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Unital strongly harmonic commutative Banach algebras

by

Janko Bračič (Ljubljana)

Abstract. A unital commutative Banach algebra A is spectrally separable if for any
two distinct non-zero multiplicative linear functionals ϕ and ψ on it there exist a and b in
A such that ab = 0 and ϕ(a)ψ(b) 6= 0. Spectrally separable algebras are a special subclass
of strongly harmonic algebras. We prove that a unital commutative Banach algebra A
is spectrally separable if there are enough elements in A such that the corresponding
multiplication operators on A have the decomposition property (δ). On the other hand,
if A is spectrally separable, then for each a ∈ A and each Banach left A-module X
the corresponding multiplication operator La on X is super-decomposable. These two
statements improve an earlier result of Baskakov.

1. Introduction. Let A be a complex commutative Banach algebra
and let Σ(A) denote the spectrum of A, i.e. the set of all non-zero multi-
plicative linear functionals on A. The usual (or Gelfand) topology on Σ(A)
is the relative weak-∗ topology. It is well known that there is a bijective
correspondence between points of Σ(A) and maximal modular ideals in A.
If ϕ is from Σ(A), let Mϕ (= kerϕ) be the corresponding ideal.

In [3] Baskakov studied spectral synthesis in Banach modules over spec-
trally separable algebras. These algebras are defined as follows.

A unital commutative Banach algebra A is spectrally separable if for any
two distinct functionals ϕ and ψ in Σ(A) there exist elements a and b in A
such that ab = 0 and ϕ(a)ψ(b) 6= 0.

It can be easily verified that a unital commutative Banach algebra A is
spectrally separable if and only if for each pair Mϕ, Mψ of distinct maximal
modular ideals of A, there are ideals I and J (not necessarily closed) satis-
fying I 6⊂Mϕ, J 6⊂Mψ and IJ = {0}. But this means that A is spectrally
separable if and only if it is a unital commutative Banach algebra that is
also strongly harmonic in the sense of [9] (cf. [17], §7.4).
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Note that strongly harmonic algebras are a special subclass of harmonic
algebras which were introduced by Teleman in [18]. By definition, an algebra
A over a unital ring R is harmonic if its space of maximal modular ideals,
with the hull-kernel topology, is a Hausdorff space. For instance, a unital
commutative complex Banach algebra is harmonic if and only if it is regular.
There exist harmonic algebras that are not strongly harmonic.

Example 1.1 ([9], Example 2.11). Let Q be the field of rational num-
bers and let p1, . . . , pl (l ≥ 2) be a finite number of distinct prime numbers.
Denote by A the set

{m/n ∈ Q; n is not divisible by any p1, . . . , pl}.
It is easily seen that A is a unital algebra over the ring Z of integers. This
algebra is an example of a harmonic algebra which is not strongly harmonic
(for the argument see [9]).

However, we are interested only in unital commutative complex Banach
algebras. It seems to be an open question whether there exist unital commu-
tative harmonic complex Banach algebras which are not strongly harmonic,
i.e. unital commutative complex Banach algebras which are regular but not
spectrally separable.

Throughout this paper we will use the term spectrally separable algebra
to mean a unital strongly harmonic commutative complex Banach algebra.

Baskakov has shown that all multiplication operators on a spectrally
separable algebra are decomposable in the sense of Foiaş and, on the other
hand, that a unital commutative Banach algebra A is spectrally sepa-
rable if there are enough decomposable multiplication operators on A (see
[3], Theorem 2). This result extends the work of Colojoară and Foiaş ([5],
Theorem 6.2.6) and Frunză ([7], Theorem 2) who proved that a semisimple
unital commutative Banach algebra is regular if and only if all multiplication
operators are decomposable.

