 0(1.3)

uniformly for x ∈ Rn \Ω, where Tmx f(y) is the order m Taylor polynomial
of f centered at x. The function g is then defined to be equal to f on
Rn \ Ω and is extended to all of Rn using an Lp-version of the Whitney
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extension theorem formulated in terms of Calderón–Zygmund classes (cf.
[5], [18, Ch. 3]).

The proof of Theorem 1.2 uses a similar idea. In addition to considering
the behavior of integral averages, we also consider pointwise inequalities
describing how far f(x) deviates from its Taylor polynomial centered at a
nearby point. Specifically, Ω may be chosen so that Bα−m,p(Ω) < ε,

�

B(x,r)

|f(y)− Tmx f(y)| dy = o(rm) as r → 0,(1.4)

and

|Dβf(x)− Tm−|β|y Dβf(x)| = o(|x− y|m−|β|)(1.5)

uniformly for x, y ∈ Rn \ Ω and all multi-indices |β| ≤ m. Of course, (1.4)
follows from (1.3) and Hölder’s inequality, but (1.3) requires the additional
assumption that (α−m)p < n, which we do not wish to make. One can use
the classical Whitney extension theorem [17] to extend f off the set Rn \Ω
to a function g having properties (1) and (2) of Theorem 1.2. This approach
does not seem satisfactory to obtain the norm estimates, however, as the
Whitney extension neglects the fact that f has an a priori definition on
the whole space. Instead we use the Calderón–Zygmund extension opera-
tor. That the function g belongs to Wm+1,p(Rn) will be verified using the
following trace theorem due to the author and W. P. Ziemer [15].

Proposition 1.3. Let Ω ⊂ Rn be an arbitrary open set and suppose
that h ∈ W k,p(Ω), 1 < p < ∞. Then h ∈ W k,p

0 (Ω) if and only if , for each
multi-index |β| ≤ k − 1,

lim
r→0

r−n �
B(x,r)∩Ω

|Dβh(y)| dy = 0

for (k − |β|, p)-quasi-every x ∈ ∂Ω.

When 0 < λ < 1, the set Ω may be chosen so that in addition to (1.4)
and (1.5) above, it satisfies Bα−m−λ,p(Ω) < ε,

�

B(x,r)

|f(y)− Tmx f(y)| dy = O(rm+λ) as r → 0(1.6)

uniformly for x ∈ Rn \Ω and

|Dβf(x)−Dβf(y)| = O(|x− y|λ)(1.7)

uniformly for x, y ∈ Rn \ Ω and |β| = m, although in this case Ω must
be enlarged so that Bα−m−λ,p(Ω) < ε is the sharpest capacitary estimate
possible. The approximator g is constructed in the same way as before, and
all that is necessary is to show that the highest order partial derivatives of g
are Hölder continuous. This follows from the construction of g and properties
(1.6) and (1.7).
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It is common in proofs of this nature to assume that the function f has
compact support and then use a partition of unity argument to prove the
general case. This is not sufficient, however, to conclude that the order m
partial derivatives of f are Hölder continuous on the whole space, so we do
not use this type of argument.

Since our result involves the notion of capacity, we must be careful to
consider appropriate representatives of functions f ∈ Lα,p(Rn). We use the
pointwise definition f(x) = gα ∗ u(x) at those points x for which gα ∗ |u|(x)
< ∞, whenever u ∈ Lp(Rn) satisfies f = gα ∗ u almost everywhere. The
definition of f on the set {x : gα ∗ |u|(x) =∞}, which has (α, p)-capacity 0,
is not considered.

The paper is organized as follows. Sections 2–4 consist of preliminary
material. Section 2 reviews the notation and basic results required in what
follows. In Section 3 we give a simple proof, based on an analysis of local
Riesz potentials, of the uniform L1 differentiability property (1.4). Although
this result is well known we include the proof to emphasize the irrelevance
of the condition (α−m)p < n. The Calderón–Zygmund smoothing operator
used to construct the approximator g is given in Section 4. Lemmas 4.1
and 4.2 are used in what follows to verify the norm and Hölder continuity
properties of g.

Sections 5–8 contain the proof of Theorem 1.2. The case λ = 0 is proven
in Section 5. In Section 6 we derive pointwise Hölder-type estimates with
exponent λ for functions in the fractional Sobolev spaces. The basic esti-
mate in this section is Lemma 6.5, which gives a Hölder-type estimate valid
(α, p)-quasi-everywhere for functions f ∈ Lα,p(Rn). We digress briefly from
the main argument in Theorem 6.7, where we use our estimates to give a
particularly simple proof of the fact that if α > 0 and 0 < λ < min(α, 1),
then for any f ∈ Lα,p(Rn) and ε > 0 there exists g ∈ C0,λ(Rn) with the
property that f and g coincide outside an open set whose (α−λ, p)-capacity
is smaller than ε. This property of Bessel potentials could rightly be called
“Hölder quasicontinuity”. In Section 7 we derive higher order estimates in-
volving the order m Taylor polynomials of f as corollaries of the inequal-
ities in Section 6. These are used to finish the proof of Theorem 1.2 in
Section 8.

Finally, in Section 9 we prove a weaker version of Theorem 1.2 which is
valid without the restriction m ≤ α− 1, where the Sobolev (m+ 1, p) norm
is replaced by a suitable Besov norm.

2. Preliminaries. The dimension n remains fixed and ω(n) denotes
the Lebesgue measure of the unit ball in Rn. A multi-index is a vector
σ = (σ1, . . . , σn) ∈ Rn whose components are non-negative integers, with
length |σ| = σ1 + . . .+σn. When x ∈ Rn, xσ means xσ1

1 . . . xσnn . Observe that
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|xσ| ≤ |x||σ|. The notation β ≤ σ means that βi ≤ σi for each coordinate i,
and σ! = σ1! . . . σn!.

The partial derivatives of a function f : Rn → R are denoted by Dσf =
∂σ1
x1
. . . ∂σnxn f . The mth-order Taylor polynomial of a function f ∈ Cm(Rn) is

defined in the usual fashion:

Tmx f(y) =
∑

|σ|≤m
Dσf(x)

(y − x)σ

σ!
.(2.1)

When E ⊂ Rn, we denote by TmE f(y) the integral average of Tmx f(y) (as a
function of x) over E:

TmE f(y) =
�

E

Tmx f(y) dx =
∑

|β|≤m

�

E

Dβf(x)
(y − x)β

β!
dx.

Here the integral average is defined by

uE =
�

E

u =
1
|E|

�
E

u.

The family {gα}α>0 of Bessel kernels is a semigroup with respect to
convolution in the sense that

gα ∗ gβ = gα+β for all α, β > 0.(2.2)

In light of the fact that ‖gα‖1 = 1, (2.2) and the definition of capacity
imply that Bα1,p ≤ Bα2,p whenever α1 ≤ α2. Note also that |E| ≤ Bα,p(E),
α > 0, whenever E is measurable. If a property holds for all x ∈ Rn except
possibly for a set of (α, p)-capacity 0, we say the property holds (α, p)-quasi-
everywhere, or simply (α, p)-q.e.

If u ∈ Lp(Rn), the definition of capacity gives

Bα,p({x : gα ∗ |u|(x) > t}) ≤ 1
tp
‖u‖pp(2.3)

for all t > 0. Passing to the limit as t→∞ we have

Bα,p({x : gα ∗ |u|(x) =∞}) = 0,(2.4)

and hence gα ∗ |u|(x) <∞ for (α, p)-q.e. x, y ∈ Rn.
The maximal function Mf of a locally integrable function f is defined

as
Mf(x) = sup

r>0

�

B(x,r)

|f(y)| dy,

its local version MRf as

MRf(x) = sup
0<r<R

�

B(x,r)

|f(y)| dy,
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and the local sharp maximal function M#
R f as

M#
R f(x) = sup

0<r<R

�

B(x,r)

|f(x)− f(y)| dy.

