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Chain rules and p-variation

by

R. Norvaǐsa (Vilnius)

Abstract. The main result is a Young–Stieltjes integral representation of the com-
position φ ◦ f of two functions f and φ such that for some α ∈ (0, 1], φ has a deriva-
tive satisfying a Lipschitz condition of order α, and f has bounded p-variation for some
p < 1 + α. If given α ∈ (0, 1], the p-variation of f is bounded for some p < 2 + α, and φ
has a second derivative satisfying a Lipschitz condition of order α, then a similar result
holds with the Young–Stieltjes integral replaced by its extension.

1. Introduction and results. In this paper an integral representation
of the composition φ ◦ f of a smooth function φ and a rough function f is
proved. This representation is analogous to the Itô formula for the compo-
sition of a smooth function and a semimartingale. Itô’s formula is based on
the stochastic integral with respect to a semimartingale. Our main result
(Theorem 1.1) is proved using the Young–Stieltjes integral (see Subsection
2.2 for the definition). The integral representation also holds for two other
extensions of the Riemann–Stieltjes integral: for the central Young integral,
which was suggested by L. C. Young [39], and further modified by Dud-
ley [5], as well as for the variant of the Perron–Stieltjes integral defined
by Ward [38], and further developed by Kurzweil [17] and Henstock [12].
The p-variation of f is used to control its roughness. The main result holds
for functions f having bounded p-variation with 0 < p < 2. L. C. Young
[39], [40] proved the existence of the Young–Stieltjes integral when the in-
tegrand and integrator have bounded p- and q-variations, respectively, with
p, q > 0 and p−1 + q−1 > 1. This is the best possible condition in terms
of p-variation. Theorem 1.1 extends the L. C. Young existence result to in-
tegrals with a special form of the integrand when both the integrand and
integrator are in a suitable subspace W∗2 of the space W2 of all functions
of bounded 2-variation. This result is also best possible. For functions hav-
ing bounded p-variation for some p < 3, a similar integral representation is
proved (Theorem 1.4) defining an integral analogous to the mean Stieltjes
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integral originating from Smith [35]. The new integral, called the symmetric
Young–Stieltjes integral, extends the Young–Stieltjes integral for functions
with values at points of discontinuity equal to the average of the left and
right limits, and it is equivalent to the Young–Stieltjes integral if in addition
the functions are in W∗2 .

1.1. Preliminary notation. To be more specific we need some notation.
A partition of a closed interval [a, b] of real numbers is an ordered set of
points {xi : i = 0, . . . , n} in [a, b] such that a = x0 < x1 < . . . < xn = b. Let
P ([a, b]) be the set of all partitions of [a, b]. For 0 < p <∞ and a real-valued
function f on [a, b], the p-variation of f is defined by

vp(f) = vp(f ; [a, b]) := sup{sp(f ;κ) : κ ∈ P ([a, b])},
where sp(f ;κ) :=

∑n
i=1 |f(xi) − f(xi−1)|p for κ = {xi : i = 0, . . . , n}.

The set of all functions f of bounded p-variation will be denoted by Wp =
Wp([a, b]). A function f of bounded p-variation is regulated; that is, the
left-limit f(x−) := limy↑x f(y) exists for each a < x ≤ b, and the right-limit
f(x+) := limy↓x f(y) for each a ≤ x < b. The class of all regulated func-
tions on [a, b] will be denoted by R = R([a, b]). For f ∈ R([a, b]) and for any
function g on [a, b], define g∆−f on (a, b] and g∆+f on [a, b) respectively by

[g∆−f ](y) := g(y)[f(y)− f(y−)], [g∆+f ](x) := g(x)[f(x+)− f(x)],

whenever a ≤ x < y ≤ b. Clearly, ∆−f and ∆+f are defined as g∆−f and
g∆+f , respectively, with g ≡ 1.

To deal with the convergence with respect to refinements of partitions we
use the theory of limits based on the notion of a directed function as defined
by McShane [26, p. 11] (or p. 33 in [27]). The direction of partitions of [a, b]
is the family P of all sets P (λ) := {κ ∈ P ([a, b]) : κ ⊃ λ}, λ ∈ P ([a, b]).
Then by Theorem 4.7 of Dudley and Norvaǐsa [6, Part II], for 1 < p < ∞
and f ∈ Wp, we have

(1.1) lim inf
κ,P

sp(f ;κ) := sup
λ

inf
κ∈P (λ)

sp(f ;κ) =
∑

(a,b]

|∆−f |p +
∑

[a,b)

|∆+f |p,

where the two sums on the right side are unconditional sums. Here and
throughout the paper an unconditional sum is the limit of directed finite
partial sums, which exists if and only if the sum converges absolutely. Thus
each of the two sums in (1.1) is equal to an absolutely convergent series
with at most countably many terms. For f ∈ Wp, 1 < p < ∞, we write
f ∈ W∗p =W∗p ([a, b]) if

(1.2) lim inf
κ,P

sp(f ;κ) = lim sup
κ,P

sp(f ;κ) := inf
λ

sup
κ∈P (λ)

sp(f ;κ).

By Theorem 11.4 of McShane and Botts [27, p. 55], f ∈ W∗p ([a, b]) if and
only if the directed function (sp(f ; ·),P) has a limit limκ,P sp(f ;κ), which
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is then equal to the right side of (1.1). It is clear that Wq ⊂ W∗p for any
1 ≤ q < p <∞.

1.2. Results. Now we are ready to formulate the main results. For a
real-valued function φ defined on the range of f , the composition φ ◦ f is
defined on [a, b] by (φ ◦ f)(x) := φ(f(x)), x ∈ [a, b]. The next statement is
the Young–Stieltjes integral representation of the composition φ ◦ f which
is a special case of Theorem 4.2 proved below.

Theorem 1.1. For 0 < α ≤ 1, let f ∈ W∗1+α([a, b]) and let φ be dif-
ferentiable with derivative φ′ satisfying a Lipschitz condition of order α.
The Young–Stieltjes integral (YS)

� b
a
(φ′ ◦ f) df is defined , and its value is

determined by the relation

(1.3) (φ ◦ f)(b)− (φ ◦ f)(a) = (YS)
b�

a

(φ′ ◦ f) df

+
∑

(a,b]

{∆−(φ ◦ f)− (φ′ ◦ f)∆−f}+
∑

[a,b)

{∆+(φ ◦ f)− (φ′ ◦ f)∆+f},

where the two sums are unconditional.

L. C. Young [39], [40] proved that (YS)
�
g df exists provided f ∈ Wp,

g ∈ Wq and p−1 + q−1 > 1, p, q > 0. He also showed that the assump-
tion p−1 + q−1 > 1 cannot be replaced in general by the weaker assumption
p−1 +q−1 = 1. The same is true for f ∈ W∗p and g ∈ W∗q with p−1 +q−1 = 1.
This follows from Theorem 4.11 of Leśniewicz and Orlicz [20] who further
refined L. C. Young’s result. Notice that in Theorem 1.1, φ′ ◦f ∈ Wq for q =
p/(p−1), so that p−1+q−1 = 1 in this case. Therefore the existence of the in-
tegral in (1.3) does not follow from L. C. Young’s result. The assumption on
the p-variation in Theorem 1.1 cannot be improved further. By Proposition
4.4, if (YS)

�
f df exists and satisfies (1.3) with φ(u) = u2/2 then f ∈ W∗2 .

By Theorems 2.5 and 2.7, the statement of Theorem 1.1 also holds for
the central Young and Henstock–Kurzweil integrals in place of the Young–
Stieltjes integral. On the other hand, by Proposition 2.1, if (YS)

� b
a
g df exists

and f is continuous then the Riemann–Stieltjes integral (RS)
� b
a
g df also

exists, and has the same value. Therefore we have:

Corollary 1.2. If in addition to the assumptions of Theorem 1.1, f is
continuous then the Riemann–Stieltjes integral (RS)

� b
a
(φ′ ◦ f) df is defined ,

and

(1.4) (φ ◦ f)(b)− (φ ◦ f)(a) = (RS)
b�

a

(φ′ ◦ f) df.

The next example shows that the smoothness assumption on φ is essen-
tial in our theorems.
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Example 1.3. Let φ(y) := max(0, y) for y ∈ [−1, 1]. Then φ is a convex
function with the left derivative D−φ = � (0,1]. Let f(x) := x sin(π/x) for
x ∈ (0, 1] and f(0) := 0. Then f is a continuous function of bounded p-
variation for each p > 1 and has unbounded 1-variation. We show that
g := (D−φ) ◦ f is not Riemann–Stieltjes integrable with respect to f on
[0, 1]. Let κ = {xi : i = 0, . . . , n} be a partition of [0, 1]. Take the smallest
integer m such that 1/(2m) < x1, and let λm := κ∪{ui := (2i+1/2)−1, vi :=
(2i)−1 : i = m, . . . ,m2}. To estimate the difference between two Riemann–
Stieltjes sums based on the same partition λm, for the terms corresponding
to the intervals [ui, vi], i = m, . . . ,m2, we evaluate g at the left endpoint for
the first sum and at the right endpoint for the second sum, and for all other
terms we evaluate g at the same point for the two sums. Then the difference
between these two Riemann–Stieltjes sums is equal to

m2∑

i=m

[g(vi)− g(ui)][f(vi)− f(ui)] =
m2∑

i=m

ui > (logm)/3.

Thus the two Riemann–Stieltjes sums for
� 1
0 g df , both based on refinements

of κ, differ by an arbitrarily large amount. Therefore the integral on the
right side of (1.4) does not exist for this example.

To extend formula (1.3) to functions f ∈ Wp with p < 3 we extend
the YS integral. The new integral (Definition 5.4), called the symmetric
Young–Stieltjes integral, or the SYS integral, coincides with the YS integral
in the cases described by Theorem 5.6 and Proposition 5.7. The following
statement is a special case of Theorem 5.8.

Theorem 1.4. For 0 < α ≤ 1, let f ∈ W∗2+α([a, b]) and let φ be twice
differentiable with the second derivative satisfying a Lipschitz condition of
order α. The symmetric Young–Stieltjes integral (SYS)

� b
a
(φ′ ◦ f) df is de-

fined , and its value is determined by the relation

(1.5) (φ ◦ f)(b)− (φ ◦ f)(a)

= (SYS)
b�

a

(φ′ ◦ f) df

+
∑

(a,b]

{
∆−(φ ◦ f)− (φ′ ◦ f)∆−f +

∆−φ′ ◦ f
2

∆−f
}

+
∑

[a,b)

{
∆+(φ ◦ f)− (φ′ ◦ f)∆+f − ∆+φ′ ◦ f

2
∆+f

}
,

where the two sums are unconditional.
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If the values of f and g := φ′ ◦ f at points of discontinuity satisfy the
conditions (5.4), then under the conditions of Theorem 1.1, the conclusion of
Theorem 1.4 holds and the formula (1.5) coincides with (1.3). In this sense
Theorem 1.4 extends Theorem 1.1.

We call (1.3)–(1.5) chain rule formulas for reasons discussed in Section 6.
These formulas are related to the Itô formula which plays an important
role in the stochastic calculus based on the stochastic integral with respect
to a semimartingale. Several modifications of the stochastic integral have
been developed which allow integration with respect to sample functions
of continuous stochastic processes with zero quadratic variation (Föllmer
[10]), or with respect to sample functions of a fractional Brownian motion
BH with the Hurst exponent H ∈ (1/2, 1) (Ciesielski, Kerkyacharian and
Roynette [3], Zähle [43]). We notice that the results of the present paper
apply to sample functions of BH when the Hurst exponent H ∈ (1/3, 1),
which includes the case of a Brownian motion: H = 1/2. Further related
comments are given at the end of Section 5 below.

The results of the present paper also apply to discontinuous processes.
However, the left Young integrals and the corresponding chain rule formula
are better suited to solving integral equations with respect to discontinu-
ous processes (see [29]). We continue with a reminder of several extended
Riemann–Stieltjes integrals in the next section. Sections 3, 4 and 5 are de-
voted to a chain rule formula for the composition φ◦f in three separate cases
according as the function f is of bounded p-variation with p = 1, 1 < p < 2
and 2 ≤ p < 3, respectively. We finish with a discussion of a relation of the
formula (1.3) to a chain rule in the context of classical analysis (Section 6).

1.3. Notation. The following notation complements the preliminary no-
tation in Subsection 1.1 and will be used throughout the paper. Let [a, b]
be a closed interval, and let κ = {xi : i = 0, . . . , n} be a partition of [a, b].
For i = 1, . . . , n, a point yi ∈ [xi−1, xi] attached to the subinterval [xi−1, xi]
is called a tag, and the set τ = τ(κ) = {([xi−1, xi], yi) : i = 1, . . . , n} is
called a tagged partition of [a, b] associated to κ. The set of all tagged parti-
tions of [a, b] will be denoted by TP ([a, b]). For λ ∈ P ([a, b]), let TP (λ)
be the set of all tagged partitions which are refinements of λ, that is,
τ ∈ TP (λ) if and only if τ = τ(κ) = {([xi−1, xi], yi) : i = 1, . . . , n} and
λ ⊂ κ = {xi : i = 0, . . . , n}. Then the family {TP (λ) : λ ∈ P ([a, b])} is
a direction in the sense of McShane [26, p. 10], denoted by R. If a tagged
partition τ = {([xi−1, xi], yi) : i = 1, . . . , n} is such that xi−1 < yi < xi
for i = 1, . . . , n, then τ will be called a Young tagged partition of [a, b] and
will be denoted by {((xi−1, xi), yi) : i = 1, . . . , n}. Similarly we define the
set of all Young tagged partitions which are refinements of a given par-
tition, and the resulting direction will be denoted by the same letter R.
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For a tagged partition τ = τ(κ) associated to κ = {xi : i = 0, . . . , n},
|κ| := max1≤i≤n(xi − xi−1) is called the mesh of τ . Then the family M of
all sets TP (δ), δ > 0, such that τ = τ(κ) ∈ TP (δ) if |κ| < δ, is another
example of a direction in the sense of McShane [26, p. 10].