In this article (our main results are in Section 3) we extend Baskakov’s
result in two directions. In Theorem 3.4 we show that for a spectrally sepa-
rable algebraA and a BanachA-moduleX , each multiplication by an element
of A on X is a super-decomposable operator in the sense of [11]. On the other
hand Theorem 3.5 (see also Theorem 3.7) shows that a unital commutative
Banach algebra is spectrally separable if there are enough multiplication
operators on it which have the decomposition property (δ).Our results should
be compared with those in [12], [13], [15], [16], and [6]. Note however that
our approach makes semisimplicity assumptions in some cases redundant.

In Section 2 we will state some known assertions about spectrally sep-
arable algebras and we shall give some examples. In the remainder of this
section we introduce the notation.
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If a is an element in a commutative Banach algebraA then â : Σ(A)→ C
is its Gelfand transform. We denote by Z(a) := {ϕ ∈ Σ(A); â(ϕ) = 0} the
zero set of a and with ω(a) the complement of Z(a) in Σ(A). The support
supp(a) of a is the closure of ω(a) in the Gelfand topology.

If E is a subset in Σ(A) then the kernel of E, denoted by k(E), is defined
as

k(E) :=
⋂

ϕ∈E
kerϕ = {a ∈ A; Z(a) ⊇ E}.

The hull h(M) of a subset M in A is defined as

h(M) := {ϕ ∈ Σ(A); M⊆ kerϕ} =
⋂

a∈M
Z(a).

It is well known that the correspondence E 7→ h(k(E)) is a closure operation
and that the topology on Σ(A) determined by this closure operation, called
the hull-kernel topology, is weaker than the Gelfand topology. It follows from
the definition that the zero set of a ∈ A is hull-kernel closed. Hence ω(a) is
always hull-kernel open. If the Gelfand topology and the hull-kernel topology
coincide on Σ(A), then the algebra A is said to be regular. The reader is
referred to [10] for details.

Let A be a commutative Banach algebra and let X be a Banach space.
Then X is a Banach left A-module if it is a left A-module (for the definition
see [4], Definition 11 in §9) and if there is a constant k such that

‖ax‖ ≤ k‖a‖ · ‖x‖, a ∈ A, x ∈ X .
By renorming X with an equivalent norm, we may suppose that k = 1. If A
has a unit 1, then it is assumed that 1x = x for all x ∈ X .

If X is a Banach left A-module, then X ∗, the dual space of X , is the
dual A-module of X . The operation is given by 〈aξ, x〉 = 〈ξ, ax〉 for a ∈ A,
ξ ∈ X ∗ and x ∈ X .

For a subset M of a Banach left A-module X let annAM denote the
annihilator of M, that is, the set {a ∈ A; ax = 0 for all x ∈ M}. It is
easy to see that annAM is a closed ideal in A. If M is nonempty, then
the spectrum Sp(M) of M is the hull of the annihilator annAM, that is,
Sp(M) = h(annAM) ⊆ Σ(A). We set Sp(∅) = ∅. When M is a singleton
{x} we shall write Sp(x) instead of Sp({x}). Since the algebra A is a Banach
leftA-module for the usual multiplication inA, the spectrum may be defined
also for subsets of A. It is easy to see that supp(a) ⊆ Sp(a) for all a ∈ A
and we have supp(a) = Sp(a) when A is regular and semisimple.

In the following proposition we list (without proofs) some basic proper-
ties of spectra (cf. [3], Lemma 1).

Proposition 1.2. Let A be a commutative Banach algebra and let X be
a Banach left A-module.
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(i) For any subset M ⊆ X the spectrum Sp(M) is a closed subset of
Σ(A). Hence, if A has a unit , then Sp(M) is compact.

(ii) If A has a unit then the spectrum Sp(M) of a nonempty subset
M ⊆ X is empty if and only if M = {0}.

(iii) For every a ∈ A and every x ∈ X we have the inclusions

h(k(ω(a) ∩ Sp(x))) ⊆ Sp(ax) ⊆ Sp(a) ∩ Sp(x).