By the observation that M(gα ∗ u) ≤ gα ∗Mu, (2.3) above and the Hardy–
Littlewood–Wiener maximal theorem imply that

Bα,p({x : M(gα ∗ u)(x) > t}) ≤ 1
tp
‖Mu‖pp ≤

C

tp
‖u‖pp(2.5)

whenever u ∈ Lp(Rn), where C = Cn,p. As for the local sharp maximal
function we have the following.

Proposition 2.1 ([3, Thm. 8]). Let f ∈ Lα,p(Rn). For every ε > 0
there exists an open set U with Bα,p(U) < ε such that

M#
R f → 0 uniformly as R→ 0 on Rn \ U.

Recall that the precise representative of a function f = gα∗u ∈ Lα,p(Rn)
is defined by f(x) = gα∗u(x) whenever gα∗|u|(x) <∞. It turns out that this
representative agrees with the representative defined by integral averages.

Proposition 2.2 ([1, Thm. 6.2.1]). Let f = gα ∗ u ∈ Lα,p(Rn). If gα ∗
|u|(x) <∞, then

lim
r→0

�

B(x,r)

f(y) dy = gα ∗ u(x).

Remark 2.3. Assume that f ∈ Lα,p(Rn), α ≥ 1, and that m is an
integer with 0 < m ≤ α. Then (1.1) states that f ∈ Wm,p(Rn) and
Dσf ∈ Lα−|σ|,p(Rn) for all |σ| ≤ m. If we identify each Dσf with its precise
representative, the order k Taylor polynomial Tmx f of f may be defined for-
mally for all x outside a set of (α−m, p)-capacity zero. For two multi-indices
β, σ with |β|+ |σ| ≤ m, Proposition 2.2 implies that

DβDσf(x) = DσDβf(x) = Dβ+σf(x)(2.6)

for (α − |β| − |σ|, p)-quasi-all, hence (α − m, p)-quasi-all x ∈ Rn since in
general the mixed weak partial derivatives are equal almost everywhere. At
those points x satisfying (2.6) for all |σ|+|β| ≤ m it follows that the classical
formula (see [10])

DβTmx f(y) = Tm−|β|x Dβf(y)(2.7)

holds for all y ∈ Rn and |β| ≤ m. Since a polynomial of degree m agrees
with its degree m Taylor polynomial centered at any point z ∈ Rn, (2.7)
implies that

Tmx f(y) = Tz(Tmx f)(y) =
∑

|σ|≤m
Tm−|σ|x Dσf(z)

(y − z)σ
σ!

(2.8)

holds for (α−m, p)-quasi-every x ∈ Rn and all y, z ∈ Rn.
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The space W k,p
0 (Ω) is defined as the closure of C∞0 (Ω) with respect to

the W k,p(Ω) norm. If f ∈W k,p
0 (Ω) and

f̃(x) =
{
f(x), x ∈ Ω,
0, otherwise,

then f̃ ∈W k,p(Rn).

3. A quick proof of L1 differentiability. In this section we prove
the claim in (1.4) without restriction on p. The proof requires the following
known results. Proposition 3.1 is due to Bojarski and Hajłasz [3, Thm. 1]
and Proposition 3.2 is due to Hedberg [9].

Proposition 3.1. Let f ∈ Lα,p(Rn) and let x be a Lebesgue point of f .
For each integer 0 < m < α there is a constant C depending only on m and
n such that

|f(x)− TmB f(x)| ≤ C
∑

|σ|=m

�
B

|aσ −Dσf(z)|
|x− z|n−m dz

for every ball B containing x and any family (aσ)|σ|=m of real numbers.

Proposition 3.2. Let s > 0 and let f ∈ L1
loc(Rn). There is a constant

C = Cs,n such that

�
B(x,r)

|f(y)|
|x− y|n−s dy ≤ Cr

sMrf(x)

for all x ∈ Rn and r > 0.

Proposition 3.3 (Uniform L1 differentiability). Let f ∈ Wα,p(Rn),
α > 0, 1 < p < ∞, and let m be an integer with 0 ≤ m < α. Then for
every ε > 0 there is an open set Ω with Bα−m,p(Ω) < ε such that

r−m
�

B(x,r)

|f(y)− Tmx f(y)| dy → 0

uniformly for x ∈ Rn \Ω.

Proof. Let f ∈ Lα,p(Rn), 0 ≤ m < α, and ε > 0. If m = 0 then the
statement of the proposition is implied by Proposition 2.1 so we assume
m ≥ 1. Moreover, applying Proposition 2.1 to each Dσf with |σ| = m we
see that there is an open set Ω with (α − m, p)-capacity less than ε such
that Tmx f is defined for all x ∈ Rn \Ω and

∑
|σ|=mM

#
RD

σf → 0 uniformly
as R→ 0 on Rn \Ω. Fix r > 0 and let B = B(x, r). By Proposition 3.1 we
have

|f(y)− TmB f(y)| ≤ C
∑

|σ|=m

�
B

|Dσf(x)−Dσf(z)|
|y − z|n−m dz
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for almost all y ∈ B. Integrating over B and applying Tonelli’s theorem and
Proposition 3.2 gives

�

B

|f(y)− TmB f(y)| dy ≤ C
∑

|σ|=m

�

B

�
B

|Dσf(x)−Dσf(z)|
|y − z|n−m dz dy(3.1)

≤ Crm
∑

|σ|=m

�

B

|Dσf(x)−Dσf(z)| dz

≤ Crm
∑

|σ|=m
M#
r D

σf(x).

On the other hand, we may use formula (2.8) to write

Tmx f(y)− Tmz f(y) =
∑

|β|≤m
(Dβf(x)− Tm−|β|z Dβf(x))

(y − x)β

β!

for (α−m, p)-quasi-every, hence almost every z ∈ Rn. Integrating this over B
we make the estimate

|Tmx f(y)− TmB f(y)| ≤
∑

|β|≤m
r|β||Dβf(x)− Tm−|β|B Dβf(x)|.(3.2)

When |β| = m, the expression on the right side of (3.1) is

|Dβf(x)− (Dβf)B| ≤
�

B

|Dβf(x)−Dβf(z)| dz ≤M#
r (Dσf)(x),

and when |β| < m we apply Propositions 3.1 and 3.2 with aσ = Dσ+βf(x):

|Dβf(x)− Tm−|β|B Dβf(x)| ≤ C
∑

|σ|=m−|β|

�
B

|Dσ+βf(x)−DσDβf(z)|
|x− z|n−m+|β| dz

≤ C
∑

|σ|=m

�
B

|Dσf(x)−Dσf(z)|
|x− z|n−m+|β| dz

≤ Crm−|β|
∑

|σ|=m
M#
r (Dσf)(x).

Substituting these inequalities into (3.2) we get

|Tmx f(y)− TmB f(y)| ≤ Crm
∑

|σ|=m
M#
r (Dσf)(x),

and comparison with (3.1) implies that

r−m
�

B(x,r)

|f(y)− Tmx f(y)| dy ≤ C
∑

|σ|=m
M#
r (Dσf)(x)(3.3)

for all x ∈ Rn \ Ω and r > 0. That the right-hand side of (3.3) tends to 0
uniformly follows from the definition of Ω.
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4. The Calderón–Zygmund extension operator. The material in
this section is adapted from [5]. We will show that if Ω is an open set with
dist(x, ∂Ω) < 1 for all x ∈ Ω, then for every integer k ≥ 1 there exists
a linear mapping u 7→ u from L1

loc(Ω) to C∞(Ω) which is bounded on
W k,p(Ω), 1 < p <∞. The definition of u is simple. Let δ ∈ C∞(Ω) satisfy

Cndist(x, ∂Ω) ≤ δ(x) ≤ dist(x, ∂Ω)

and |Dσδ(x)| ≤ Cn,σδ(x)1−|σ| for all x ∈ Ω and |σ| ≥ 0. For k ≥ 1, let
ϕ ∈ C∞0 (B(0, 1)) have the property that P = P ∗ ϕε for all ε > 0 whenever
P is a polynomial whose degree does not exceed k, where ϕε(x) = ε−nϕ(x/ε).
For x ∈ Ω and z ∈ Rn define

ψz(x) = δ(x)−nϕ
(
x− z
δ(x)

)
.