Let f be a regulated function on [a, b]. In addition to the notation ∆−f
and ∆+f defined in Subsection 1.1, for x ∈ (a, b), let ∆±f(x) := ∆+f(x) +
∆−f(x) = f(x+)− f(x−), and for a ≤ u < v ≤ b, let

∆f(u, v) := f(v−)− f(u+), ∆f(u, v] := f(v)− f(u+),

∆f [u, v) := f(v−)− f(u), ∆f [u, v] := f(v)− f(u).

If g is another regulated function on [a, b], and if E is a subinterval of
[a, b] open or closed at either end, then let [∆f∆g]E := [∆fE][∆gE]. To
f ∈ R([a, b]), we associate the left-continuous function f− = f

(a)
− on [a, b]

defined by f
(a)
− (x) := f(x−) for x ∈ (a, b] and f

(a)
− (a) := f(a), and the

right-continuous function f+ = f
(b)
+ on [a, b] defined by f

(b)
+ (x) := f(x+)

for x ∈ [a, b) and f
(b)
+ (b) := f(b). For an arbitrary function h on [a, b]

and E ⊂ [a, b], let ‖h‖∞ := sup{|h(x)| : x ∈ [a, b]} and Osc(h;E) :=
sup{|h(x)− h(y)| : x, y ∈ E}.

Acknowledgements. The author wishes to thank R. M. Dudley,
S. Leader and the anonymous referee for remarks on the paper which helped
to improve the presentation and uncovered myriad mistakes.

2. Extended Riemann–Stieltjes integrals. In this section we briefly
recall several extensions of the Riemann–Stieltjes integral which are used in
the composition representation formulas. A more detailed discussion of these
integrals can be found in Dudley and Norvaǐsa [7].

2.1. The Moore–Pollard–Stieltjes integral. Let g and f be real-valued
functions defined on [a, b]. For a tagged partition τ = {([xi−1, xi], yi) : i =
1, . . . , n} ∈ TP ([a, b]), the sum

SRS(τ) := SRS(g, f ; τ) :=
n∑

i=1

g(yi)[f(xi)− f(xi−1)]

is called the Riemann–Stieltjes sum based on τ . The Moore–Pollard–Stieltjes
integral , or the MPS integral , (MPS)

� b
a
g df , is defined to be the limit of the

directed function (SRS(g, f ; ·),R) if it exists. That is, let

(2.1) (MPS)
b�

a

g df := lim
τ,R

SRS(g, f ; τ)

provided there exists a number I such that for each ε > 0 there exists
λ ∈ P ([a, b]) such that |I − SRS(τ)| < ε for each refinement τ of λ. The
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Riemann–Stieltjes integral (RS)
� b
a
g df is defined similarly except that the

direction R is replaced by the direction M based on the mesh of a tagged
partition. Since R is a subdirection of M, the MPS integral extends the
RS integral (see p. 24 of McShane [26]). For bounded functions g and f ,
existence of the two integrals is equivalent if and only if g and f have no
common discontinuities on [a, b] (e.g. Theorem II.10.9 of Hildebrandt [14]).

2.2. The Young–Stieltjes integral. If the MPS integral (2.1) is defined
then g and f cannot have a common discontinuity on the same side at
the same point of [a, b]. In the case when there is such a discontinuity, an
integral can be defined in the sense suggested by W. H. Young [42] pro-
vided the integrator is a regulated function. The Riemann–Stieltjes sum
depends on increments of the integrator at consecutive points of a parti-
tion κ = {xi : i = 0, . . . , n} of [a, b], so that SRS can be viewed as the
sum based on the partition into the collection of adjacent closed intervals
[x0, x1], [x1, x2], . . . , [xn−1, xn]. The idea of W. H. Young is to use a sum
based on the partition {x0}, (x0, x1), {x1}, . . . , (xn−1, xn), {xn} formed by
alternating singletons and open intervals instead. The corresponding tagged
partition ({x0}, x0), ((x0, x1), y1), ({x1}, x1), . . . , ((xn−1, xn), yn), ({xn}, xn)
with tags xi−1 < yi < xi, i = 1, . . . , n, is called a Young tagged parti-
tion {((xi−1, xi), yi) : i = 1, . . . , n} (the singletons {xi} with their uniquely
determined tags xi are omitted from the notation). This idea looks more
natural when used to define an integral with respect to an interval func-
tion as in Kolmogorov [16]. However the Kolmogorov integral is an additive
interval function and in this sense the resulting theory (see Dudley and
Norvaǐsa [8]) is different from the Riemann–Stieltjes type integration the-
ory adopted in the present paper. Let f be a regulated function on [a, b],
and let g be an arbitrary function on [a, b]. For a Young tagged parti-
tion τ = {((xi−1, xi), yi) : i = 1, . . . , n} of [a, b], the Young–Stieltjes sum
SYS(τ) = SYS(g, f ; τ) based on τ is defined by

(2.2) SYS(τ) :=
n∑

i=1

{[g∆+f ](xi−1) + g(yi)∆f(xi−1, xi) + [g∆−f ](xi)}.

Then the Young–Stieltjes integral, or the YS integral , (YS)
� b
a
g df , is defined

to be the limit (if it exists) of the directed function (SYS(g, f ; ·),R). That
is, let

(2.3) (YS)
b�

a

g df := lim
τ,R

SYS(g, f ; τ)

provided the limit exists. The YS integral extends the MPS integral. Indeed,
for each Young tagged partition τ as above, if we take points {ui−1, vi : i =
1, . . . , n} so that ui−1 ↓ xi−1 and vi ↑ xi for each i = 1, . . . , n, then the
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Riemann–Stieltjes sums SRS(τ ′) based on the tagged partitions

τ ′ = {([xi−1, ui−1], xi−1), ([ui−1, vi], yi), ([vi, xi], xi) : i = 1, . . . , n}

approximate the Young sum SYS(τ) arbitrarily closely. The following state-
ment yields that the YS integral in the chain rule formula (1.3) exists in the
Riemann–Stieltjes sense with the same value provided f is continuous, that
is, (1.4) holds.

Proposition 2.1. Let g and f be respectively bounded and continuous
functions on [a, b]. If (YS)

� b
a
g df exists then (RS)

� b
a
g df also does, and the

two integrals are equal.

Proof. By Theorem II.10.9 of Hildebrandt [14] already cited above, it is
enough to prove that (MPS)

� b
a
g df exists with the same value as (YS)

� b
a
g df .

Let ε > 0. Since f is continuous there exists a partition λ = {zj : j =
0, . . . ,m} of [a, b] such that

(2.4)
∣∣∣
n∑

i=1

g(yi)[f(xi)− f(xi−1)]− (YS)
b�

a

g df
∣∣∣ < ε

for any Young tagged partition {((xi−1, xi), yi) : i = 1, . . . , n} provided
λ ⊂ {xi : i = 0, . . . , n}. Thus we have to extend (2.4) to the case when the
tags yi can be taken to be the endpoints of (xi−1, xi) for any i. Again since
f is continuous, one can choose a set {vj−1, uj : j = 1, . . . ,m} of points in
(a, b) so that zj−1 < vj−1 < uj < zj for j = 1, . . . ,m, and

(2.5) max
1≤j≤m

{Osc(f ; [zj−1, vj−1]) ∨Osc(f ; [uj, zj ])} < ε/(2m‖g‖∞).

Let η := λ ∪ {(zj−1 + vj−1)/2, vj−1, uj , (uj + zj)/2 : j = 1, . . . ,m}, and
let τ = {([xi−1, xi], yi) : i = 1, . . . , n} be a tagged partition such that
η ⊂ {xi : i = 0, . . . , n}. We will show that (2.4) holds for τ with ε replaced
by 3ε. Since λ ⊂ η ⊂ {xi : i = 0, . . . , n}, for each j = 0, . . . ,m, there is an
index i(j) ∈ {0, 1, . . . , n} such that xi(j) = zj . By joining adjacent intervals
if necessary, we can assume that for each i 6= i(j), j = 0, . . . ,m, yi+1 > xi
if yi = xi and yi−1 < xi−1 if yi = xi−1. Since {(zj−1 + vj−1)/2, (zj + vj)/2 :
j = 1, . . . ,m} ⊂ {xi : i = 0, . . . , n}, we thus have

(2.6) zj−1 < xi(j−1)+1 < vj−1 < uj < xi(j)−1 < zj , j = 1, . . . ,m.

Define another partition κ′ = {x′i : i = 0, . . . , n} of [a, b] so that x′i(j) := xi(j)
for j = 0, . . . ,m, x′i := xi if yi ∈ (xi−1, xi), x′i ∈ (xi, yi+1) if yi = xi and
x′i ∈ (yi, xi) if yi+1 = xi. Let I := {i(j − 1) + 1, i(j) : j = 1, . . . ,m} and
J := {0, . . . , n}\I. Since x′i(j−1)+1 ≤ vj−1 and uj ≤ x′i(j)−1 for j = 1, . . . ,m,
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by (2.5) and (2.6) the absolute value of the sum
∑

i∈I
g(yi)[f(xi)− f(xi−1)]−

∑

i∈I
g(yi)[f(x′i)− f(x′i−1)]

=
m−1∑

j=0

g(yi(j)+1)[f(xi(j)+1)− f(x′i(j)+1)]

+
m∑

j=1

g(yi(j))[f(x′i(j)−1)− f(xi(j)−1)]

is less than ε. For all i 6∈ {i(j) : j = 0, . . . ,m}, taking x′i close enough to xi,
which is possible, we have

∣∣∣
∑

i∈J
g(yi)[f(xi)− f(xi−1)]−

∑

i∈J
g(yi)[f(x′i)− f(x′i−1)]

∣∣∣ < ε.

Since κ′ is a refinement of λ, (2.4) holds with all xi replaced by x′i. Therefore
(2.4) holds with 3ε instead of ε for any tagged partition τ = {([xi−1, xi], yi) :
i = 1, . . . , n} such that η ⊂ {xi : i = 0, . . . , n}.

2.3. The Y1, Y2 and CY integrals. In some cases it is more useful to work
with an integral defined by means of left- and/or right-continuous modifi-
cations of the integrand and integrator. The following definition originated
from the work of L. C. Young [39]. The present form is due to Dudley [5].

Definition 2.2. Let g, f ∈ R([a, b]), and let a ≤ c ≤ d ≤ b. Define the
Y1 integral on [c, d] by

(Y1)
d�

c

g df := (MPS)
d�

c

g
(d)
+ df

(c)
− −

∑

[c,d)

∆+g[f+ − f (c)
− ] + [g∆−f ](d)

provided the MPS integral exists, the sum converges unconditionally and
c < d. Similarly, define the Y2 integral on [c, d] by

(Y2)
d�

c

g df := (MPS)
d�

c

g
(c)
− df

(d)
+ + [g∆+f ](c) +

∑

(c,d]

∆−g[f (d)
+ − f−]

provided the MPS integral exists, the sum converges unconditionally and
c < d. If c = d both integrals are defined to be 0.

The Y1 and Y2 integrals satisfy standard properties of integrals, such as
linearity and additivity over adjacent intervals. The next statement follows
from Theorems 3.6 and 3.7 of Dudley and Norvaǐsa [6, Part II] (see also
Theorem 6.19 of Dudley and Norvaǐsa [7] for a simpler proof).
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Theorem 2.3. For g, f ∈ R([a, b]), if either of the two integrals
(Y1)

� b
a
g df and (Y2)

� b
a
g df exists then so does the other , and the two inte-

grals are equal.

The preceding theorem justifies the following definition. Under the as-
sumptions of Definition 2.2 define the central Young integral, or the CY
integral, on [c, d] by

(CY)
d�

c

g df := (Y1)
d�

c

g df = (Y2)
d�

c

g df

if either the Y1 or the Y2 integral exists on [c, d]. The CY integral extends
the YS integral on the class of regulated functions. Namely, the following
statement is a special case of Proposition 3.17 of Dudley and Norvaǐsa [6,
Part II] (see also Theorem 6.20 of Dudley and Norvaǐsa [7] for a different
proof).

Theorem 2.4. For g, f ∈ R([a, b]), if (YS)
� b
a
g df exists then so does

(CY)
� b
a
g df , and the two integrals are equal.

By Proposition 3.16 of Dudley and Norvaǐsa [6, Part II], there are regu-
lated functions g and f such that (CY)

� b
a
g df exists while (YS)

� b
a
g df does

not. However, under the conditions stated in the following statement, both
integrals coincide.

Theorem 2.5. For 1/p + 1/p′ ≥ 1 with 1 < p < ∞, let f ∈ W∗p ([a, b])

and g ∈ Wp′([a, b]). If either of the two integrals (CY)
� b
a
g df and (YS)

� b
a
g df

exists then so does the other , and the two integrals are equal.