(iv) Let the algebra A have a unit. If Sp(a) ∩ Sp(x) = ∅, then ax = 0,
and if Sp(a− 1) ∩ Sp(x) = ∅, then ax = x.

(v) Sp(X ) = Sp(X ∗).
(vi) If x1, . . . , xn ∈ X and x = x1 + . . .+ xn then Sp(x) ⊆ ⋃n

k=1 Sp(xk).

We point out that the spectrum we have intruduced is just another
aspect of the well known Arveson spectrum. Namely, let X be a left Banach
A-module and let θ : A → B(X ) be the corresponding representation of the
algebra A on X , that is, θ(a)x = ax (a ∈ A, x ∈ X ). Then Sp(X ) is the
Arveson spectrum of the representation θ, and Sp(x) is the local Arveson
spectrum of θ at x ∈ X (cf. Section 4.12 in [14]).

2. Spectrally separable algebras. The results of this section are more
or less known (cf. [3] and [17], §7.4). Since some statements are given without
proofs in [3], we shall prove them.

Recall that a unital commutative Banach algebra A is spectrally separa-
ble if for any two distinct functionals ϕ and ψ in Σ(A) there exist elements
a and b in A such that ab = 0 and â(ϕ)b̂(ψ) 6= 0. Of course, if the spectrum
of A is empty or finite, then A is spectrally separable. The next example
shows that there are spectrally separable algebras whose spectrum is richer.

Recall from [8] that a topological space X is 0-dimensional if the family
of all sets that are both open and closed is an open basis for the topology of
X. For example, ifX is locally compact, Hausdorff, and totally disconnected,
then X is 0-dimensional ([8], Theorem 3.5). Thus, if the spectrum Σ(A)
of a commutative Banach algebra A is totally disconnected, then it is 0-
dimensional.

Example 2.1. If the spectrum Σ(A) of a regular unital commutative
Banach algebra A is 0-dimensional, then A is spectrally separable.

Proposition 2.2. Every spectrally separable algebra is regular.

Proof. See [17], Proposition 7.4.2.

Corollary 2.3. Let A be a unital semisimple commutative Banach al-
gebra. Then A is regular if and only if A is spectrally separable.

In the following proposition it is shown that the class of spectrally sep-
arable algebras is stable under some operations. Let A and B be com-
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mutative Banach algebras. Denote by A ⊗̂ B the projective tensor prod-
uct of A and B, that is, the completion of the algebraic tensor product
A ⊗ B = {∑n

i=1 ai ⊗ bi; ai ∈ A, bi ∈ B} under the projective cross norm
‖ · ‖γ , which is defined by

‖u‖γ = inf
{ n∑

i=1

‖ai‖ · ‖bi‖; u =
n∑

i=1

ai ⊗ bi
}

where the infimum is taken over all finite representations of u (cf. [4], §42).

Proposition 2.4 (cf. [3]). (i) If A is a spectrally separable algebra and
I ⊆ A is a closed ideal of A, then A/I is a spectrally separable algebra.

(ii) If A and B are spectrally separable algebras, then so are A×B and
A ⊗̂ B.

(iii) Let A be a spectrally separable algebra and let B be a unital com-
mutative Banach algebra. If Φ : A → B is a unital homomorphism whose
image Φ(A) is dense in B, then B is a spectrally separable algebra.

Proof. If we identify Σ(A/I) with the subset h(I) of Σ(A) ([10], The-
orem 7.3.1.), and Σ(A × B) and Σ(A ⊗̂ B) are identified with the sets
{(ϕ, 0); ϕ ∈ Σ(A)} ∪ {(0, ψ); ψ ∈ Σ(B)} and Σ(A) × Σ(B), respectively
(for the last see [4], §43, Proposition 19, p. 236), then (i) and (ii) follow
from the definition of a spectrally separable algebra.