Then ψz ∈ C∞(Ω) for fixed z and for each multi-index β ≥ 0 there is a
constant C = Cβ,k,n such that

|Dβψz(x)| ≤ Cδ(x)−n−|β|

whenever x ∈ Ω and z ∈ Rn. See [5], [18, Ch. 3] for justifications.
Assuming u ∈ L1

loc(Ω), we define the smoothing u of u by

u(x) = �
Rn
ψz(x)u(z) dz

for all x ∈ Ω. Since δ and ϕ are smooth, it is evident that u ∈ C∞(Ω).

Lemma 4.1. Let u ∈ Lp(Ω), P a polynomial with degree ≤ k, and β a
multi-index with |β| ≤ k. There is a constant C = Cn,k such that

|Dβu(x)−DβP (x)| ≤ Cδ(x)−|β|
�

B(x,δ(x))

|u(z)− P (z)| dz

for all x ∈ Ω.

Proof. Writing u(z) = P (z) + (u(z)− P (z)), we have

u(x) = P (x) + �
Rn
ψz(x)(u(z)− P (z)) dz.

for all x ∈ Ω. Differentiating gives

Dβu(x) = DβP (x) + �
Rn
Dβψz(x)(u(z)− P (z)) dz.

Since each ψz vanishes off B(x, δ(x)), this is equivalent to

Dβu(x) = DβP (x) + �
B(x,δ(x))

Dβψz(x)(u(z)− P (z)) dz,
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and so there is a constant C = Ck,n satisfying

|Dβu(x)−DβP (x)| ≤ Cδ(x)−n−|β| �
B(x,δ(x))

|u(z)− P (z)| dz

for all x ∈ Ω.

It is easy to see that this smoothing process maps Lp(Ω) into Lp(Ω).
Applying the preceding lemma with β = 0 and P = 0 we have

|u(x)| ≤ C
�

B(x,δ(x))

|u(z)| dz ≤ CMu(x)

whenever x ∈ Ω, and so the Hardy–Littlewood–Wiener theorem implies

‖u‖Lp(Ω) ≤ C‖u‖Lp(Ω),

where C = Ck,n,p. In fact, even more is true—if m ≤ k, then the smoothing
maps Wm,p(Ω) to Wm,p(Ω).

Lemma 4.2. Assume that m ≤ k and u ∈Wm,p(Ω). Then u ∈Wm,p(Ω)
and there is a constant C = Ck,n,p such that

‖u‖Wm,p(Ω) ≤ C‖u‖Wm,p(Ω).

Proof. Fix x ∈ Ω and apply the preceding lemma with P (z) = TmB u(z),
where B = B(x, δ(x)). There is a constant C = Ck,n such that

|Dβu(x)−DβTmB u(x)| ≤ Cδ(x)−|β|
�

B

|u(z)− TmB u(z)| dz

for each multi-index |β| ≤ m. Proposition 3.1 (with aσ = 0) and Proposi-
tion 3.2 imply that

�

B

|u(z)− TmB u(z)| dz ≤ Cδ(x)m
∑

|σ|=m

�

B

|Dσu(z)| dz,

hence that

|Dβu(x)−DβTmB u(x)| ≤ Cδ(x)m−|β|
∑

|σ|=m
M(Dσu)(x).

From the definition of TmB u we have

|DβTmB u(x)| ≤
∑

|σ|≤m
σ≥β

δ(x)|σ|−|β|
�

B

|Dσu(z)| dz

≤
∑

|σ|≤m
σ≥β

δ(x)|σ|−|β|M(Dσu)(x).

Since δ(x) < 1, we conclude that

|Dβu(x)| ≤ C
∑

|σ|≤m
M(Dσu)(x)
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for all x ∈ Ω, and so the Hardy–Littlewood–Wiener theorem implies

‖Dβu‖Lp(Ω) ≤ C
∑

|σ|≤m
‖Dσu‖Lp(Ω) = C‖u‖Wm,p(Ω),

where the constant in general depends on k, n, and p. The result follows by
summing over all |β| ≤ k.

5. The proof of Theorem 1.2, λ = 0. Assume that 1 < p <∞. In ad-
dition to the results of the preceding sections, the proof of Theorem 1.2 will
use the following pointwise inequality of Bojarski and Hajłasz [3, Thm. 3].

Proposition 5.1. Let α > 0 and let m be an integer with 0 ≤ m < α.
If f ∈ Lα,p(Rn) then

|f(x)− Tmy f(x)| ≤ C|x− y|m
∑

|σ|=m
(M#
|x−y|D

σf(x) +M#
|x−y|D

σf(y))

for (α−m, p)-quasi-every x, y ∈ Rn, where C = Cn,k.

Observe that the case m = 0 follows directly from the definition of M#

and the fact that f is defined (α, p)-quasi-everywhere by integral averages.
Applying Proposition 5.1 to Dβf ∈ Lα−|β|,p(Rn), we also have

|Dβf(x)− Tm−|β|y Dβf(x)|
≤ C|x− y|m−|β|

∑

|σ|=m
(M#
|x−y|D

σf(x) +M#
|x−y|D

σf(y))

for (α−k, p)-quasi-every x, y ∈ Rn whenever β is a multi-index with |β| ≤ m.
In light of Proposition 2.1, there is an open set U ⊂ Rn with Bα−m,p(U) < ε
such that

|Dβf(x)− Tm−|β|y Dβf(x)|
|x− y|m−|β| → 0

uniformly as |x− y| → 0 for x, y ∈ Rn \ U and all multi-indices |β| ≤ m.
The proof of Theorem 1.2 is divided into several steps. We assume that

α > 0, f ∈ Lα,p(Rn), λ = 0, m is an integer with 0 ≤ m ≤ α− 1, and we fix
ε > 0.

Step 1. There exists an open set Ω ⊂ Rn such that Bα−m,p(Ω) < ε,
Tmx f is defined and satisfies (2.7), (2.8) for all x ∈ Rn \Ω,

r−m
�

B(x,r)

|f(y)− Tmx f(y)| dy → 0(5.1)

uniformly as r → 0 for x ∈ Rn \Ω, and

|Dβf(x)− Tm−|β|y Dβf(x)|
|x− y|m−|β| → 0(5.2)
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uniformly as |x − y| → 0 for x, y ∈ Rn \ Ω, x 6= y. This follows from
Remark 2.3, Propositions 3.3 and 5.1, and the fact that Bα−m,p is an outer
capacity. As |Ω| ≤ Bα−m,p(Ω) we may assume that Ω is sufficiently small
that dist(x, ∂Ω) < 1 for all x ∈ Ω. Define K = Rn \Ω.

Step 2. Since m≤α−1 we have f ∈Wm+1,p(Rn), hence f ∈Wm+1,p(Ω).
We may assume without loss of generality thatΩ has been chosen sufficiently
small that ‖f‖Wm+1,p(Ω) < δ for any particular choice of δ > 0 (see Step 5).
Let f be the smoothing of f on Ω satisfying ‖f‖Wm+1,p(Ω) ≤ C‖f‖Wm+1,p(Ω)
as constructed in Section 4. Define the approximator g by

g(x) =
{
f(x), x ∈ Ω,
f(x), x ∈ K,

and for each multi-index |β| ≤ m define

gβ(x) =
{
Dβf(x), x ∈ Ω,
Dβf(x), x ∈ K.