Theorem 2.5 is a special case of Corollary 3.20 of Dudley and Norvaǐsa
[6, Part II]. By the preceding statement, Theorem 1.1 also holds with the YS
integral replaced by the CY integral. In addition to the CY integral one can
define the left and right Young integrals which make solutions of correspond-
ing linear integral equations driven by discontinuous functions particularly
simple (see Subsection 5.4 in [6, Part II]). The chain rule formulas in this
case are similar to but different from Theorem 1.1 (see [29]).

2.4. The Ward–Perron–Stieltjes and Henstock–Kurzweil integrals. Ward
[38] defined a Perron–Stieltjes type integral which includes both the Lebes-
gue–Stieltjes and Moore–Pollard–Stieltjes integrals. Given two real-valued
functions f , g on [a, b], say M is a major function of g with respect to f if
M(a) = 0, M has finite values on [a, b], and for each x ∈ [a, b] there exists
δ(x) > 0 such that

M(z) ≥M(x) + g(x)[f(z)− f(x)] if x ≤ z ≤ min{b, x+ δ(x)},
M(z) ≤M(x) + g(x)[f(z)− f(x)] if max{a, x− δ(x)} ≤ z ≤ x.
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Let U(g, f) be the class of all major functions of g with respect to f , and let

(UPS)
b�

a

g df :=
{

inf{M(b) : M ∈ U(g, f)} if U(g, f) 6= ∅,
+∞ if U(g, f) = ∅.

A function m is a minor function of g with respect to f if −m ∈ U(−g, f).
Let L(g, f) be the class of all minor functions of g with respect to f , and let

(LPS)
b�

a

g df :=
{

sup{m(b) : m ∈ L(g, f)} if L(g, f) 6= ∅,
−∞ if L(g, f) = ∅.

If (UPS)
� b
a
g df = (LPS)

� b
a
g df is finite then denote the common value by

(WPS)
� b
a
g df and call it the Ward–Perron–Stieltjes integral, or the WPS

integral . By Theorem 5 of Ward [38], if (MPS)
� b
a
g df exists then so does

(WPS)
� b
a
g df , and has the same value. Ward [38] stated and Saks [33, Theo-

rem VI.8.1] gave a proof of the fact that (WPS)
� b
a
g df is defined provided the

corresponding Lebesgue–Stieltjes integral is defined. Then (WPS)
� b
a
g df =

(LS)
� b
a
g df .

Kurzweil [17, Section 1.2] suggested an equivalent definition of the WPS
integral based on an extension of the limit as the mesh of partitions tends
to zero in the definition of the RS integral. A gauge function is any function
with strictly positive values. Given a gauge function δ(·) on [a, b], a tagged
partition {([xi−1, xi], yi) : i = 1, . . . , n} is δ-fine if yi − δ(yi) ≤ xi−1 ≤ yi ≤
xi ≤ yi+δ(yi) for i = 1, . . . , n. The Henstock–Kurzweil integral (HK)

� b
a
g df

is defined as the number I, whenever it exists, such that for each ε > 0
there is a gauge function δ(·) on [a, b] such that |SRS(τ) − I| < ε for each
δ-fine tagged partition τ of [a, b]. Kurzweil [17, Theorem 1.2.1] proved the
following statement:

Theorem 2.6. The integrals (WPS)
� b
a
g df and (HK)

� b
a
g df either both

exist with the same values, or both do not exist.

The following theorem is a special case of Theorem F.2 of Dudley and
Norvaǐsa [6, Part I].

Theorem 2.7. For 1/p + 1/p′ ≥ 1 with 1 < p < ∞, let f ∈ W∗p ([a, b])

and g ∈ Wp′([a, b]). If (YS)
� b
a
g df exists then so does (HK)

� b
a
g df , and the

two integrals are equal.

By these statements, Theorem 1.1 also holds with the YS integral re-
placed either by the WPS integral or by the HK integral.

2.5. Existence of integrals. To give a sufficient condition for the existence
of the YS integral we need the notion of the Φ-variation, where Φ is a
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continuous function on [0,∞) strictly increasing from 0 to∞. For a function
f , its Φ-variation vΦ(f) is the least upper bound of the sums

∑n
i=1 Φ(|f(xi)−

f(xi−1)|) over all partitions {xi : i = 0, . . . , n} ∈ P ([a, b]). The Φ-variation
reduces to the p-variation when Φ(u) = up. The following result is due to
L. C. Young [40, Theorem 5.1].

Theorem 2.8. Let Φ, Ψ be continuous functions on [0,∞), strictly in-
creasing from 0 to ∞ and such that

(2.7)
∞∑

n=1

Φ−1(1/n)Ψ−1(1/n) <∞,

where Φ−1 and Ψ−1 are the inverse functions. If vΦ(f) <∞ and vΨ (g) <∞,
then g is Young–Stieltjes integrable on [a, b] with respect to f , and for any
x ∈ [a, b],

∣∣∣(YS)
b�

a

[g − g(x)] df
∣∣∣ ≤ K

∞∑

n=1

Φ−1(vΦ(f)/n)Ψ−1(vΨ (g)/n) <∞,

where K is an absolute constant.

Leśniewicz and Orlicz [20, Theorem 4.11] gave another proof of Theorem
2.8 for the case when the functions Φ, Ψ are log-convex and one of f , g is
continuous, so that the RS integral exists in this case. They also proved
that condition (2.7) cannot be weakened in general (cf. Theorem 4.21 of
Leśniewicz and Orlicz [20]). Further results concerning optimality of con-
ditions of type (2.7) are due to L. C. Young [41]. Necessary and sufficient
conditions for the existence of the Riemann–Stieltjes integral in terms of the
Φ-variation are due to D’yačkov [9].

3. The case p = 1. In this section we consider the composition
φ ◦ f when f is a function of bounded (total) variation, that is, when f
has bounded p-variation with p = 1. In this case a chain rule formula more
general than (1.3) holds. The function φ in this formula need not have a
derivative at each point. For example, φ may be a convex function.

We start with the case when φ has continuous derivative φ′ everywhere.

Lemma 3.1. If f is of bounded variation on [a, b], and if φ is continuously
differentiable, then φ′ ◦f is Young–Stieltjes integrable with respect to f , and
(1.3) holds.

Proof. The integral (YS)
� b
a
(φ′ ◦ f) df exists because φ′ ◦ f is a regulated

function on [a, b]. To prove (1.3) let ε > 0. Then there are a bounded interval
[c, d] containing the range of f and a δ > 0 such that |φ′(u) − φ′(v)| < ε
whenever |u− v| < δ and u, v ∈ [c, d] . Also, since f is regulated there is a
partition λ = {zj : j = 0, . . . ,m} ∈ P ([a, b]) such that Osc(f ; (zj−1, zj)) < δ
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for j = 1, . . . ,m. Let τ = {((xi−1, xi), yi) : i = 1, . . . , n} be a Young tagged
partition of [a, b] which is a refinement of λ. By a telescoping sum, we have

(3.1) ∆(φ ◦ f)[a, b]

=
n∑

i=1

{∆+(φ ◦ f)(xi−1) + ∆(φ ◦ f)(xi−1, xi) + ∆−(φ ◦ f)(xi)}

= SYS(φ′ ◦ f, f ; τ) +
n∑

i=1

(∆+(φ ◦ f)− (φ′ ◦ f)∆+f)(xi−1)

+
n∑

i=1

(∆−(φ ◦ f)− (φ′ ◦ f)∆−f)(xi) +R(τ),

where

R(τ) :=
n∑

i=1

{∆(φ ◦ f)(xi−1, xi)− (φ′ ◦ f)(yi)∆f(xi−1, xi)}.

By the mean value theorem, we have

R(τ) =
n∑

i=1

[φ′(θi)− φ′(f(yi))]∆f(xi−1, xi),

where for each i, θi belongs to the interval with endpoints f(xi−1+) and
f(xi−). Since yi ∈ (xi−1, xi) ⊂ (zj−1, zj) and |θi − f(yi)| < δ for i =
1, . . . , n, it follows that |R(τ)| ≤ εv1(f ; [a, b]). Since ε is arbitrary we have
limτ,RR(τ) = 0. To show that the sums in (1.3) converge unconditionally,
let ν ⊂ (a, b) be a finite set. By the mean value theorem again,

∑

ν

|∆±(φ ◦ f)− (φ′ ◦ f)∆±f | ≤ 2‖φ′‖∞v1(f ; [a, b]) <∞.

Thus taking the limit in (3.1) under the refinements of partitions yields
(1.3).

We extend the preceding chain rule formula to a composition φ ◦ f with
φ having regulated one-sided derivatives. To this end we recall some facts
about one-sided derivatives. The incrementary ratios Iφ of a real-valued
function φ on [c, d] are defined by Iφ(y, x) := [φ(y) − φ(x)]/(y − x) for
x, y ∈ [c, d] such that x 6= y. The upper left derivative D−φ on (c, d] and the
upper right derivative D+φ on [c, d) are defined respectively by

(3.2) D−φ(x) := lim sup
ξ↑x

Iφ(ξ, x) and D+φ(y) := lim sup
ξ↓y

Iφ(ξ, y)

for each c ≤ y < x ≤ d. The lower left derivative D−φ on (c, d] and the lower
right derivative D+φ on [c, d) are defined as in (3.2) except that limsup is
replaced by liminf. We extend the definitions of the four derivatives over
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the whole interval [c, d] by setting D−φ(c) := D+φ(c), D+φ(d) := D−φ(d)
and similarly for the lower derivatives. Let DR− = DR−([c, d]) be the set
of all real-valued functions φ on [c, d] having the upper left derivative D−φ
bounded and such that the left limit D−φ(x−) exists for each x ∈ (c, d].
Similarly, let DR+ = DR+([c, d]) be the set of all real-valued functions φ
on [c, d] having the upper right derivative D+φ bounded and such that the
right limit D+φ(y+) exists for each y ∈ [c, d).

Lemma 3.2. For a continuous function φ on [c, d] the following hold :

(1) If φ ∈ DR− then D−φ, D−φ are left-continuous, D+φ, D+φ have
left limits, and D−φ = D−φ = (D+φ)− = (D+φ)− on (c, d].

(2) If φ ∈ DR+ then D+φ, D+φ are right-continuous, D−φ, D−φ have
right limits, and D+φ = D+φ = (D−φ)+ = (D−φ)+ on [c, d).

(3) If φ ∈ DR− ∩ DR+ then φ is a Lipschitz function, and the sets

{y ∈ (c, d) : D−φ(y) 6= D+φ(y)} = {y ∈ (c, d) : ∆+(D−φ) 6= 0}(3.3)

= {y ∈ (c, d) : ∆−(D+φ) 6= 0}
are at most countable.

Proof. Let φ ∈ DR−. By statement 280 of Hobson [13, p. 382], for each
c ≤ x0 < x1 ≤ d we have

(3.4)
sup

x0≤x≤x1

Dφ(x) = sup
x0≤x<y≤x1

Iφ(y, x),

inf
x0≤x≤x1

Dφ(x) = inf
x0≤x<y≤x1

Iφ(y, x),

where Dφ can be any of the four derivatives D−φ, D−φ, D+φ, D+φ. Let
x ∈ (c, d], λ := D−φ(x−), and ε > 0. Then there exists δ ∈ (0, x − c) such
that D−φ(u) ∈ [λ− ε, λ+ ε] for all u ∈ [x− δ, x). By (3.4), the other three
derivatives when restricted to [x−δ, x) also have their values in [λ−ε, λ+ε].
By statement 281 of Hobson [13, p. 383], the values D−φ(x) and D−φ(x)
are in [λ− ε, λ+ ε]. Since ε is arbitrary it then follows that D−φ and D−φ
are left-continuous at x with value λ at x. Similarly, D+φ and D+φ have
left limits at x equal to λ. Therefore (1) holds. We omit the proof of (2)
which is based on symmetric arguments.

Let φ ∈ DR−∩DR+. Then φ is a Lipschitz function by (3.4). The three
sets (3.3) are the same by (1) and (2), and they are at most countable by
an analogous fact for regulated functions.

Define DR = DR([c, d]) to be the set of all functions φ ∈ DR− ∩ DR+

which are continuous on [c, d]. By the preceding lemma, the lower left and
upper left derivatives of each element of DR coincide, and are equal to the
left derivative also denoted by D−φ. The same is true about the right deriva-
tives D+φ for φ ∈ DR. Clearly, convex functions with domains containing
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[c, d] belong to DR([c, d]). If φ is convex then D−φ, D+φ are non-decreasing,
and D−φ(x) ≤ D+φ(x) for x ∈ [c, d].

Theorem 3.3. Let f be a function of bounded variation on [a, b], and
let φ ∈ DR([c, d]) with (c, d) containing the range of f . For ψ being either
D−φ or D+φ, if ψ ◦ f is Young–Stieltjes integrable with respect to f then

(3.5) (φ ◦ f)(b)− (φ ◦ f)(a) = (YS)
b�

a

(ψ ◦ f) df

+
∑

(a,b]

[∆−(φ ◦ f)− (ψ ◦ f)∆−f ] +
∑

[a,b)

[∆+(φ ◦ f)− (ψ ◦ f)∆+f ],

where the two sums are unconditional.