(iii) It is standard that for two distinct points ϕ and ψ in Σ(B) the
functionals Φ∗ϕ and Φ∗ψ are distinct elements in Σ(A). Hence, by defi-
nition, there are a and b in A such that ab = 0 and â(Φ∗ϕ)̂b(Φ∗ψ) 6= 0.
Now it is easy to see that Φ(a) and Φ(b) are such that Φ(a)Φ(b) = 0 and
(Φ(a))̂ (ϕ)(Φ(b))̂ (ψ) 6= 0.

Let A and B be spectrally separable algebras. If ‖ · ‖α is a cross norm on
A⊗B such that A⊗α B (the closure of A⊗B under the cross norm ‖ · ‖α)
is a Banach algebra, then it is a spectrally separable algebra by (ii) and (iii)
of the preceding proposition.

Let A be a commutative Banach algebra and suppose E ⊆ Σ(A) is
closed. Then j0(E) will denote the set of all a ∈ A for which â vanishes
identically on some open neighbourhood of E and the support supp(a) is a
compact subset of Σ(A). Let j(E) be the closure of j0(E). If A is regular
then the hull of j(E) is E and if A is also semisimple then j(E) is the
smallest closed ideal in A whose hull is E ([10], Theorem 8.1.1).

Let A be a commutative semisimple regular Banach algebra. Then a
closed set E ⊆ Σ(A) is said to be a set of spectral synthesis if j(E) = k(E).
Thus, if E is a set of spectral synthesis, then the kernel k(E) is the unique
closed ideal in A whose hull is E. The closed sets in Σ(A) which are not sets
of spectral synthesis are sets of spectral non-synthesis. It is well known that
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there are semisimple regular algebras with sets of spectral non-synthesis (cf.
[10], §8.2 and §8.3).

Example 2.5. Let A be a unital semisimple regular commutative Ba-
nach algebra and let E ⊆ Σ(A) be a set of spectral non-synthesis. Then
A/j(E) is a spectrally separable algebra which is not semisimple.

Lemma 2.6. Let A be a unital commutative Banach algebra. Then A is
spectrally separable if and only if for every compact subset F ⊂ Σ(A) and
every ϕ ∈ Σ(A) \ F there exists an element a ∈ A such that â(ϕ) = 1 and
Sp(a) ∩ F = ∅.

Proof. Assume first that A is spectrally separable. Let F ⊂ Σ(A) be
compact and let ϕ ∈ Σ(A) \ F. By definition, there are aψ and bψ in A
such that aψbψ = 0 and âψ(ϕ)̂bψ(ψ) 6= 0 for every ψ ∈ F. It follows that
Sp(aψ) ∩ ω(bψ) = ∅ by Proposition 1.2. The family {ω(bψ); ψ ∈ F} is an
open covering of F. Thus, there are ψ1, . . . , ψn in F such that F ⊂ ω(bψ1)∪
. . . ∪ ω(bψn) =: U. Define a′ := aψ1 . . . aψn . The spectrum Sp(a′) is included
in Sp(aψ1) ∩ . . . ∩ Sp(aψn), therefore Sp(a′) ∩ U = ∅. The number â′(ϕ) =
âψ1(ϕ) . . . âψn(ϕ) is not zero, hence for a = â′(ϕ)−1a′ we have â(ϕ) = 1 and
Sp(a) ∩ U = ∅.

Let ϕ and ψ be two distinct functionals in Σ(A). Since Σ(A) is compact
and Hausdorff there is an open neighbourhood U of ϕ such that U

c
is an

open neighbourhood of ψ. The sets U and U c are compact, hence there are a
and b in A such that â(ϕ) = 1, b̂(ψ) = 1, Sp(a)∩U c = ∅, and Sp(b)∩U = ∅.
Thus, we have Sp(a)∩Sp(b) = ∅ and, by Proposition 1.2, ab = 0. This proves
the opposite direction.