Let δ(x) denote the regularized distance function on Ω.

Step 3. Let y ∈ K and let |β| ≤ m. Then

|gβ(x)−DβTmy f(x)| = o(|x− y|m−|β|)
as x → y. To verify this, we must show that for arbitrary η > 0 we have
|gβ(x) − DβTmy f(x)| ≤ η|x − y|m−|β| provided |x − y| is sufficiently small.
When x ∈ K this follows from (5.2) and the definition of gβ. We therefore
fix η > 0 and consider x ∈ Ω.

Let x∗ ∈ K satisfy |x−x∗| = dist(x,Ω). We estimate |gβ(x)−DβTmx∗f(x)|
and |DβTmx∗f(x) − DβTmy f(x)| separately and use the triangle inequality.
Define the order m polynomial P (z) = Tmx∗f(z). Lemma 4.1 implies that

|gβ(x)−DβTmx∗f(x)| ≤ Cδ(x)−|β|
�

B(x,δ(x))

|f(z)− Tmx∗f(z)| dz,

and since C|x− x∗| ≤ δ(x) ≤ |x− x∗| it follows that

|gβ(x)−DβTmx∗f(x)| ≤ C|x− x∗|−|β|
�

B(x∗,2|x−x∗|)
|f(z)− Tmx∗f(z)| dz.

As x∗ ∈ K, the uniformity of (5.1) implies

|gβ(x)−DβTmx∗f(x)| ≤ Cη|x− x∗|m−|β|(5.3)

provided |x−x∗| is sufficiently small regardless of the particular values of x
and x∗. On the other hand, since x∗, y ∈ K we may use (2.7) and (2.8) to
write the difference DβTmy f(x)−DβTmx∗f(x) as

∑

|γ|≤m−|β|
(Dγ+βf(y)− Tm−|β|−|γ|x∗ Dγ+βf(y))

(x− y)γ

γ!
,
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implying that |DβTmy f(x)−DβTmx∗f(y)| does not exceed
∑

|γ|≤m−|β|
|Dγ+βf(y)− Tm−|β|−|γ|x∗ Dγ+βf(y)| · |x− y||γ|.

In this case the uniformity of (5.2) shows that

|DβTmy f(x)−DβTmx∗f(x)| ≤
∑

|γ|≤m−|β|
η|x∗ − y|m−|β|−|γ||x− y||γ|(5.4)

provided that |x∗−y| is sufficiently small. The choice of x∗ implies |x∗−y| ≤
|x−y| and therefore |x∗−y| ≤ |x∗−y|+|x−y| ≤ 2|x−y|, so comparing (5.3)
and (5.4) we conclude that |gβ(x)−DβTmy f(x)| ≤ Cη|x− y|m−|β| provided
that |x − y| is sufficiently small. As η > 0 is arbitrary, this proves that
|gβ(x)−DβTmy f(x)| = o(|x− y|m−|β|), as desired.

Step 4. g ∈ Ck(Rn) and Dβg = gβ for all multi-indices |β| ≤ k. Assume
first that |β| = k. Since f is smooth on Ω, gβ is continuous on Ω. On the
other hand, for y ∈ K we have

|gβ(x)− gβ(y)| = |gβ(x)−Dβf(y)| = |gβ(x)−DβTmy f(x)| = o(1)

by Step 3. Thus gβ is continuous on Rn.
Now assume |β| ≤ k − 1 and let δj denote the multi-index of length 1

with jth coordinate 1. The equation Dδ
jg
β(y) = gδj+β(y) holds by definition

for all y ∈ Ω. For y 6∈ K we expand the polynomial DβTmy f(x) as

Dβf(y) +
n∑

j=1

Dβ+δjf(y) · (xj − yj) +
∑

2≤|γ|≤m−|β|
Dβ+γDβ+γf(y)

(x− y)γ

γ!

for all x ∈ Rn, and since gβ(y) = Dβf(y) it follows that
∣∣∣gβ(x)− gβ(y)−

n∑

j=1

Dβ+δjf(y) · (xj − yj)
∣∣∣

≤ |gβ(x)− Tm−|β|y Dβf(x)|+
∑

2≤|γ|≤m−|β|
|Dβ+γf(y)| · |x− y||γ|

= o(|x− y|)
by Step 3. Thus gβ has first order partial derivatives at y satisfying Dδ

jg
β(y)

= Dβ+δjf(y) = gβ+δj (y) for all j. It follows that gβ is continuous at all
points y ∈ Rn, and a simple induction argument shows that g ∈ Cm(Rn)
and Dβg = gβ for all |β| ≤ m. In particular, we have Dβg(y) = Dβf(y) for
all y ∈ K and |β| ≤ m, which completes the proof of parts (1) and (2) of
Theorem 1.2.
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Step 5. It only remains to show that the approximator g belongs to
Wm+1,p(Rn) and that ‖f − g‖m+1,p < ε. From Step 2 we deduce that g ∈
Wm+1,p(Ω) and satisfies ‖g‖Wm+1,p(Ω) ≤ C‖f‖Wm+1,p(Ω), and therefore h =
g − f belongs to Wm+1,p(Ω) and satisfies ‖h‖Wm+1,p(Ω) ≤ C‖f‖Wm+1,p(Ω).

Let β be a multi-index with |β| ≤ m. Proposition 2.1 implies that

lim
r→0

�

B(x,r)

|Dβf(y)−Dβf(x)| dy = 0

for (m+ 1− |β|, p)-quasi-every x ∈ Rn since f ∈Wm+1,p(Rn), and

lim
r→0

�

B(x,r)

|Dβg(y)−Dβg(x)| dy = 0

for all x ∈ Rn since g ∈ Cm(Rn). Since Dβf and Dβg coincide on K, it
follows that

lim
r→0

r−n �
B(x,r)∩Ω

|Dβh(y)| dy = lim
r→0

r−n �
B(x,r)∩Ω

|Dβf(y)−Dβg(y)| dy = 0

for (m+ 1−|β|, p)-quasi-every x ∈ ∂Ω and all |β| ≤ m. We apply [15, Thm.
3.1] to conclude that h ∈ Wm+1,p

0 (Rn), and therefore that the function h̃
which coincides with h on Ω and vanishes on K belongs to Wm+1,p(Rn).
Since f and g coincide on K we have g = h̃+ f , hence g ∈Wm+1,p(Rn) and

‖f − g‖m+1,p = ‖h̃‖m+1,p = ‖h‖Wm+1,p(Ω) ≤ C‖f‖Wm+1,p(Ω) < ε

provided that Ω has been chosen sufficiently small.

6. Hölder-type estimates. We assume throughout this section and
the next that 0 < m + λ < α, where m ≥ 0 is an integer and 0 < λ < 1.
The first four propositions will be used to prove the inequalities of this sec-
tion. Proposition 6.1 is a simple but elegant result apparently first used by
Frostman [7], Proposition 6.2 is a variant of [16, Prop. IV.2.3], and Propo-
sitions 6.3 and 6.4 are elementary.

Proposition 6.1. Let 0 < s < n. There is a constant C = Cs,n such
that �

B(x,r)

|y|s−n dy ≤ C|x|s−n

for all x ∈ Rn and r > 0.