Proof. By Lemma 3.2(3), φ is a Lipschitz function. Therefore the two
sums in (3.5) converge unconditionally. To prove (3.5) we choose a sequence
{φn : n ≥ 1} of smooth functions in such a way that

(3.6) (φn ◦ f)(b)− (φn ◦ f)(a) = (YS)
b�

a

(φ′n ◦ f) df

+
∑

(a,b]

[∆−(φn ◦ f)− (φ′n ◦ f)∆−f ] +
∑

[a,b)

[∆+(φn ◦ f)− (φ′n ◦ f)∆+f ]

for all n ≥ 1, and each term of (3.6) converges as n→∞ to the correspond-
ing term of (3.5). Let ψ = D−φ, and let % be a probability density on the
real line R continuously differentiable and with support in [0, 1]. We extend
φ and ψ from (c, d] to the whole real line by periodicity. For each integer
n ≥ 1 and r ∈ R, let %n(r) := n%(nr) and

(3.7) φn(r) :=
�

R
%n(r − s)φ(s) ds =

�

R
%(s)φ(r − s/n) ds.

Then for each r ∈ (c, d), limn→∞ φn(r) = φ(r), and since D−φ is left-
continuous,

lim
n→∞

φ′n(r) = lim
n→∞

�

[0,1]

%(s)D−φ(r − s/n) ds = D−φ(r).

Each φ′n is continuous on [c, d]. Hence by Lemma 3.1, (YS)
� b
a
(φ′n ◦ f) df

exists and (3.6) holds for each n ≥ 1. To show

(3.8) lim
n→∞

(YS)
b�

a

(φ′n ◦ f) df = (YS)
b�

a

(D−φ ◦ f) df

we use the Osgood convergence theorem for the YS integrals proved by
Hildebrandt [14, Theorem 19.3.14]. Since ‖φ′n‖∞ ≤ ‖D−φ‖∞, the φ′n ◦ f
are uniformly bounded. Moreover, they converge to ψ ◦ f pointwise. Since
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D−φ ◦ f is Young–Stieltjes integrable by assumption, the Osgood conver-
gence theorem applies, and hence (3.8) holds. To show

(3.9) lim
n→∞

∑

(a,b]

[∆−(φn◦f)−(φ′n◦f)∆−f ] =
∑

(a,b]

[∆−(φ◦f)−(D−φ◦f)∆−f ],

again we use the fact that the ‖φ′n‖∞ are uniformly bounded. Since f is of
bounded variation, each sum on the left side of (3.9) converges absolutely
and uniformly in n. Since ∆−(φn ◦ f) and φ′n ◦ f converge as n → ∞ to
∆−(φ◦f) and ψ◦f , respectively, (3.9) holds (cf. the proof of Lemma 19.3.15
in Hildebrandt [14]). Similarly, the second sum in (3.6) converges as n→∞
to the second sum in (3.5). Thus the relation (3.5) with ψ = D−φ holds. If
instead of (3.7) one uses the smoothing

φn(r) :=
�

R
%n(s− r)φ(s) ds =

�

R
%(s)φ(r + s/n) ds

then the above approximation argument yields (3.5) with ψ = D+φ because
the latter is right-continuous.

In the preceding theorem we assumed that the YS integral exists; this
was needed to apply the Osgood convergence theorem. However, under the
same assumptions on f and φ, the HK integral exists and satisfies the chain
rule formula. The proof of the following statement is the same as the proof
of Theorem 3.3 except that one needs to use the dominated convergence
theorem for the HK integral (see e.g. Section 7.8 in McLeod [25]) instead of
the Osgood convergence theorem for the YS integral.

Theorem 3.4. Let f be a function of bounded variation on [a, b], and
let φ ∈ DR([c, d]) with (c, d) containing the range of f . For ψ being either
D−φ or D+φ, the integral (HK)

� b
a
(ψ ◦ f) df exists and (3.5) holds with the

YS integral replaced by the HK integral.

By Theorem 2.6, the analogous theorem holds for the WPS integral.

4. The case 1 < p < 2. In this section we consider the composition
φ ◦ f when f is a function of bounded p-variation for some 1 < p < 2. The
main result is Theorem 4.2 from which the chain rule formula of Theorem
1.1 follows. Also, Theorem 4.2 yields an extension of the integration by
parts formula for Young–Stieltjes integrals (Corollary 4.3). At the end of
this section we show that the p-variation condition in Theorem 1.1 is sharp
(Proposition 4.4).

We start with a useful characterization of the class W∗p , 1 < p < ∞,
defined in Section 1 by (1.2). Its formulation requires the p-variation over
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an open interval defined by

vp(f ; (u, v)) := sup{sp(f ;κ) : κ = {xi}ni=0, u < x0 < . . . < xn < v}
= lim

x↓u, y↑v
vp(f ; [x, y]), a ≤ u < v ≤ b.

Also let σp(f) be the right side of (1.1), and let v∗p(f) be the right side
of (1.2).

Lemma 4.1. Let f be a regulated function on [a, b], and let 1 < p < ∞.
Then the following statements are equivalent :

(1) f ∈ W∗p ([a, b]);
(2) for every ε > 0 there is a partition {zj : j = 0, . . . ,m} of [a, b] such

that
∑m
j=1 vp(f ; (zj−1, zj)) < ε;

(3) σp(f) < ∞, and for every ε > 0 there is a partition λ of [a, b] such
that

∑n
i=1 |∆f(xi−1, xi)|p < ε for each refinement {xi : i = 0, . . . , n} of λ.

Proof. (1)⇒(2). Let f ∈ W∗p and ε > 0. By (1.1) and (1.2), there exists
λ = {zj : j = 0, . . . ,m} ∈ P ([a, b]) such that

sup
κ∈P (λ)

sp(f ;κ) =
m∑

j=1

vp(f ; [zj−1, zj ]) < v∗p(f) + ε/2

and
m∑

j=1

[|∆+f(zj−1)|p + |∆−f(zj)|p] > σp(f)− ε/2 = v∗p(f)− ε/2.

Let {uj−1, vj : j = 1, . . . ,m} be a set of points in (a, b) such that zj−1 <
uj−1 < vj < zj for j = 1, . . . ,m. Then

vp(f ; [uj−1, vj ]) ≤ vp(f ; [zj−1, zj ])− [vp(f ; [zj−1, uj−1]) + vp(f ; [vj , zj ])]

for each j = 1, . . . ,m. If we take uj−1 ↓ zj−1 and vj ↑ zj , by Lemma 2.19 of
Dudley and Norvaǐsa [6, Part II], it follows that
m∑

j=1

vp(f ; (zj−1, zj)) ≤
m∑

j=1

{vp(f ; [zj−1, zj ])− |∆+f(zj−1)|p − |∆−f(zj)|p}

< v∗p(f) + ε/2− v∗p(f) + ε/2 = ε.

This proves (2).
(2)⇒(1). Assume (2) holds. Then it is easy to see that f ∈ Wp. Assume

however that f 6∈ W∗p . Therefore, since σp(f) ≤ v∗p(f) always holds, v∗p(f)−
σp(f) ≥ C for some positive constant C. Let κ = {xi : i = 0, . . . , n} ∈
P ([a, b]). Then

n∑

i=1

{|∆+f(xi−1)|p + vp(f ; (xi−1, xi)) + |∆−f(xi)|p} ≥ v∗p(f).
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It then follows that
n∑

i=1

vp(f ; (xi−1, xi)) ≥ v∗p(f)−
n∑

i=1

{∆+f(xi−1)|p + |∆−f(xi)|p}

≥ v∗p(f)− σp(f) ≥ C > 0.

Since κ is arbitrary, (2) cannot hold. This contradiction implies that f ∈W∗p .
(2)⇒(3). Assume (2) holds. Then it holds for any refinement of λ :=

{zj : j = 0, . . . ,m}. It is easy to see that f ∈ Wp, and hence σp(f) < ∞.
Let ε > 0 and let {xi : i = 0, . . . , n} be a refinement of λ. Then

n∑

i=1

|f(xi−)− f(xi−1+)|p =
n∑

i=1

lim
yi−1↓xi−1, yi↑xi

|f(yi)− f(yi−1)|p

≤
n∑

i=1

vp(f ; (xi−1, xi)) < ε.

Therefore (3) holds.
(3)⇒(2). Let ε > 0 and let λ ∈ P ([a, b]) satisfy (3). There exists a finite

point set ν ⊂ [a, b] such that
∑
x∈µ[|∆−f(x)|p + |∆+f(x)|p] < ε for each

finite set µ ⊂ (a, b) with µ∩ν = ∅. Let {zj : j = 0, . . . ,m} := λ∪ν ∈ P ([a, b]),
and for each j = 1, . . . ,m, let κ(j) := {xji : i = 0, . . . , n(j)} be a set of points
in (a, b) such that zj−1 < xj0 < . . . < xjn(j) < zj , that is, κ(j) is a partition
of (zj−1, zj). Then applying convexity of t 7→ tp, t ≥ 0, twice, we have

m∑

j=1

sp(f ;κ(j)) ≤ 4p−1
m∑

j=1

n(j)∑

i=1

[|∆+f(xji−1)|p + |∆−f(xji )|p]

+ 4p−1
m∑

j=1

n(j)∑

i=1

|f(xji−)− f(xji−1+)|p < 4pε/2.

Since all partitions κ(j) of (zj−1, zj) are arbitrary, it follows that

m∑

j=1

vp(f ; (zj−1, zj)) ≤ 4pε/2.

This proves (2).

Let d be a positive integer and let φ be a real-valued function on Rd. We
write φ ∈ Λ1,0(Rd) if φ satisfies the condition:

(1) φ is differentiable with continuous partial derivatives φ′l(u) := ∂φ
∂ul

(u)
for l = 1, . . . , d.
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For a bounded set U ⊂ Rd, let ‖φ′l‖∞ := sup{|φ′l(u)| : u ∈ U} and
K0 := 2 max1≤l≤d ‖φ′l‖∞. Also, for α ∈ (0, 1], we write φ ∈ Λ1,α(Rd) if, in
addition to condition (1), φ satisfies the condition:

(2) for any bounded set U ⊂ Rd there is a finite constant Kα such that

(4.1) max
1≤l≤d

|φ′l(u)− φ′l(v)| ≤ Kα

d∑

k=1

|uk − vk|α

for all u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ U .

Now we are ready to prove the main result.

Theorem 4.2. For α ∈ [0, 1], let f = (f1, . . . , fd) : [a, b] → Rd be a
vector-valued function with coordinate functions fl ∈ W∗1+α([a, b]) for l =
1, . . . , d, let φ ∈ Λ1,α(Rd) and let h ∈ R([a, b]). Then

(4.2) (YS)
b�

a

h d(φ ◦ f) =
d∑

l=1

(YS)
b�

a

h(φ′l ◦ f) dfl

+
∑

(a,b]

h
{

∆−(φ◦ f)−
d∑

l=1

(φ′l ◦ f)∆−fl
}

+
∑

[a,b)

h
{

∆+(φ◦ f)−
d∑

l=1

(φ′l ◦ f)∆+fl

}
,

meaning that all the d+ 1 integrals exist provided any d integrals exist , and
the two sums are unconditional.

Proof. We start by showing that the two sums in (4.2) converge uncon-
ditionally. For finite sets µ ⊂ [a, b) and ν ⊂ (a, b], let

V +(µ) :=
∑

x∈µ
h(x)

(
∆+(φ ◦ f)−

d∑

l=1

(φ′l ◦ f)∆+fl

)
(x),(4.3)

V −(ν) :=
∑

x∈ν
h(x)

(
∆−(φ ◦ f)−

d∑

l=1

(φ′l ◦ f)∆−fl
)

(x).(4.4)

Let x ∈ [a, b) be such that ∆+fl(x) 6= 0 for some l ∈ {1, . . . , d}. By the
mean value theorem, there is a vector θ = (θ1, . . . , θd) with θl ∈ [fl(x) ∧
fl(x+), fl(x) ∨ fl(x+)] (= {fl(x)} if ∆+fl(x) = 0), l = 1, . . . , d, such that

(4.5) φ(f(x+))− φ(f(x)) =
d∑

l=1

φ′l(θ)∆
+fl(x).

By the W. H. Young inequality, for any u, v ≥ 0 and α > 0, we have

(4.6) uαv ≤ (α/(1 + α))u1+α + (1/(1 + α))v1+α.
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For α ∈ (0, 1], by (4.1), (4.5) and (4.6), we obtain

δ+(x) :=
∣∣∣[∆+(φ ◦ f)−

d∑

l=1

(φ′l ◦ f)∆+fl](x)
∣∣∣

≤ Kα

d∑

l,k=1

|∆+fk(x)|α|∆+fl(x)| ≤ dKα

d∑

l=1

|∆+fl(x)|1+α.

For α = 0 we have the bound δ+(x) ≤ K0
∑d
l=1 |∆+fl(x)|. Hence for the

sum of the absolute values of each term in (4.3), by the first part of Lemma
4.1(3), it follows that

∑

x∈µ
|h(x)|δ+(x) ≤ dKα‖h‖∞

d∑

l=1

σ1+α(fl) <∞

for α ∈ [0, 1] and any finite set µ ⊂ [a, b). A similar bound holds for the
sum of the absolute values of each term in (4.4). Thus the two sums in (4.2)
converge absolutely, and let

(4.7) V − := lim
µ,U1

V −(µ), V + := lim
µ,U2

V +(µ)

be their unconditional sums, where U1, U2 are the directions formed by
inclusions of finite sets in (a, b] and [a, b), respectively.

Given a Young tagged partition τ = {((xi−1, xi), yi) : i = 1, . . . , n}, let
S(τ) := SYS(h, φ ◦ f ; τ) be equal to

n∑

i=1

{[h∆+φ ◦ f ](xi−1) + h(yi)(φ ◦ f)(xi−1, xi) + [h∆−φ ◦ f ](xi)}

and, for each l = 1, . . . , d, let Sl(τ) := SYS(h(φ′l ◦ f), fl; τ) be equal to
n∑

i=1

{[h(φ′l ◦ f)∆+fl](xi−1) + [h(φ′l ◦ f)](yi)fl(xi−1, xi) + [h(φ′l ◦ f)∆−fl](xi)}.