Proposition 6.2. Let ϕ : Rn → R be non-negative, integrable, radial ,
and decreasing as a function of |x|. There is a constant C = Cn such that

�
Rn
δ−nϕ

(
x− z
δ

)
|f(z)| dz ≤ C‖ϕ‖1Mf(x)

for all δ > 0, x ∈ Rn, and f ∈ L1
loc(Rn).
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Proposition 6.3. Let x, y, z, ζ ∈ Rn satisfy |x−z| ≥ δ, |y−z| ≥ δ, and
ζ = tx+ (1− t)y, where δ = 3

4 |x− y| and 0 < t < 1. Then
|ζ − z|
|x− z| ≥

1
5
.(6.1)

Proof. Observe that |x−ζ|+ |y−ζ| = |x−y|, so either |x−ζ| ≤ 1
2 |x−y|

or |y − ζ| ≤ 1
2 |x − y|. It follows that |ζ − z| ≥ 1

4 |x − y|, since one of the
inequalities

|ζ − z| ≥ |x− z| − |x− ζ| ≥ 1
4
|x− y|

and
|ζ − z| ≥ |y − z| − |y − ζ| ≥ 1

4
|x− y|

must hold. Now we obtain the inequality in (6.1) by considering two separate
cases. If |x− z| ≤ 5

4 |x− y|, we have

|ζ − z|
|x− z| ≥

1
4 |x− y|
5
4 |x− y|

=
1
5
,

and if |x− z| > 5
4 |x− y| we get the inequality

|ζ − z|
|x− z| ≥

|x− z| − |x− ζ|
|x− z| = 1− |x− ζ||x− z| ≥ 1− |x− y|5

4 |x− y|
=

1
5
.

Proposition 6.4. Let u ∈ Lp(Rn). Then

|gα ∗ u(x)− gα ∗ u(y)| ≤ �
Rn
|gλ(x− z)− gλ(y − z)|gα−λ ∗ |u|(z) dz

whenever gα ∗ |u|(x) and gα ∗ |u|(y) are both finite.

Proof. The semigroup property (2.2) implies that

gα ∗ u(ζ) = �
Rn
gα(ζ − w)u(w) dw

= �
Rn

�
Rn
gλ(ζ − z)gα−λ(z − w)u(w) dz dw

for any ζ ∈ Rn. Thus if gα ∗ |u|(x) and gα ∗ |u|(y) are both finite, we have
the estimate
|gα ∗ u(x)− gα ∗ u(y)|

≤ �
Rn

�
Rn
|gλ(x− z)− gλ(y − z)|gα−λ(z − w)|u(w)| dz dw

= �
Rn
|gλ(x− z)− gλ(y − z)| �

Rn
gα−λ(z − w)|u(w)| dw dz

= �
Rn
|gλ(x− z)− gλ(y − z)|gα−λ ∗ |u|(z) dz

by an application of Tonelli’s theorem.
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The following Lemmas 6.5 and 6.6 give Hölder-type estimates for func-
tions f ∈ Lα,p(Rn) in which the quantity |f(x)− f(y)|/|x− y|λ is bounded
quasi-everywhere by an appropriate maximal function. The awkward bound
in Lemma 6.6 is useful in proving the integral estimates which follow.

Lemma 6.5. Let f = gα ∗ u ∈ Lα,p(Rn). There is a constant C = Cλ,n
such that

|f(x)− f(y)| ≤ C|x− y|λ(M(gα−λ ∗ |u|)(x) +M(gα−λ ∗ |u|)(y))(6.2)

whenever gα ∗ |u|(x) and gα ∗ |u|(y) are both finite.

Proof. Throughout the proof C will denote a constant whose value de-
pends only on λ and n. Assume that gα ∗ |u|(x) and gα ∗ |u|(y) are both
finite. In light of Proposition 6.4 it suffices to prove (6.2) with |f(x)− f(y)|
replaced by

�
Rn
|gλ(x− z)− gλ(y − z)|gα−λ ∗ |u|(z) dz.

Let δ = 3
4 |x− y|. If z ∈ B(y, δ), then

|x− z| ≥ |x− y| − |y − z| ≥ 4
3δ − δ ≥ 1

3 |y − z|,
hence |x− z|λ−n ≤ C|y− z|λ−n. Since gλ(w) ≤ C|w|λ−n for all w ∈ Rn ([13,
Ch. V.2]), we have

|gλ(x− z)− gλ(y − z)| ≤ C(|x− z|λ−n + |y − z|λ−n) ≤ C|y − z|λ−n.
Therefore

(6.3) �
B(y,δ)

|gλ(x− z)− gλ(y − z)|gα−λ ∗ |u(z)| dz

≤ C �
B(y,δ)

gα−λ ∗ |u|(z)
|y − z|n−λ dz,

where
�

B(y,δ)

gα−λ ∗ |u|(z)
|y − z|n−λ dz ≤ C|x− y|λM(gα−λ ∗ |u|)(y)

by Proposition 3.2 above. An identical computation leads to
�

B(x,δ)

|gλ(x− z)− gλ(y − z)|gα−λ ∗ |u(z)| dz ≤ C|x− y|λM(gα−λ ∗ |u|)(x),

so in order to verify (6.2) above it suffices to show that

(6.4) �
E

|gλ(x− z)− gλ(y − z)|gα−λ ∗ |u(z)| dz

≤ C|x− y|λM(gα−λ ∗ |u|)(x)

where E = Rn \ (B(x, δ) ∪B(y, δ)).
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We use the fact that gλ is differentiable away from 0 and satisfies |Dgλ(w)|
≤ C|w|λ−n−1 for all w 6= 0 ([13, Ch. V.2]). Let z ∈ E. It is evident that the
line segment connecting x − z and y − z does not pass through the origin,
so there is a point ζ = tx+ (1− t)y, 0 < t < 1, such that

|gλ(x− z)− gλ(y − z)| ≤ |Dgλ(ζ − z)| · |x− y| ≤ C|ζ − z|λ−n−1|x− y|.
Applying Proposition 6.3 to x, y, z, and ζ, we have |ζ − z| ≥ 1

5 |x− z|, so

|gλ(x− z)− gλ(y − z)| ≤ C|x− z|λ−n−1|x− y|.
Now, |x− z| ≥ δ implies

|x− z|λ−n−1 ≤ 2n+1−λδλ−n−1
(

1 +
|x− z|
δ

)λ−n−1

,

and therefore

|gλ(x− z)− gλ(y − z)| ≤ C|x− y|λδ−n
(

1 +
|x− z|
δ

)λ−n−1

.

Multiplying this quantity by gα−λ ∗ |u|(z) and integrating over the set E we
have

�
E

|gλ(x− z)− gλ(y − z)|gα−λ ∗ |u|(z) dz ≤ C|x− y|λ‖ϕ‖1M(gα−λ ∗ |u|)(x)

by Proposition 6.2, taking ϕ(z) = (1+ |z|)λ−n−1. A simple integration shows
that

‖ϕ‖1 ≤ ωn
(

n

1− λ

)
,

which gives (6.4) and proves the lemma.

Lemma 6.6. In the conclusion of Lemma 6.5 we also have

|f(x)− f(y)| ≤ C
(
|x− y|λM(gα−λ ∗ |u|)(x) + �

B(y,|x−y|)

gα−λ ∗ |u|(z)
|y − z|n−λ dz

)

whenever gα ∗ |u|(x) and gα ∗ |u|(y) are both finite.

Proof. This follows immediately from (6.3) and (6.4) of the proof of
Lemma 6.5.

Theorem 6.7. Assume that m = 0. Then for f ∈ Lα,p(Rn) and ε > 0
there exist a function g ∈ C0,λ(Rn) and an open set Ω such that Bα−λ,p(Ω)
< ε and f(x) = g(x) for all x 6∈ Ω.

Proof. Note that the assumptions imply 0 < λ < min(1, α). Let u ∈
Lp(Rn) satisfy f = gα ∗ u and let Et denote the set {M(gα−λ ∗ |u|) > t}.
By (2.5) above there is a constant C so that Bα−λ,p(Et) ≤ Ct−p‖u‖pp, and
therefore Bα−λ,p(Et) < ε for sufficiently large t. Fix such a t and define
E = Et ∩ {x : gα ∗ |u|(x) < ∞}. Then Bα−λ,p(E) < ε and by Lemma 6.5,
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|f(x) − f(y)| ≤ Ct|x − y|λ for all x ∈ Rn \ E. The desired function g may
then be given by

g(x) = inf
y∈E
{g(y) + Ct|x− y|α}

for all x ∈ Rn (cf. [6, 2.10.44]). Moreover, sinceBα−λ is an outer capacity, one
may choose an open set Ω containing {f 6= g} such that Bα−λ,p(Ω) < ε.