Also let

(4.8) U(τ) :=
∣∣∣S(τ)−

d∑

l=1

Sl(τ)− V + − V −
∣∣∣,

where V +, V − are defined by (4.7). To prove the theorem it is enough to
show that given ε > 0 there is a partition λ ∈ P ([a, b]) such that U(τ) < ε
for each refinement τ of λ. For each κ = {xi : i = 0, . . . , n} ∈ P ([a, b])
and a Young tagged partition τ = τ(κ) = {((xi−1, xi), yi) : i = 1, . . . , n}
associated to κ, we have the identity

(4.9) S(τ) =
d∑

l=1

Sl(τ) + V +(κ) + V −(κ) +R(τ),
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where V +(κ) := V +({x0, . . . , xn−1}), V −(κ) := V −({x1, . . . , xn}) are de-
fined by (4.3), (4.4), respectively, and

R(τ) =
n∑

i=1

h(yi)
{
(φ ◦ f)(xi−1, xi)−

d∑

l=1

(φ′l ◦ f)(yi)fl(xi−1, xi)
}
.

Let ε > 0. By (4.7), there exist a finite set µ+ ⊂ [a, b) and a finite set
µ− ⊂ (a, b] such that

(4.10) |V + − V +(κ)| < ε/3 and |V − − V −(κ)| < ε/3

for each κ ∈ P ([a, b]) containing µ+ ∪ µ−. Let U ⊂ Rd be a bounded set
containing the range of f . Since each φ′l, l = 1, . . . , d, is continuous, there is
a δ > 0 such that

(4.11) max
1≤l≤d

|φ′l(u)− φ′l(v)| < ε
/(

3‖h‖∞
d∑

l=1

v1(fl; [a, b])
)

whenever max1≤k≤d |uk − vk| < δ for u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ U .
By Lemma 4.1 and since fl, l = 1, . . . , d, are regulated functions on [a, b], one
can find a partition χ := {zj : j = 0, . . . ,m} of [a, b] such that, respectively,

(4.12)
d∑

l=1

n∑

i=1

v1+α(fl; (xi−1, xi)) < ε/(3dKα‖h‖∞) for α ∈ (0, 1]

for each refinement {xi : i = 1, . . . , n} of χ, and

(4.13) max
1≤l≤d

max
1≤j≤m

Osc (fl; (zj−1, zj)) < δ for α = 0.

By the mean value theorem, there are vectors θi = (θ1,i, . . . , θd,i), i =
1, . . . , n, with coordinates θl,i ∈ [fl(xi−1+) ∧ fl(xi−), fl(xi−1+) ∨ fl(xi−)],
l = 1, . . . , d, such that

R(τ) =
n∑

i=1

h(yi)
d∑

l=1

[φ′l(θi)− φ′l(f(yi))][fl(xi−)− fl(xi−1+)].

For α ∈ (0, 1], by (4.1), (4.6) and (4.12), we have

|R(τ)| ≤ ‖h‖∞
n∑

i=1

d∑

l=1

|φ′l(θi)− φ′l(f(yi))| · |fl(xi−)− fl(xi−1+)|(4.14)

≤ dKα‖h‖∞
d∑

l=1

n∑

i=1

v1+α(fl; (xi−1, xi)) < ε/3

whenever τ is a refinement of χ. For α = 0, by (4.11) and (4.13), we get

(4.15) |R(τ)| ≤ ‖h‖∞
d∑

l=1

v1(fl; [a, b]) max
1≤i≤n

|φ′l(θi)− φ′l(f(xi−))| < ε/3
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whenever τ is a refinement of χ. Let λ := µ+ ∪ µ− ∪ χ ∈ P ([a, b]), and let
τ = τ(κ) be a Young tagged partition which is a refinement of λ. Then by
(4.9), (4.10), (4.14) and (4.15), the desired bound of (4.8) follows:

U(τ) ≤ |V +(κ)− V +|+ |V −(κ)− V −|+ |R(τ)| < ε.

An integration by parts formula was proved for functions with bounded
variation by Kurzweil [18] using the HK integral, and by Hildebrandt [14,
Theorem II.19.3.13] using the YS integral (which was already used in [40]
by L. C. Young). Next we show that Theorem 4.2 yields the same formula
for a larger class of functions.

Corollary 4.3. Let f, g ∈ W∗2 ([a, b]) and let ] be either YS, or HK, or
CY. If (])

� b
a
f dg exists then so does (])

� b
a
g df , and

(])
b�

a

g df + (])
b�

a

f dg = ∆(fg)[a, b] +
∑

(a,b]

∆−f∆−g −
∑

[a,b)

∆+f∆+g,

where the two sums are unconditional.

Proof. Consider the function φ : R2 → R given by φ(u) := u1u2 for
u = (u1, u2). Then φ ∈ Λ1,1(R2) with φ′1(u) = u2 and φ′2(u) = u1. Thus
φ′l((f, g)) ∈ W∗2 for l = 1, 2. The claim for the YS integral follows from
Theorem 4.2 by taking h ≡ 1, because ∆−(fg)−g∆−f−f∆−g = −∆−f∆−g
and ∆+(fg) − g∆+f − f∆+g = ∆+f∆+g. The claim for the CY and HK
integrals then follows from Theorems 2.5 and 2.7, respectively, with p = 2.

Notice that the two integrals in Corollary 4.3 may not exist under the
stated conditions. Indeed, let Φ(u) := u2|logu| for u > 0 and Φ(0) := 0. If
f, g ∈ WΦ then f, g ∈ W∗2 but the series (2.7) is divergent. Condition (2.7)
is shown by Leśniewicz and Orlicz [20] to be the best possible in general for
the existence of the Riemann–Stieltjes integral, and hence for the Young–
Stieltjes integral. However according to Theorem 4.2, the Young–Stieltjes
integrals with a special form of integrand can exist even if the condition
(2.7) fails to hold.

The next statement shows that the p-variation condition in Theorem 4.2
is best possible.

Proposition 4.4. Let f be a regulated function on [a, b], and let ] be
either YS or CY. The integral (])

� b
a
f df exists and

(])
b�

a

f df =
1
2

{
f(b)2 − f(a)2 +

∑

(a,b]

(∆−f)2 −
∑

[a,b)

(∆+f)2
}
,

with the two sums converging unconditionally , if and only if f ∈ W∗2 ([a, b]).
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Proof. The “if” part follows from Theorem 4.2 with h ≡ 1, d = 1 and
φ(u) = u2 for u ∈ R, and from Theorem 2.4. By the same Theorem 2.4,
it is enough to prove the “only if” part for ] = CY. Since unconditional
convergence yields absolute convergence, we have σ2(f) < ∞. Therefore it
is enough to prove the second part of statement (3) of Lemma 4.1 with
p = 2. Let ε > 0. There exists a set µ = {uj : j = 1, . . . ,m} ⊂ (a, b] such
that

m∑

j=1

[∆−f (b)
+ (uj)]2 ≥

∑

(a,b]

[∆−f (b)
+ ]2 − ε/2,

where ∆−f (b)
+ (x) = f(x+) − f(x−) for x ∈ (a, b) and ∆−f (b)

+ (b) = f(b) −
f(b−). Thus for each finite set ν ⊂ (a, b] we have

(4.16) −
∑

ν

[∆−f (b)
+ ]2 ≥ −

∑

(a,b]

[∆−f (b)
+ ]2 ≥ −

m∑

j=1

[∆−f (b)
+ (uj)]2 − ε/2.

Choose a set {vj : j = 1, . . . ,m} ⊂ (a, b] such that uj−1 < vj < uj , j =
1, . . . ,m, with u0 := a, and

m∑

j=1

inf{[f (b)
+ (uj)− f(x)]2 : vj ≤ x < uj} ≥

m∑

j=1

[∆−f (b)
+ (uj)]2 − ε/2.

By the definition of the CY integral, (MPS)
� b
a
f

(a)
− df

(b)
+ exists. Therefore

one can choose a partition λ of [a, b] such that λ ⊃ {vj , uj : j = 1, . . . ,m}
and

(4.17)
∣∣∣
n∑

i=1

[f (a)
− (y′i)− f (a)

− (y′′i )][f (b)
+ (xi)− f (b)

+ (xi−1)]
∣∣∣ < ε

for each refinement κ = {xi : i = 0, . . . , n} of λ and y′i, y
′′
i ∈ [xi−1, xi],

i = 1, . . . , n. Take any such κ, and for each j = 1, . . . ,m, let ξj be the point
of κ nearest to uj from the left. Then ξj ∈ [vj , uj) for j = 1, . . . ,m, and

(4.18)
m∑

j=1

[∆f (b)
+ [ξj , uj ]]2 ≥

m∑

j=1

[∆−f (b)
+ (uj)]2 − ε/2.

Letting y′i ↑ xi and y′′i ↓ xi−1 for each i = 1, . . . , n in (4.17), we get

ε ≥
∣∣∣
n∑

i=1

[∆f(xi−1, xi)][∆f
(b)
+ [xi−1, xi]]

∣∣∣

=
1
2

∣∣∣
n∑

i=1

[∆f(xi−1, xi)]2 +
n∑

i=1

[∆f (b)
+ [xi−1, xi]]2 −

n∑

i=1

[∆−f (b)
+ (xi)]2

∣∣∣
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≥ 1
2

( n∑

i=1

[∆f(xi−1, xi)]2 +
m∑

j=1

[∆f (b)
+ [ξj , uj ]]2 −

m∑

j=1

[∆−f (b)
+ (uj)]2 − ε/2

)

≥ 1
2

( n∑

i=1

[∆f(xi−1, xi)]2 − ε
)
,

where the last two inequalities follow from (4.16) and (4.18). Hence

0 ≤
n∑

i=1

[∆f(xi−1, xi)]2 ≤ 3ε

for any refinement κ = {xi : i = 1, . . . , n} of λ.

5. The case 2 ≤ p < 3. In this section we consider the composition φ◦f
when f is a function of bounded p-variation for some 2 ≤ p < 3. To extend
the chain rule formula (1.3) to this case we cannot use the YS integral.
Indeed, by the preceding Proposition 4.4, if (YS)

� b
a
f df exists then f ∈ W∗2 .

If in addition f is continuous then this conclusion follows easily once we
recall that then (RS)

� b
a
f df must exist by Proposition 2.1. For a partition

κ = {xi : i = 0, . . . , n} ∈ P ([a, b]), let τ l = τ l(κ) = {([xi−1, xi], xi−1) : i =
1, . . . , n} and τ r = τ r(κ) = {([xi−1, xi], xi) : i = 1, . . . , n} be two tagged
partitions with tags on the left and on the right, respectively, of each tagged
interval. Then the difference between the two Riemann–Stieltjes sums based
on τ r and τ l is

SRS(f, f ; τ r)− SRS(f, f ; τ l) = s2(f ;κ).

Thus if (RS)
� b
a
f df exists then lim|κ|→0 s2(f ;κ) = 0. Almost every sample

function of a standard Brownian motion B = {B(t) : t ≥ 0} provides an
example of a continuous function f 6∈ W∗2 . By Théorème 9 of Lévy [21, p.
516], we have almost surely

lim
ε↓0

sup{s2(B;κ) : κ ∈ P ([0, 1]), |κ| < ε} = +∞.

Thus almost surely the integral (RS)
� 1
0 B dB does not exist.

One possibility to extend the Riemann–Stieltjes integral is to consider a
limit of Riemann–Stieltjes sums along a fixed sequence of tagged partitions.
Let {κm : m ≥ 1} be a sequence of partitions of [a, b]. For the tagged parti-
tions τ r(κm) and τ l(κm) with tags on the left and on the right, respectively,
of each tagged interval, and for each m ≥ 1, we have

SRS(f, f ; τ r(κm)) =
1
2
{f(b)2 − f(a)2 + s2(f ;κm)},

SRS(f, f ; τ l(κm)) =
1
2
{f(b)2 − f(a)2 − s2(f ;κm)}.
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Therefore the left sides have limits provided the limits on the right sides
exist, that is, provided limm→∞ s2(f ;κm) exists and is finite. The latter
property of f is a pathwise variant of the quadratic variation, usually defined
for stochastic processes as a limit in probability. For almost all sample func-
tions of a Brownian motion B and any t > 0, the limit limm→∞ s2(B;κm),
κm ∈ P ([0, t]), exists and is equal to t either if the sequence {κm : m ≥ 1}
is nested and

⋃
m κm is dense in [0, t] (by Théorème 5 of Lévy [21, Section

4]), or if the mesh |κm| → 0 sufficiently fast (by Theorem 4.5 of Dudley
[4]). Föllmer [10] used this extended Riemann–Stieltjes integral to prove a
variant of Itô’s formula for the composition φ◦f whenever f has a quadratic
variation in a sense he defined, and φ is a C2 function.

In this paper we extend the Riemann–Stieltjes integral in a different
direction. Once again rearranging the Riemann–Stieltjes sums for a function
f with respect to itself, we have

SRS(f, f ; τ l(κ)) +
1
2
s2(f ;κ) = SRS(f, f ; τ r(κ))− 1

2
s2(f ;κ)

=
n∑

i=1

f(xi−1) + f(xi)
2

[f(xi)− f(xi−1)] =
1
2
{f(b)2 − f(a)2}.

This is the sum defining the mean Stieltjes integral when the integrand
and integrator coincide. For any functions g and f on [a, b], the (mesh)
mean Stieltjes integral, or MS integral, (MS)

� b
a
g df , is defined as the limit,

if it exists, of the directed function (SMS(g, f ; ·),M), where for a partition
κ = {xi : i = 0, . . . , n},

(5.1) SMS(g, f ;κ) :=
n∑

i=1

g(xi−1) + g(xi)
2

[f(xi)− f(xi−1)].

The (mesh) MS integral and its (refinement) variant when the direction
M is replaced by R were introduced by Smith [35], and were later used
by many authors. P. Lévy extended the MS integral in a series of papers
by considering random partitions and showed that the extension may exist
when the L. C. Young condition (2.7) does not hold (see, for example, [22]).
A further extension of the MS integral is possible when the functions f
and g are replaced by stochastic processes X = {X(t) : 0 ≤ t ≤ 1} and
Y = {Y (t) : 0 ≤ t ≤ 1}, respectively. Then it is said that the symmetric
stochastic integral of Stratonovich

� 1
0 Y ◦ dX is defined and equals the limit

in probability of the sums SMS(Y,X;κ) if it exists when the mesh |κ| → 0
(see Itô [15]). The above identity suggests that a limit of sums (5.1) may
exist when g is close to f in some sense. As follows from the results of Lyons
[24], this is indeed the case when g = ψ ◦ f , f is a continuous function with
bounded p-variation for some p ∈ [2, 3) and ψ has a derivative satisfying a
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Lipschitz condition of order α > p−2. On the other hand, Lyons [23] showed
that the sums SMS(Y,X;κ) do not converge to a finite limit if X and Y are
certain jointly Gaussian but dependent Brownian motions.

We modify the definition of the MS integral as follows. For a tagged
partition τ = {([xi−1, xi], yi) : i = 1, . . . , n} of [a, b], let

CRS(g, f ; τ) :=
n∑

i=1

{[∆g∆f ][yi, xi]− [∆g∆f ][xi−1, yi]},

and let

(5.2) ΞRS(g, f ; τ) := SRS(g, f ; τ) +
1
2
CRS(g, f ; τ)

=
1
2

n∑

i=1

{[g(xi−1) + g(yi)][f(yi)− f(xi−1)] + [g(yi) + g(xi)][f(xi)− f(yi)]}.

Notice that the sum ΞRS(g, f ; τ) agrees with (5.1) either when all tags are
yi = xi−1, or when all tags are yi = xi.

Definition 5.1. Let g and f be real-valued functions on [a, b]. Define
the symmetric Riemann–Stieltjes integral, or the SRS integral (SRS)

� b
a
g df

to exist and equal the limit of the directed function (ΞRS(g, f ; ·),M). Define
the Riemann–Stieltjes quadratic covariation CRS(g, f) over [a, b] to exist
and equal the limit of the directed function (CRS(g, f ; ·),M).

Usually a quadratic covariation is defined for stochastic processes X and
Y to be the limit in probability, if it exists, of the sums CRS(X,Y ; τ l(κm))
as m→∞ (see e.g. [11]).

Proposition 5.2. Let g and f be functions on [a, b]. The integral
(RS)

� b
a
g df exists if and only if both the integral (SRS)

� b
a
g df exists and

the quadratic covariation CRS(g, f) is 0. The two integrals have the same
value whenever both statements hold.

Proof. Suppose that (RS)
� b
a
g df exists. Given a tagged partition τ =

{([xi−1, xi], yi): i = 1, . . . , n}, let

τ1 := {([xi−1, yi], yi), ([yi, xi], xi) : i = 1, . . . , n},
τ2 := {([xi−1, yi], xi−1), ([yi, xi], xi) : i = 1, . . . , n},
τ3 := {([xi−1, yi], xi−1), ([yi, xi], yi) : i = 1, . . . , n}.

Then CRS(g, f ; τ) = [SRS(τ2)−SRS(τ3)]−[SRS(τ1)−SRS(τ2)]. By assumption
the directed function (CRS(g, f ; ·),M) has a zero limit. The second part of
the implication now follows from (5.2). The converse implication is clear.

Several extensions of the Riemann–Stieltjes integral coincide if the in-
tegrand and integrator have bounded p- and q-variation, respectively, with
conjugate p and q (see e.g. Theorems 2.5 and 2.7). We show next that the
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same is true for the SRS integral. Let CW∗p be the subclass of all continuous
functions in W∗p .

Proposition 5.3. Let 1/p + 1/q = 1, and let one of the two functions
g, f be in CW∗p ([a, b]) and the other in Wq([a, b]). If either (RS)

� b
a
g df or

(SRS)
� b
a
g df exists then so does the other , and the two integrals are equal.

Proof. Let f ∈ CW∗p and let g ∈ Wq. By Hölder’s inequality, for any
tagged partition τ = {([xi−1, xi], yi) : i = 1, . . . , n} ∈ TP ([a, b]), we have

|ΞRS(g, f ; τ)− SRS(g, f ; τ)|

≤ 1
2

n∑

i=1

{|[∆g∆f ][yi, xi]|+ |[∆g∆f ][xi−1, yi]|}

≤ vq(g; [a, b])1/q
( n∑

i=1

{|f(yi)− f(xi−1)|p + |f(xi)− f(yi)|p}
)1/p

.

Since f ∈ CW∗p , by Lemma B.1 and Theorem 4.7 of Dudley and Norva-
ǐsa [6, Part I] and [6, Part II], respectively, we have lim|κ|→0 sp(f ;κ) =
limκ,P sp(f ;κ) = 0. Thus the directed functions (SRS(g, f ; ·),M) and
(ΞRS(g, f ; ·),M) both converge or not simultaneously, and if they converge
then both have the same limit. The same conclusion follows by the same
arguments when f and g are interchanged.

Next we modify further the definition of the symmetric stochastic inte-
gral so that the new variant extends the YS integral. Let g and f be regulated
functions on [a, b]. For a Young tagged partition τ = {((xi−1, xi), yi) : i =
1, . . . , n} of [a, b], let

CYS(g, f ; τ) :=
n∑

i=1

{[∆+g∆+f ](xi−1)− [∆g∆f ](xi−1, yi]

+ [∆g∆f ][yi, xi)− [∆−g∆−f ](xi)},
and let

(5.3) ΞYS(g, f ; τ) := SYS(g, f ; τ) +
1
2
CYS(g, f ; τ)

=
1
2

n∑

i=1

{[(g+ + g)∆+f ](xi−1) + [g+(xi−1) + g(yi)]∆f(xi−1, yi]

+ [g(yi) + g−(xi)]∆f [yi, xi) + [(g + g−)∆−f ](xi)},
where the Young–Stieltjes sum SYS is defined by (2.2).

Definition 5.4. Let g, f ∈ R([a, b]). Define the symmetric Young–Stiel-
tjes integral (SYS)

� b
a
g df to be the limit (if it exists) of the directed func-
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tion (ΞYS(g, f ; ·),R). Define the Young–Stieltjes quadratic covariation
CYS(g, f) over [a, b] to be the limit (if it exists) of the directed function
(CYS(g, f ; ·),R).

For any Young tagged partition τ = {((xi−1, xi), yi) : i = 1, . . . , n} and
xi−1 < ui−1 ≤ yi ≤ vi < xi, i = 1, . . . , n, if we let ui−1 ↓ xi−1 and vi ↑ xi
for i = 1, . . . , n, then ΞYS(g, f ; τ) can be approximated arbitrarily closely
by sums ΞRS(g, f ; τ ′) with κ′ = {([xi−1, yi], ui−1), ([yi, xi], vi): i = 1, . . . , n}.
Thus the SYS integral based on ΞYS extends the SRS integral based on ΞRS,
just as the usual Young–Stieltjes integral extends the Riemann–Stieltjes
integral.

It is remarkable that unlike the YS integral, the SYS integral satisfies
a simple integration by parts formula without any condition on jumps (cf.
Corollary 4.3 above). To see this for a given τ , it is enough to add the two
sums ΞYS(g, f ; τ) and ΞYS(f, g; τ), which gives

ΞYS(g, f ; τ) + ΞYS(f, g; τ) = (fg)(b)− (fg)(a).

From this the next statement immediately follows.

Corollary 5.5. Let f, g ∈ R([a, b]). If (SYS)
� b
a
f dg exists then so does

(SYS)
� b
a
g df , and

(SYS)
b�

a

g df + (SYS)
b�

a

f dg = (fg)(b)− (fg)(a).

Suppose that the values of f and g at points of discontinuity satisfy

(5.4)
{
f = (f+ + f−)/2 on (a, b),
g(a+) = g(a), g(b−) = g(b), g = (g+ + g−)/2 on(a, b).

In this case the terms of SYS and ΞYS corresponding to a given singleton of
a Young tagged partition agree because

g + g−
2

∆−f +
g + g+

2
∆+f = g[f+ − f−] = g∆−f + g∆+f

on (a, b). Also, because in this case ∆+g∆+f = ∆−g∆−f on (a, b) and
∆+g(a) = ∆−g(b) = 0, the two integration by parts formulas for the YS
and SYS integrals agree provided (5.4) holds. Next we prove that the SYS
integral extends the YS integral under the above stated conditions on jumps
of the integrand and integrator.

Theorem 5.6. Let g, f ∈ R([a, b]) be such that (5.4) holds. The integral
(YS)

� b
a
g df exists if and only if both (SYS)

� b
a
g df exists and the quadratic

covariation CYS(g, f) is 0.
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Proof. It is enough to show that CYS(g, f) = 0 provided (YS)
� b
a
g df

exists. Indeed, the conclusion then follows from (5.3). Thus suppose that
(YS)

� b
a
g df exists. Let τ = {((xi−1, xi), yi) : i = 1, . . . , n} be a Young

tagged partition of [a, b]. By the assumption (5.4), we have
{

∆−f = ∆+f = (f+ − f−)/2 on (a, b),
∆+g(a) = ∆−g(b) = 0, ∆−g = ∆+g = (g+ − g−)/2 on (a, b).

Therefore we have the representation

CYS(g, f ; τ) =
3∑

k=1

Dk(τ)−
6∑

k=4

Dk(τ),

where Dk(τ) =
∑n
i=1 dk,i, k = 1, . . . , 6, and for each i = 1, . . . , n,

d1,i := [∆g∆f ](yi, xi), d4,i := [∆g∆f ](xi−1, yi),

d2,i := ∆+g(yi)∆f(yi, xi), d5,i := ∆−g(yi)∆f(xi−1, yi),

d3,i := ∆g(yi, xi)∆+f(yi), d6,i := ∆g(xi−1, yi)∆−f(yi).

We show that CYS(g, f ; τ) can be approximated arbitrarily closely by a sum
of six differences of YS sums based on refinements of τ . First we have

D1(τ) =
n∑

i=1

g(xi−)∆f(yi, xi)−
n∑

i=1

g(yi+)∆f(yi, xi)

= lim
∀si↑xi

SYS(τ1(s))− lim
∀ti↓yi

SYS(τ2(t)),

where
τ1(s) = {((xi−1, yi), zi), ((yi, xi), si) : i = 1, . . . , n},
τ2(t) = {((xi−1, yi), zi), ((yi, xi), ti) : i = 1, . . . , n}.

Notice that each term in the two YS sums corresponding to the tagged
intervals ((xi−1, yi), zi) cancel each other. Similarly we have

D4(τ) =
n∑

i=1

g(yi−)∆f(xi−1, yi)−
n∑

i=1

g(xi−1+)∆f(xi−1, yi)

= lim
∀si↑yi

SYS(τ3(s))− lim
∀ti↓xi−1

SYS(τ4(t)),

where
τ3(s) = {((xi−1, yi), si), ((yi, xi), wi) : i = 1, . . . , n},
τ4(t) = {((xi−1, yi), ti), ((yi, xi), wi) : i = 1, . . . , n}.