The following two lemmas are integral estimates which measure the vari-
ation of a function f ∈ Lα,p(Rn) over a ball B in terms of appropriate
maximal functions.

Lemma 6.8. Assume s > 0 and let f = gα ∗ u ∈ Lα,p(Rn). There is a
constant C = Cλ,s,n such that

�
B(x,r)

|f(x)− f(y)|
|x− y|n−s dy ≤ Crs+λM(gα−λ ∗ |u|)(x)

for all x ∈ Rn satisfying gα ∗ |u|(x) <∞ and r > 0.

Proof. Choose x with gα∗|u|(x) <∞ and let B = B(x, r). We divide the
inequality in Lemma 6.6 (which is valid for almost all y ∈ B) by |x− y|n−s
and integrate over B to get

�
B

|f(x)− f(y)|
|x− y|n−s dy ≤ C(I(x) + J(x)),

where

I(x) = M(gα−λ ∗ |u|)(x) �
B

1
|x− y|n−s−λ dy

and

J(x) = �
B

�
B(y,|x−y|)

gα−λ ∗ |u|(z)
|y − z|n−λ|x− y|n−s dz dy.

Proposition 3.2 implies I(x) ≤ Crs+λM(gα−λ ∗ |u|)(x). As for J(x), writing
B(x, 2r) = 2B we have

J(x) ≤ �
B

�
2B

gα−λ ∗ |u|(z)
|y − z|n−λ|x− y|n−s dz dy

= �
2B

gα−λ ∗ |u|(z) �
B

1
|y − z|n−λ|x− y|n−s dy dz

= �
2B

gα−λ ∗ |u|(z) �
B(x−z,r)

|y|λ−n
|(x− z)− y|n−s dy dz

by Tonelli’s theorem and the change of variable y 7→ y + z. Writing v(y) =
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|y|λ−n we apply Propositions 3.2 and 6.1 to get

�
B(x−z,2r)

v(y)
|(x− z)− y|n−s dy ≤ Cr

sMv(x− z) ≤ Crs|x− z|λ−n,

which implies that

J(x) ≤ Crs �
2B

gα−λ ∗ |u|(z)
|x− z|n−λ dz ≤ Crs+λM(gα−λ ∗ |u|)(x)

by a third application of Proposition 3.2, where C = Cλ,s,n.

The following is a substitute result for Lemma 6.8 in the case s = 0.

Lemma 6.9. Let f = gα ∗ u ∈ Lα,p(Rn). There is a constant C = Cλ,n
such that �

B(x,r)

|f(x)− f(y)| dy ≤ CrλM(gα−λ ∗ |u|)(x)

for all x ∈ Rn satisfying gα ∗ |u|(x) < ∞ and all r > 0. In particular , this
implies that

sup
r>0

r−λM#
r f(x) ≤ CM(gα−λ ∗ |u|)(x)

for (α, p)-quasi-every x ∈ Rn.

Proof. As in the proof of Lemma 6.8 we integrate the inequality in
Lemma 6.6 over B = B(x, r) and write

�

B

|f(x)− f(y)| dy ≤ C(I(x) + J(x)),

where

I(x) =
�

B

|x− y|λM(gα−λ ∗ |u|)(x) dy ≤ rλM(gα−λ ∗ |u|)(x)

and

J(x) =
�

B

�
B(y,|x−y|)

gα−λ ∗ |u|(z)
|y − z|n−λ dz dy

≤ �
2B

gα−λ ∗ |u|(z)
�

B(x,r)

1
|y − z|n−λ dy dz

≤ C �
2B

gα−λ ∗ |u|(z)
|x− z|n−λ dz

≤ CrλM(gα−λ ∗ |u|)(x)

by Propositions 6.1 and 3.2.
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7. Taylor estimates. The results in this section extend the lemmas of
the previous section to Hölder-type estimates involving Taylor polynomials
of f . The main result of the section, Theorem 7.2, is used to verify the Hölder
continuity of the approximator g in the proof of Theorem 1.2. The result of
Theorem 7.3, although not used in what follows, is of independent interest
as it gives a fractional analogue to the pointwise inequality of Bojarski and
Haj lasz (Proposition 5.1 above).

Given a function f = gα ∗ u ∈ Lα,p(Rn) and a multi-index |σ| ≤ m
we use the convention that uσ is the function in Lp(Rn) satisfying Dσf =
gα−|σ| ∗ uσ ∈ Lα−|σ|,p(Rn).

Lemma 7.1. Let f = gα ∗ u ∈ Lα,p(Rn) and assume that m ≥ 1. There
is a constant C = Cλ,m,n such that

|f(x)− TmB(x,r)f(x)| ≤ Crm+λ
∑

|σ|=m
M(gα−m−λ ∗ |uσ|)(x)

and
�

B(x,r)

|f(y)− TmB(x,r)f(y)| dy ≤ Crm+λ
∑

|σ|=m
M(gα−m−λ ∗ |uσ|)(x)

for (α−m, p)-quasi-every x ∈ Rn and all r > 0.

Proof. Let x be a Lebesgue point of f and of each of its partial derivatives
with the property that gα−|σ| ∗ |uσ| < ∞ for all |σ| ≤ m. Observe that
(α −m, p)-quasi-every x ∈ Rn has this property. Let r > 0 and write B =
B(x, r). Fixing |σ| = m we apply Lemma 6.8 to Dσf to get

�
B

|Dσf(x)−Dσf(z)|
|x− z|n−m dw ≤ Crm+λM(gα−m−λ ∗ |uσ|)(x).

The first statement follows from Proposition 3.1 with aσ = Dσf(x). To
prove the second statement we integrate the inequality in Proposition 3.1
over B to get

�

B

|f(y)− TmB f(y)| dy ≤ C
∑

|σ|=m

�

B

�
B

|aσ −Dσf(z)|
|y − z|n−m dz dy

for any family (aσ)|σ|=m of real numbers. Tonelli’s theorem and Proposi-
tion 3.2 imply

�

B

|f(y)− TmB f(y)| dx ≤ Crm
∑

|σ|=m

�

B

|aσ −Dσf(z)| dz,

and the result follows from Lemma 6.9 with aσ = Dσf(x).
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Theorem 7.2. Let f = gα ∗ u ∈ Lα,p(Rn). There is a constant C =
Cλ,m,n such that

r−m−λ
�

B(x,r)

|f(y)− Tmx f(y)| dy ≤ C
∑

|σ|=m
M(gα−m−λ ∗ |uσ|)(x)

for (α−m, p)-quasi-every x ∈ Rn and all r > 0.

Proof. When m = 0 the statement of Theorem 7.2 is simply Lemma 6.9,
so we assume m ≥ 1. Let x ∈ Rn be a point satisfying the conclusion of
Lemma 7.1 for f and for all Dβf ∈ Lα−|β|,p(Rn), |β| ≤ m. Notice that
(α−m, p)-quasi-every x ∈ Rn has this property. Let r > 0 and B = B(x, r).
In light of the second conclusion of Lemma 7.1 it suffices to show that

�

B(x,r)

|Tmx f(y)− TmB f(y)| dy ≤ Crm+λ
∑

|σ|=m
M(gα−m−λ ∗ |uσ|)(x).