Next let D7(τ) := 4−1∑n
i=1[∆±g∆±f ](yi). Then we have:
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D2(τ) =
1
2

n∑

i=1

∆±g(yi)∆f(yi, xi)

=
1
2

n∑

i=1

{g(yi−)∆f(xi−1, yi) + [g∆±f ](yi) + g(yi+)∆f(yi, xi)

− g(yi−)∆f(xi−1, xi)} −
1
2

n∑

i=1

∆−g(yi)∆±f(yi)

=
1
2
{ lim
∀ti↑yi, si↓yi

SYS(τ5(t, s))− lim
∀ti↑yi

SYS(τ6(t))} −D7(τ),

where
τ5(t, s) = {((xi−1, yi), ti), ((yi, xi), si) : i = 1, . . . , n},
τ6(t) = {((xi−1, xi), ti) : i = 1, . . . , n};

D5(τ) =
1
2

n∑

i=1

∆±g(yi)∆f(xi−1, yi)

=
1
2

n∑

i=1

{g(yi+)∆f(xi−1, xi)− g(yi−)∆f(xi−1, yi)− [g∆±f ](yi)

− g(yi+)∆f(yi, xi)} −
1
2

n∑

i=1

∆+g(yi)∆±f(yi)

=
1
2
{ lim
∀si↓yi

SYS(τ7(s))− lim
∀ti↑yi, si↓yi

SYS(τ5(t, s))} −D7(τ),

where τ7(s) := {((xi−1, xi), si) : i = 1, . . . , n};

D3(τ) =
1
2

n∑

i=1

∆g(yi, xi)∆±f(yi) = −1
2

n∑

i=1

∆+g(yi)∆±f(yi)

+
1
2

n∑

i=1

{g(xi−)[f(xi−)− f(yi−)] + g(zi)∆f(xi−1, yi)

− g(xi−)∆f(yi, xi)− [g∆±f ](yi)− g(zi)∆f(xi−1, yi)}

=
1
2
{ lim
∀ui↑yi, ti↑xi

SYS(τ8(u, t))− lim
∀ti↑xi

SYS(τ9(t))} −D7(τ),

where

τ8(u, t) = {((xi−1, ui), zi), ((ui, xi), ti) : i = 1, . . . , n},

τ9(t) = {((xi−1, yi), zi), ((yi, xi), ti) : i = 1, . . . , n};
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D6(τ) =
1
2

n∑

i=1

∆g(xi−1, yi)∆±f(yi) = −1
2

n∑

i=1

∆−g(yi)∆±f(yi)

+
1
2

n∑

i=1

{g(xi−1+)∆f(xi−1, yi) + [g∆±f ](yi) + g(zi)∆f(yi, xi)

− g(xi−1+)[f(yi+)− f(xi−1+)]− g(zi)∆f(yi, xi)}

=
1
2
{ lim
∀si↓xi−1

SYS(τ10(s))− lim
∀si↓xi−1, vi↓yi

SYS(τ11(s, v))} −D7(τ),

where
τ10(s) = {((xi−1, yi), si), ((yi, xi), zi) : i = 1, . . . , n},

τ11(s, v) = {((xi−1, vi), si), ((vi, xi), zi) : i = 1, . . . , n}.
Notice that the D7(τ) enter into the representation of CYS(g, f ; τ) with
alternating signs. Since the Young partition τ is arbitrary, and τ1, . . . , τ11

are refinements of τ , we have shown that CYS(g, f) = 0, proving Theorem
5.6.

Next we prove a statement analogous to Proposition 5.3.

Proposition 5.7. Let 1/p + 1/q = 1, and let one of the two functions
g, f be in W∗p ([a, b]) and the other in Wq([a, b]). Suppose that g and f have
values satisfying (5.4) at points of discontinuity. If either of the two integrals
(YS)

� b
a
g df and (SYS)

� b
a
g df exists then so does the other , and the two

integrals are equal.

Proof. Let f ∈ W∗p and let g ∈ Wq. By the assumption (5.4), ∆+g∆+f =
∆−g∆−f on (a, b) and ∆+g(a) = ∆−g(b) = 0. For a Young tagged partition
τ = {((xi−1, xi), yi) : i = 1, . . . , n} ∈ TP ([a, b]), by Hölder’s inequality, we
have the bound

|ΞYS(g, f ; τ)− SYS(g, f ; τ)| = 1
2

∣∣∣
n∑

i=1

{[∆g∆f ][yi, xi)− [∆g∆f ](xi−1, yi]}
∣∣∣

≤ vq(g; [a, b])1/q
( n∑

i=1

vp(f ; (xi−1, xi))
)1/p

.

By Lemma 4.1, given ε > 0 the right side of the last bound is ultimately less
than ε along the direction P. Thus the directed functions (SYS(g, f ; ·),R)
and (ΞYS(g, f ; ·),R) both converge or not simultaneously, and if they do
then both have the same limit. The same conclusion follows by the same
arguments when f and g are interchanged.

Now we are prepared for the main result of this section. We write φ ∈
Λ2,α if φ has a second derivative satisfying a Lipschitz condition of order α
on every bounded interval.
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Theorem 5.8. For α ∈ (0, 1], let φ ∈ Λ2,α, and let g := f + h, where
f ∈ W∗2+α([a, b]) and h ∈ Wp([a, b]) for some p < (2 +α)/(1 +α). The com-
position φ′◦g is SYS and YS integrable with respect to f and h, respectively ,
and the two integrals satisfy

(5.5) (φ ◦ g)(b)− (φ ◦ g)(a)

= (SYS)
b�

a

(φ′ ◦ g) df + (YS)
b�

a

(φ′ ◦ g) dh

+
∑

[a,b)

{
∆+φ ◦ g − φ′ ◦ g∆+g − ∆+φ′ ◦ g

2
∆+f

}

+
∑

(a,b]

{
∆−φ ◦ g − φ′ ◦ g∆−g +

∆−φ′ ◦ g
2

∆−f
}
,

where the two sums are unconditional. If in addition f and h are both con-
tinuous, then the composition φ′ ◦ g is SRS and RS integrable with respect
to f and h, respectively , and the two integrals satisfy

(5.6) (φ ◦ g)(b)− (φ ◦ g)(a) = (SRS)
b�

a

(φ′ ◦ g) df + (RS)
b�

a

(φ′ ◦ g) dh.

Remark. This theorem shows that the SRS and SYS integrals can exist
and satisfy a suitable chain rule formula when the RS and YS integrals are
not defined. To see this, take h ≡ 0, f ∈ W∗2+α \ W∗2 , and recall Proposi-
tion 4.4.

Proof. Let κ = {xi : i = 0, . . . , n} ∈ P ([a, b]), and let τ = τ(κ) =
{((xi−1, xi), yi) : i = 1, . . . , n} be a Young tagged partition of [a, b]. By a
telescoping sum, we have

(5.7) ∆(φ ◦ g)[a, b]

=
n∑

i=1

{∆+(φ ◦ g)(xi−1) + ∆(φ ◦ g)(xi−1, xi) + ∆−(φ ◦ g)(xi)}

= ΞYS(φ′ ◦ g, f ; τ) + SYS(φ′ ◦ g, h; τ) + S+(κ) + S−(κ) +R(τ),

where

S+(κ) :=
n∑

i=1

(
∆+(φ ◦ g)− (φ′ ◦ g)∆+g − 1

2
∆+(φ′ ◦ g)∆+f

)
(xi−1),

S−(κ) :=
n∑

i=1

(
∆−(φ ◦ g)− (φ′ ◦ g)∆−g +

1
2

∆−(φ′ ◦ g)∆−f
)

(xi)
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and R(τ) :=
∑n
i=1 ri with

ri := ∆(φ ◦ g)(xi−1, xi)− (φ′ ◦ g)(yi)∆g(xi−1, xi)

+
∆(φ′ ◦ g)(xi−1, yi]

2
∆f(xi−1, yi]−

∆(φ′ ◦ g)[yi, xi)
2

∆f [yi, xi).

To bound ri we use Taylor’s theorem with Lagrange’s form of the remainder:

(5.8) φ(v) = φ(u) + φ′(u)[v − u] +
1
2
φ′′(θ)[v − u]2,

where θ is in the interval with endpoints u, v, and then apply the mean value
theorem. It then follows that for each i = 1, . . . , n,

2ri = φ′′(θi,1)(∆g[yi, xi))2 −∆(φ′ ◦ g)[yi, xi)∆f [yi, xi)

− φ′′(θi,2)(∆g(xi−1, yi])2 + ∆(φ′ ◦ g)(xi−1, yi]∆f(xi−1, yi]

= [φ′′(θi,1)− φ′′(ϑi,1)](∆g[yi, xi))2 + φ′′(ϑi,1)∆g[yi, xi)∆h[yi, xi)

− [φ′′(θi,2)− φ′′(ϑi,2)](∆g(xi−1, yi])2

− φ′′(ϑi,2)∆g(xi−1, yi]∆h(xi−1, yi],

where θi,1, ϑi,1 are in the interval with endpoints g(yi), g(xi−), and θi,2, ϑi,2
are in the interval with endpoints g(xi−1+), g(yi). Using Lipschitz conti-
nuity of φ′′, and applying the W. H. Young inequality with the conjugate
exponents β := 2 + α and β′ := (2 + α)/(1 + α), it then follows that

|R(τ)| ≤
(
Kα

2
+
‖φ′′‖∞

2β

) n∑

i=1

vβ(g; (xi−1, xi))+
‖φ′′‖∞

2β′

n∑

i=1

vβ′(h; (xi−1, xi)).

By Lemma 4.1, given ε > 0 the right side of the preceding bound is ul-
timately less than ε. Therefore the limit of the directed function (R,R) is
zero. To ascertain that the first sum in (5.6) is the limit of the directed func-
tion (S+,P) it is enough to show its absolute convergence. Using Taylor’s
theorem (5.8) and the mean value theorem, for x ∈ [a, b) we get

δ+(x) :=
(

∆+(φ ◦ g)− (φ′ ◦ g)∆+g − 1
2

∆+(φ′ ◦ g)∆+f
)

(x)

=
1
2

[φ′′(θ)− φ′′(ϑ)](∆+g(x))2 +
1
2
φ′′(ϑ)[∆+g∆+h](x),

where θ, ϑ are points in the interval with endpoints g(x), g(x+). Using Lip-
schitz continuity of φ′′, and applying the W. H. Young inequality with the
same exponents β, β′ as above, we get the bound
∑

x∈µ
|δ+(x)| ≤

(
Kα

2
+
‖φ′′‖∞

2β

)∑

[a,b)

|∆+g|β +
‖φ′′‖∞

2β′
∑

[a,b)

|∆+h|β′ <∞

for any finite subset µ of [a, b). Thus the first sum in (5.5) converges abso-
lutely, and hence unconditionally. Likewise, the second sum in (5.5) is the
unconditional limit of S−. Since φ′ ◦ g ∈ W2+α, h ∈ Wp and (2 +α)−1 +p−1
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> 1, the YS integral in (5.5) exists by Theorem 5.1 of L. C. Young [40]
(cf. Proposition 2.8 above). Therefore the limit of the directed function
(SYS(φ′ ◦ g, h; ·),R) exists. By (5.7), it then follows that the directed func-
tion (ΞYS(φ′ ◦ g, f ; ·),R) has a limit which satisfies the relation (5.5). This
proves the first part of the theorem. The second part follows by the same
arguments in conjunction with the fact that

v∗p(f ; [a, b]) = lim
δ↓0

sup{sp(f ;κ) : κ ∈ P ([a, b]), |κ| < δ}

provided f is continuous (see e.g. Lemma B.1 in Dudley and Norvaǐsa
[6, Part I]).

To illustrate the results of the present section consider a fractional Brow-
nian motion BH = {BH(t) : t ≥ 0} with the Hurst exponent H ∈ (0, 1). It
is a mean zero Gaussian stochastic process with the covariance function

E{BH(t)BH(s)} =
1
2
{t2H + s2H − |t− s|2H}, t, s ≥ 0,

and BH(0) = 0 almost surely. BH with H = 1/2 is a standard Brownian
motion B. If H 6= 1/2 then BH is not a semimartingale, and hence stochastic
integration with respect to BH meets certain difficulties. Almost all sample
functions of BH restricted to a bounded interval satisfy a Lipschitz condition
of order α for each α < H, thus almost surely vp(BH ; [0, 1]) < ∞ for each
p > 1/H. But v1/H(BH ; [0, 1]) = +∞ almost surely. If H > 1/2 then for
almost all sample functions of BH the quadratic covariation CRS(BH , BH)
on [0, 1] exists and is 0. Also in this case,

� 1
0BH dBH exists for almost all

sample functions both as an RS and SRS integral, and the relation

(RS)
1�

0

BH dBH = (SRS)
1�

0

BH dBH =
1
2
BH(1)2.

If H ≤ 1/2 then the quadratic covariation CRS(BH , BH) is undefined. How-
ever by Theorem 5.8, the SRS integral in the preceding relation exists and
the second equality holds provided 1/3 < H ≤ 1/2.

In the case H = 1/2, that is, when BH is a standard Brownian motion
B, one can compare (5.6) for g = f equal to a sample function of B, with
the Itô formula. To this end we split the SRS integral into two parts by
separating an extended RS integral and the RS integral with respect to a
quadratic variation. Let λ = {κm : m ≥ 1} be a nested sequence of partitions
κm = {xmi : i = 0, . . . , n(m)} of [a, b] such that

⋃
m κm is dense in [a, b], and

let each τ lm = τ lm(κm) = {([xmi−1, x
m
i ], xmi−1) : i = 1, . . . , n(m)} be a tagged

partition of [a, b]. Suppose that (SRS)
� b
a
g df exists. By (5.2), it then follows
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that the limits
b�

a

g dλf := lim
m→∞

SRS(g, f ; τ lm) and Cλ(g, f) := lim
m→∞

CRS(g, f ; τ lm)

both exist or not simultaneously. If they do, then

(5.9) (SRS)
b�

a

g df =
b�

a

g dλf +
1
2
Cλ(g, f).

Suppose that φ and f satisfy the assumptions of the second part of Theorem
5.8 with f being continuous and h ≡ 0. Then (SRS)

� b
a
(φ′ ◦ f) df is defined,

and so the left side of (5.9) is defined for g = φ′ ◦f . To show the existence of
Cλ(φ′ ◦ f, f) we assume that f in addition has the quadratic λ-variation in
the sense of Definition 3.1 in [30]. For a given λ, these assumptions on f are
satisfied by almost every sample function of a standard Brownian motion.
We say that a (continuous) function f has the quadratic λ-variation if there
exists a continuous non-decreasing function [f ]λ on [a, b] such that for all
a ≤ x < y ≤ b,

lim
m→∞

n(m)∑

i=1

[f(xmi )− f(xmi−1)]2 � [x,y](x
m
i−1) = [f ]λ(y)− [f ]λ(x).

By the mean value theorem, for each m ≥ 1, we have

CRS(φ′ ◦ f, f ; τ lm) =
n(m)∑

i=1

[φ′ ◦ f(xmi )− φ′ ◦ f(xmi−1)][f(xmi )− f(xmi−1)]

=
n(m)∑

i=1

φ′′ ◦ f(xmi−1)[f(xmi )− f(xmi−1)]2 +Rm.

By the assumptions on φ and f , one can ascertain that limm→∞Rm = 0.
On the other hand, by Lemma 3.8 of [30], since [f ]λ is continuous, we have

lim
m→∞

n(m)∑

i=1

φ′′ ◦ f(xmi−1)[f(xmi )− f(xmi−1)]2 = (RS)
b�

a

φ′′ ◦ f d[f ]λ,

and so Cλ(φ′ ◦ f, f) is equal to the right side. By (5.2), (5.6) and (5.9), it
then follows that

� b
a
(φ′ ◦ f) dλf exists and

(φ ◦ f)(b)− (φ ◦ f)(a) =
b�

a

(φ′ ◦ f) dλf +
1
2

(RS)
b�

a

(φ′′ ◦ f) d[f ]λ

= (SRS)
b�

a

(φ′ ◦ f) df.
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Recall that here φ ∈ Λ2,α, and f has both the quadratic λ-variation and
bounded p-variation for some 2 < p < 2 + α ≤ 3. The analogous formula
for stochastic processes is called the Itô formula, where C2 smoothness of φ
can be weakened considerably. For a Brownian motion B, Föllmer, Protter
and Shiryayev [11] (see also [32]) proved that CRS(φ′ ◦ B,B; τ lm) converges
in probability as m→∞ provided φ′ is locally square integrable.

6. A chain rule formula. In this section we discuss the results of the
paper in the context of analysis. In particular, we rewrite formula (1.3) using
a variant of the notion of differential equivalence of Kolmogorov [16].

Suppose that the functions f and φ have finite derivatives f ′ and φ′

everywhere on their domains. Then the composition φ ◦ f is also differ-
entiable everywhere on [a, b], and its derivative can be expressed by the
formula

(6.1) (φ ◦ f)′ = (φ′ ◦ f) · f ′.

This is a typical example of a chain rule for differentiation of a composition
of functions from the line to the line. We are interested in what sense the
integral representation (1.3) of φ◦f might be compared with (6.1). It is well
known that for mappings between more general normed spaces than the real
numbers, the chain rule may fail to hold for certain forms of differentiability
(see §2 in Averbukh and Smolyanov [2] for details). Then the chain rule can
be given a more general form which includes such cases. Let two forms of
differentiation R1 and R2 for mappings between normed spaces X,Y,Z be
given. Dudley and Norvaǐsa [6, Part I, Section 8] say that R2 preserves R1 if
whenever F : X → Y is R1-differentiable at x ∈ X with derivative DFx and
G : Y → Z is R2-differentiable at y = F (x) with derivative DGy then G◦F
is R1-differentiable at x, and the chain rule formula D(G◦F )x = DGy◦DFx
holds. Several known differentiability facts, which do not have a typical form
of the chain rule, can be restated by saying that one form of differentiability
preserves another form of differentiability. It is clear that the main result
of the present paper can be restated as follows: let f have a property P
(have bounded p-variation) and let φ be a smooth function; then φ ◦ f also
has the property P and a variant of a chain rule formula holds (an integral
representation of the composition holds). Usually, it is easy to establish the
property P for φ ◦ f , while the chain rule formula, different in each case, is
the main problem.

6.1. An integral chain rule formula. Using classical real analysis argu-
ments, we show that the chain rule formula (6.1) can be given an integral
form similar to the formula (1.4). The following chain rule is due to Serrin
and Varberg [34, Theorem 2].
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Theorem A. Let φ, f and φ ◦ f have finite derivatives Lebesgue almost
everywhere on their domains. If φ maps Lebesgue null sets into Lebesgue
null sets then the chain rule (6.1) holds Lebesgue almost everywhere.

Serrin and Varberg [34, Theorem 3] used their chain rule to prove the
following variant of a change of variables formula:

Theorem B. Suppose that f has a finite derivative Lebesgue almost ev-
erywhere on [a, b] and that φ is absolutely continuous on [c, d]. Then (φ′◦f)f ′

is Lebesgue integrable on [a, b], and the equality of the two Lebesgue integrals

(6.2)
�

[f(α),f(β)]

φ′ =
�

[α,β]

(φ′ ◦ f)f ′

holds for all α, β such that a ≤ α ≤ β ≤ b, if and only if φ ◦ f is absolutely
continuous.

If f is continuous and increasing on [a, b], and hence has a finite deriva-
tive Lebesgue almost everywhere on [a, b], then a form can be given to
formula (6.2) which does not depend on the absolute continuity of φ ◦ f .
Indeed, suppose that φ ◦ f is absolutely continuous. Since φ is absolutely
continuous, by the fundamental theorem of calculus, the left side of (6.2) is
equal to (φ ◦ f)(β)− (φ ◦ f)(α). Also, since (φ′ ◦ f)f ′ is Lebesgue integrable,
one can apply Theorem 4 of Phillips [31, p. 407] to conclude that φ′ ◦ f is
Lebesgue–Stieltjes integrable with respect to f and the integral on the right
side of (6.2) is equal to the corresponding Lebesgue–Stieltjes integral. Thus,
by (6.2), we have

(6.3) (φ ◦ f)(b)− (φ ◦ f)(a) = (LS)
�

[a,b]

(φ′ ◦ f) df.

To see that formula (6.3) is more general than (6.2), consider a continuous,
strictly increasing function f such that f ′ = 0 Lebesgue almost everywhere
(cf. Chapter III, §13 of Saks [33]), and let φ(x) := x. Then φ ◦ f is not
absolutely continuous because f is not. Thus, (6.2) is not true whereas (6.3)
holds for this example.

6.2. A distributional derivative of a composition. The following analog
of a chain rule is developed in geometric measure theory. We reproduce here
only its simplest variant in the case of functions of one variable. Let Ω be
a bounded open subset of R. A function f : Ω → R is a BV function if its
distributional derivative f ′ can be represented by a measure on Ω. The latter
means that there exists a Radon measure df on Ω such that the Lebesgue
integral

�
Ω
h′f = −

�
Ω
h df for each h ∈ C∞0 (Ω), i.e. for each infinitely dif-

ferentiable function h with support in Ω. BV functions are Lebesgue almost
everywhere equal to functions of bounded variation. Recall that functions
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whose distributional derivatives are functions are Lebesgue almost every-
where equal to absolutely continuous functions.

To establish a differentiability formula similar to (6.1) Vol’pert [37, pp.
279, 281] introduced the functional composition φ′ ◦̂ f and proved the fol-
lowing statement:

Theorem C. Let φ : R→ R be a C1 function, and let f be a summable
BV function on Ω such that φ′ ◦̂ f is integrable with respect to df on Ω.
Then φ ◦ f is a BV function on Ω and φ′ ◦ f = φ′ ◦̂ f df in the sense of
measures, i.e., for each h ∈ C∞0 (Ω),

(6.4)
�

Ω

h d(φ ◦ f) =
�

Ω

h(φ′ ◦̂ f) df.

If the ordinary composition “◦” is used instead of “◦̂” then the right side
of (6.4) breaks into two parts. The first part is the integral over Ω \ Df ,
where f has an approximate limit, and the rest is the sum over jump points
Df . See Ambrosio and Dal Maso [1] for a precise statement and for several
extensions of Theorem C.

6.3. Inequalities for the density of a composition. For a convex continu-
ous function φ on a Banach space, a subdifferential ∂φ in the sense of convex
analysis has been used by Moreau and Valadier [28] to establish inequalities
for the density of φ ◦ f when f is a Banach space valued interval function of
locally bounded variation. They also obtained a related result using Clarke’s
generalized gradient when φ is a Lipschitz function. We restrict ourselves
here to reproducing a special case of their first result when the convex func-
tion φ is differentiable and f has real values. In this case the subdifferential
∂φ(x) at a point x reduces to the single element ∇φ(x), the gradient of φ
at this point.

Theorem D. Let Ω be an open convex subset of R and let φ : Ω → R
be a convex differentiable function with gradient ∇φ. Let f : I → Ω, I ⊂
[a, b], be an interval function of bounded variation with the Stieltjes measure
df = f ′µdµ. Then φ ◦ f is of bounded variation and its Stieltjes measure has,
relative to µ, a density (φ ◦ f)′µ such that the inequalities

(6.5) (∇φ ◦ f−)·f ′µ ≤ (φ ◦ f)′µ ≤ (∇φ ◦ f+)·f ′µ
hold µ-almost everywhere on I, where f− and f+ are the left-continuous and
right-continuous modifications of f . Instead of (6.5), the equality (φ◦f)′µ =
(∇φ ◦ f) · f ′µ holds µ-almost everywhere on the set {x ∈ I : df({x}) = 0}.

6.4. Young–Stieltjes differential equivalence. The integral formula (1.3)
can be given a differential form similar to (6.1). We show this by adopting the
notion of differential equivalence proposed by Kolmogorov [16, Section II.15].
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A different route of development of a differential equivalence has been taken
by Leader [19] and Thomson [36]. Consider two pairs (g1, f1) and (g2, f2)
of functions defined on [a, b]. Suppose that f1 and f2 are regulated. For a
partition κ = {xi : i = 0, . . . , n} ∈ P ([a, b]), let

S−(κ) :=
n∑

i=1

(g1∆−f1 − g2∆−f2)(xi),(6.6)

S+(κ) :=
n∑

i=1

(g1∆+f1 − g2∆+f2)(xi−1),(6.7)

and for a Young tagged partition τ = τ(κ) = {((xi−1, xi), yi) : i = 1, . . . , n},
let

(6.8) D(τ(κ)) :=
n∑

i=1

{g1(yi)∆f1(xi−1, xi)− g2(yi)∆f2(xi−1, xi)}.

We define the Young–Stieltjes differential equivalence as a relation between
two pairs of functions.

Definition 6.1. Let f1, f2 ∈ R([a, b]) and let g1, g2 : [a, b]→ R. We say
that the pair (g1, f1) of functions is Young–Stieltjes differentially equivalent

on [a, b] to the pair (g2, f2), and write g1 df1
(YS)
= g2 df2 on [a, b], if:

(a) the directed function (D,R) has the limit limτ,R D(τ) = 0;
(b) the directed functions (S−,P) and (S+,P) have finite limits

lim
κ,P

S−(κ) =
∑

(a,b]

[g1∆−f1 − g2∆−f2]

and

lim
κ,P

S+(κ) =
∑

[a,b)

[g1∆+f1 − g2∆+f2].

The pairs (g1, f1) and (g2, f2) may be Young–Stieltjes differentially
equivalent but neither (YS)

� b
a
g1 df1 nor (YS)

� b
a
g2 df2 need exist. Next we

show that if any one of the two integrals exists then so does the other.

Proposition 6.2. Let f1, f2 ∈ R([a, b]) and let g1, g2 : [a, b] → R. Sup-
pose that either (YS)

� b
a
g1 df1 or (YS)

� b
a
g2 df2 exists. Then the following

statements are equivalent :

(1) g1 df1
(YS)
= g2 df2 on [a, b];

(2) the integrals (YS)
� b
a
g1 df1 and (YS)

� b
a
g2 df2 are defined and
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(YS)
b�

a

g1 df1 = (YS)
b�

a

g2 df2 +
∑

(a,b]

[g1∆−f1 − g2∆−f2](6.9)

+
∑

[a,b)

[g1∆+f1 − g2∆+f2],

where the two sums converge unconditionally.

Proof. Let κ = {xi : i = 0, . . . , n} ∈ P ([a, b]), and let τ = τ(κ) =
{((xi−1, xi), yi) : i = 1, . . . , n} be a Young tagged partition. Then

(6.10) SYS(g1, f1; τ)− SYS(g2, f2; τ) = D(τ) + S−(κ) + S+(κ),

where D, S− and S+ are defined by (6.8), (6.6) and (6.7), respectively.
Suppose that (1) holds. By Definition 6.1, the three terms on the right
side of (6.10) are directed functions which have limits. Then each Young–
Stieltjes sum on the left side of (6.10) has a limit whenever one of them has
a limit. Thus (2) holds. To prove the converse it is enough to notice that
limτ,RD(τ) = 0 by (6.10) and (6.9).

If g1 ≡ 1 then g1 is YS integrable with respect to any regulated function
f1, and (YS)

� b
a
g1 df1 = f1(b)− f1(a). Thus we have

Corollary 6.3. Let f ∈ R([a, b]), and let φ, ψ be real-valued functions
defined on the range of f . Then the following statements are equivalent :

(1) d(φ ◦ f)
(YS)
= (ψ ◦ f) df on [a, b];

(2) the integral (YS)
� b
a
(ψ ◦ f) df is defined , and

(φ ◦ f)(b)− (φ ◦ f)(a) = (YS)
b�

a

(ψ ◦ f) df

+
∑

(a,b]

[∆−(φ ◦ f)− (ψ ◦ f)∆−f ] +
∑

[a,b)

[∆+(φ ◦ f)− (ψ ◦ f)∆+f ],

where the two sums converge unconditionally.

If f and φ satisfy the conditions of Theorem 1.1, then the statement
(2) of the preceding corollary holds with ψ = φ′. Thus the conclusion of
Theorem 1.1 can be restated as the Young–Stieltjes differential equivalence
relation

d(φ ◦ f)
(YS)
= (φ′ ◦ f) df on [a, b],

which has the desirable differential form similar to (6.1).
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