As in (3.2) above we use (2.8) to obtain

|Tmx f(y)− TmB f(y)| ≤
∑

|β|≤m
r|β||Dβf(x)− Tm−|β|B Dβf(x)|(7.1)

for (α − m, p)-quasi-every y ∈ B, and integrating over B we deduce from
this that

�

B

|Tmx f(y)− TmB f(y)| dy ≤
∑

|β|≤m
r|β||Dβf(x)− Tm−|β|B Dβf(x)|.

It suffices therefore to prove that

|Dβf(x)− Tm−|β|B Dβf(x)| ≤ Crm−|β|+λ
∑

|σ|=m
M(gα−m−λ ∗ |uσ|)(x)

for all |β| ≤ m. When |β| < m this follows from Lemma 7.1 applied to
Dβf ∈ Lα−|β|,p(Rn) and when |β| = m we use the estimate

|Dβf(x)− Tm−|β|B Dβf(x)| = |Dβf(y)− (Dβf)B| ≤
�

B

|Dβf(y)−Dβf(z)| dz

and Lemma 6.9.

Theorem 7.3. Let f = gα ∗ u ∈ Lα,p(Rn). There is a constant C =
Cλ,m,n such that |f(x)− Tmy f(x)| does not exceed

C|x− y|m+λ
∑

|σ|=m
(M(gα−m−λ ∗ |uσ|)(x) +M(gα−m−λ ∗ |uσ|)(y))

for (α−m, p)-quasi-every x, y ∈ Rn.

Proof. When m = 0 the statement of Theorem 7.3 is simply Lemma 6.5,
so we assume m ≥ 1 and let x, y ∈ Rn be two points satisfying the conclusion
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of Lemma 7.1. Let B be a ball with radius |x − y| containing x and y. By
the first result of Lemma 7.1 it suffices to prove that

|Tmy f(x)− TmB f(x)| ≤ C|x− y|m+λ
∑

|σ|=m
M(gα−m−λ ∗ |uσ|)(y).

This follows from (7.1) above (with x and y interchanged), the second con-
clusion of Lemma 7.1, and the proof of Theorem 7.2.

8. The proof of Theorem 1.2, 0 < λ < 1. We assume that α > 0, m
is an integer with 0 ≤ m ≤ α − 1, and that 0 < λ < 1. Let f ∈ Lα,p(Rn)
and fix ε > 0.

The set Ω is constructed as in Section 5 with only a minor modification.
LetΩ1 be an open set with Bα−m,p(Ω1) < ε/4 satisfying conditions (5.1) and
(5.2) above. Apply Theorem 7.2 to find an open set Ω2 with Bα−m,p(Ω2) <
ε/4 such that

�

B(x,r)

|f(y)− Tmx f(y)| dy ≤ Crm+λ
∑

|σ|=m
M(gα−m−λ ∗ |uσ|)(x)

for all x ∈ Ω2 and r > 0. By (2.4) there is an open set Ω3 with Bα−m,p(Ω3) <
ε/4 such that gα−|σ| ∗ |uσ|(x) <∞ for all x ∈ Rn \Ω3 and |σ| ≤ m. Observe
that Lemma 6.5 implies that

|Dσf(x)−Dσf(y)|
≤ C|x− y|λ(M(gα−m−λ ∗ |uσ|)(x) +M(gα−m−λ ∗ |uσ|)(y))

for all x, y ∈ Rn \Ω3. Finally, we define

Et =
{
x :

∑

|σ|=m
M(gα−m−λ ∗ |uσ|)(x) > t

}

for t > 0. Then (2.5) implies that Bα−m−λ,p(Et) ≤ Ct−p for all t, where C
depends on f but not on t. Fix t sufficiently large that Bα−m−λ,p(Et) < ε/4,
and letΩ4 = Et (Et is open owing to the lower semicontinuity of the maximal
operator). Then

∑
|σ|=mM(gα−m−λ ∗ |uσ|)(x) ≤ t for all x ∈ Rn \Ω4.

Let Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4. The monotonicity of the Bessel capacity
implies that Bα−m−λ,p(Ω) < ε. Define K = Rn \ Ω. The construction of Ω
implies that

r−m−λ
�

B(x,r)

|f(y)− Tmx f(y)| dy ≤ Ct(8.1)

for all x ∈ K and r > 0, and

|Dσf(x)−Dσf(y)| ≤ Ct|x− y|λ(8.2)

for all x, y ∈ K and |σ| = m. Since K ⊂ Rn \ Ω1 we may follow Steps 2–5
in Section 5 to conclude that there is a function g ∈ Cm(Rn)∩Wm+1,p(Rn)
such that
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1. Dσg(x) = Dσf(x) for all x ∈ K and |σ| ≤ m, and
2. ‖f − g‖m+1,p < ε

provided that |Ω| has been chosen sufficiently small. Thus to establish The-
orem 1.2 it suffices to prove that the order m partial derivatives of g inherit
Hölder continuity from f . Recall from Lemma 4.1 and the definition of g
that we may assume

|Dβg(x)−DβP (x)| ≤ Cδ(x)−|β|
�

B(x,δ(x))

|f(z)− P (z)| dz

for all x ∈ Ω, multi-indices |β| ≤ m + 1, and polynomials P whose degree
does not exceed m+1. Here δ(x) is the smooth distance function introduced
in Section 4 satisfying Cdist(x, ∂Ω) ≤ δ(x) ≤ dist(x, ∂Ω).

Fix a multi-index |σ| = m. Following the method in [4] we will prove
that Dσg is Hölder continuous.

Step 1. If x, y ∈ K, then

|Dσg(x)−Dσg(y)| = |Dσf(x)−Dσf(y)| ≤ Ct|x− y|λ(8.3)

by (8.2) and the definition of g.

Step 2. If x ∈ Ω and y ∈ K, let x∗ ∈ K satisfy dist(x,K) = |x − x∗|.
Then |x∗ − y| ≤ |x− y|+ |x− x∗| ≤ 2|x− y|, and therefore

|Dσg(x∗)−Dσg(y)| ≤ Ct|x∗ − y|λ ≤ Ct|x− y|λ(8.4)

by Step 1. Define the order m polynomial P (z) = Tmx∗f(z). Then DσP (z) =
Dσg(x∗), hence

|Dσg(x)−Dσg(x∗)| = |Dσg(x)−DσTmx∗f(x)|
≤ Cδ(x)−|σ|

�

B(x,δ(x))

|f(z)− Tmx∗f(z)| dz.

Since C|x− x∗| ≤ δ(x) ≤ |x− x∗| this implies

|Dσg(x)−Dσg(x∗)| ≤ C|x− x∗|−m
�

B(x∗,2|x−x∗|)
|f(z)− Tmx∗f(z)| dz,

and since x∗ ∈ K it follows from (8.1) that
�

B(x∗,2|x−x∗|)
|f(z)− Tmx∗f(z)| dz ≤ Ct|x− x∗|m+λ.

Therefore

|Dσg(x)−Dσg(x∗)| ≤ Ct|x− x∗|λ ≤ Ct|x− y|λ,(8.5)

and by combining (8.4) and (8.5) we conclude that |Dσg(x) − Dσg(y)| ≤
Ct|x− y|λ whenever x ∈ Ω and y ∈ K.
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Step 3. To complete the proof of the theorem it only remains to verify
(8.3) when x, y ∈ Ω. Let x, y ∈ Ω and let x∗ ∈ K satisfy dist(x,K) = |x−x∗|.
If |x− x∗| ≤ 2|x− y|, then

|Dσg(x)−Dσg(y)| ≤ |Dσg(x)−Dσg(x∗)|+ |Dσg(y)−Dσg(x∗)|
≤ Ct(|x− x∗|+ |y − x∗|)

by Step 2 since x∗ ∈ K. But |x−x∗| ≤ 2|x−y| and |y−x∗| ≤ |x−y|+|x−x∗| ≤
3|x− y|, implying that |Dσg(x)−Dσg(y)| ≤ Ct|x− y|λ. On the other hand,
when |x− x∗| > 2|x− y|, the line segment joining x and y must lie entirely
within Ω. Since g ∈ C∞(Ω) we use the mean value theorem to find a point
w ∈ Ω satisfying

|Dσg(x)−Dσg(y)| ≤ |DDσg(w)| · |x− y|(8.6)

and |x−y| = |x−w|+ |w−y|. Let w∗ ∈ K satisfy dist(w,K) = |w−w∗| and
define the order m polynomial P (z) = Tmw∗f(z). Then, since Dσ+δjP ≡ 0,
Lemma 4.1 implies

|DδjDσg(w)| ≤ Cδ(w)−m−1
�

B(w,δ(w))

|f(z)− Tmw∗f(z)| dz

for all j = 1, . . . , n. As above it follows that

|DδjDσg(w)| ≤ C|w − w∗|−m−1
�

B(w∗,2|w−w∗|)
|f(z)− Tmw∗f(z)| dz,

and since w∗ ∈ K, (8.1) implies that the value of the integral above does
not exceed Ct|w − w∗|m+λ. Thus |DδjDσg(w)| ≤ Ct|w − w∗|λ−1 for all
j = 1, . . . , n, hence |DDσg(w)| ≤ Ct|w − w∗|λ−1. Now we use the geometry
of the situation. Since 2|x−y| < |x−x∗| and |x−w| ≤ |x−y| we have |x−y| =
2|x−y|−|x−y| ≤ |x−x∗|−|x−w|, where |x−x∗| ≤ |x−w∗| ≤ |x−w|+|w−w∗|.
Therefore |x − y| ≤ |w − w∗|, implying that |DDσg(w)| ≤ Ct|x − y|λ−1.
Substituting this into (8.6), we conclude that

|Dσg(x)−Dσg(y)| ≤ Ct|x− y|λ

whenever x, y ∈ Ω. Therefore Dσg is Hölder continuous for all |σ| = m,
implying that g ∈ Cm,λ(Rn) and completing the proof of the theorem.

9. Further results. In this section we prove a variant of Theorem 1.2
valid without the restriction m ≤ α− 1. Here the Sobolev norm ‖f‖m+1,p is
replaced by the Besov norm ‖f‖m+λ,p,∞, defined as the sum of ‖f‖m,p and

∑

|σ|=m

(
sup
h∈Rn
|h|>0

|h|−λ
( �
Rn
|Dσf(x+ h)−Dσf(x)|p dx

)1/p)
,

where ‖f‖0,p = ‖f‖p in case m = 0. When λ = 0 observe that ‖f‖m,p,∞ ≈
‖f‖m,p.
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Theorem 9.1. Assume that 1 < p <∞ and that 0 ≤ m+ λ < α, where
m ≥ 0 is an integer and 0 ≤ λ < 1. For a function f ∈ Lα,p(Rn) and ε > 0,
there exist a function g ∈ Cm,λ(Rn) and an open set Ω with the following
properties:

(1) Bα−m−λ,p(Ω) < ε,
(2) Dσf(x)−Dσg(x) for all x ∈ Rn \Ω and multi-indices |σ| ≤ m, and
(3) ‖f − g‖m+λ,p,∞ < ε.

The case λ = 0 of Theorem 9.1 was proven by Stocke [14] so we shall as-
sume 0 < λ < 1. When m ≤ α−1, Theorem 9.1 is weaker than Theorem 1.2.
Specifically, there is a constant C independent of f such that

‖f‖m+λ,p,∞ ≤ C‖f‖m+1,p(9.1)

for all f ∈ Wm+1,p(Rn). This follows from well known inclusion relations
between the Sobolev and Besov spaces ([13, Ch. V.5]), but it is possible to
establish (9.1) using the estimates of Section 6. Namely, if we write Dσf =
g1 ∗ uσ ∈ L1,p(Rn) for f ∈ Wm+1,p(Rn) and |σ| = m, Lemma 6.5 implies
that

|Dσf(x+ h)−Dσf(x)| ≤ C|h|λ(M(g1−λ ∗ |uσ|)(x) +M(g1−λ ∗ |uσ|)(y))

for almost all x ∈ Rn. Thus integrating over Rn, we get

|h|−λ
( �
Rn
|Dσf(x+ h)−Dσf(x)|p dx

)1/p
≤ C‖M(g1−λ ∗ |uσ|)‖p

for all h 6= 0. By the Hardy–Littlewood–Wiener theorem and (1.1) we have

‖M(g1−λ ∗ |uσ|)‖ ≤ C‖g1−λ ∗ |uσ|‖p ≤ C‖uσ‖p ≤ C‖Dσf‖1,p
for each |σ| = m, and therefore

‖f‖m+λ,p,∞ ≤ ‖f‖m,p + C
∑

|σ|=m
‖Dσf‖1,p ≤ C‖f‖m+1,p.

We now prove Theorem 9.1 using the notation of Section 8. Since m+λ <
α we may proceed as above to find an open set Ω with Bα−m−λ,p(Ω) < ε
and a function g ∈ Cm,λ(Rn) such that Dσg(x) = Dσf(x) for all x ∈ Rn \Ω
and |σ| ≤ m and ‖f − g‖m,p < ε/2. This is the best possible approximation
in Sobolev norm since, in general, f 6∈ Wm+1,p(Rn). The Hölder condition
on the order m partial derivatives of g is given by

|Dσg(x)−Dσg(y)| ≤ Ct|x− y|λ,
where t was chosen sufficiently small that Bα−m−λ,p(Et) < ε/4. We assume
without loss of generality that

1
tp+1 <

ε

4
and that each Ωi, i = 1, 2, 3, was chosen so as to satisfy Bα−m,p(Ωi) < t−p−1.
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For convenience we write wσ = M(gα−m−λ ∗ |uσ|) and Ω = Ωt to em-
phasize the dependence on t. Since the Lebesgue measure of a set does not
exceed its Bessel capacity we have

|Ωt| ≤ |Ω1|+ |Ω2|+ |Ω3|+ |Et| ≤ 3t−p−1 +
∣∣∣
{
x :

∑

|σ|=m
wσ(x) > t

}∣∣∣.

Since each function wσ belongs to Lp(Rn) this implies limt→∞ tp|Ωt| = 0,
hence

lim
t→∞

( ∑

|σ|=m
‖wσ‖Lp(Ωt) + t|Ωt|1/p

)
= 0.(9.2)

Fix a non-zero h ∈ Rn and let |σ| = m. Then

|Dσf(x+ h)−Dσf(x)| ≤ C|h|λ(wσ(x+ h) + wσ(x))

for almost every x ∈ Rn by Lemma 6.5 and

|Dσg(x+ h)−Dσg(x)| ≤ Ct|h|λ

for all x ∈ Rn by the Hölder condition on g. Set vσ(x) = Dσf(x)−Dσg(x).
Then

|vσ(x+ h)− vσ(x)| ≤ C|h|λ(wσ(x+ h) + wσ(x) + t)

for almost all x ∈ Rn. Since vσ(x) = 0 and wσ(x) ≤ t for all x ∈ Rn \ Ωt,
this implies

|vσ(x+ h)− vσ(x)|
≤ C|h|λ((wσ(x+ h) + 2t)χΩt(x+ h) + (wσ(x) + 2t)χΩt(x)).

Integrating over Rn and using the translation invariance of the integral im-
plies

( �
Rn
|vσ(x+ h)− vσ(x)|p dx

)1/p
≤ C|h|λ(‖wσ‖Lp(Ωt) + t|Ωt|1/p).

In light of (9.2) it is possible to have chosen t sufficiently large that
∑

|σ|=m
|h|−λ

( �
Rn
|vσ(x+ h)− vσ(x)|p dx

)1/p
<
ε

2
,

in which case we conclude that ‖f − g‖m+λ,p,∞ < ε, as desired.
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