Let A be a spectrally separable algebra and let X be a Banach left
A-module. For any subset S of Σ(A) let X (S) and X(S) denote the sets
{x ∈ X ; Sp(x) ⊆ S} and {x ∈ X ; Sp(x) ∩ S = ∅}, respectively. Let XS
be the closure of X(S). It is not hard to see that X (S) and X(S) are linear
sets. By use of Proposition 1.2(iii) we can prove that X (S) and X(S) are
A-invariant. Hence XS is an A-submodule of X . We have proven part (i) of
the following proposition.

Proposition 2.7. Let A be a spectrally separable algebra.

(i) XS is an A-submodule for any subset S ⊆ Σ(A).
(ii) If F ⊆ Σ(A) is a compact subset , then X (F ) is an A-submodule of

X and X ∗(F ) is a weak-∗ closed A-submodule of the dual A-module X ∗.
Proof. (ii) Let F ⊆ Σ(A) be a compact subset and let {xn}∞n=1 be a

sequence in X (F ) such that xn → x ∈ X . If ϕ is in F c, then, by Lemma
2.6, there is a ∈ A such that â(ϕ) = 1 and Sp(a) ⊂ F c. Since A has a unit
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it follows from Sp(axn) = ∅ that axn = 0 for all n = 1, 2, . . . Hence

‖ax‖ = ‖ax− axn‖ ≤ ‖a‖‖x− xn‖ → 0 as n→∞,
and thus a ∈ annA(x). Hence ϕ 6∈ Sp(x) and consequently x ∈ X (F ).

We can similarly see that X ∗(F ) is weak-∗ closed.

The modules X (F ) and XS are called spectral and co-spectral A-submod-
ules of F and S, respectively (cf. [3]).

The following corollary of Proposition 2.7 can be easily proven with the
help of Lemma 2.6.

Corollary 2.8. Let A be a spectrally separable algebra. Then AS is a
closed ideal in A for any subset S of Σ(A) and S = h(AS). If F is a
compact subset of Σ(A), then A(F ) is a closed ideal in A and its hull is
h(A(F )) = F c.

Now we can prove the following modification of Lemma 2.6.

Corollary 2.9. Let A be a spectrally separable algebra. Then for any
two compact and disjoint subsets E and F of Σ(A) there is a ∈ A such that
â(τ) = 1 for all τ ∈ E and Sp(a) ∩ F = ∅.

Proof. Note first that every closed subset of Σ(A) is compact because
Σ(A) is compact. Let U and V be disjoint open neighbourhoods of E and
F, respectively. Then F ⊂ V ⊂ U c and E ∩ U c = ∅. Since A is regular
and h(AUc) = U c (Corollary 2.8) we can use [10], Theorem 7.3.2: there is
a ∈ AUc such that â(τ) = 1 for all τ ∈ E and â(τ) = 0 for all τ ∈ U c. Let us
show that Sp(a)∩F = ∅. Indeed, if ϕ ∈ Sp(a)∩F then ϕ 6∈ V c. By Lemma
2.6 there is c ∈ A such that ĉ(ϕ) = 1 and Sp(c) ∩ V c = ∅. If b ∈ A(Uc)
then Sp(b) ∩U c = ∅ and hence Sp(b) ⊆ V c because U c ∪ V c = Σ(A). Thus,
A(Uc) ⊆ A(V c) and therefore AUc ⊆ A(V c). It follows that Sp(a) ⊆ V c.
Now we have Sp(a) ∩ Sp(c) = ∅ and hence ac = 0, by Proposition 1.2. This
contradicts the definition of Sp(a) because ĉ(ϕ) = 1 and ϕ ∈ Sp(a).

The following theorem is a very useful characterization of the spectrally
separable algebras.

Theorem 2.10 (Partition of unity, cf. [3]). Let A be a unital commuta-
tive Banach algebra. Then A is spectrally separable if and only if for any
open covering U = {U1, . . . , Un} of Σ(A) there are a1, . . . , an in A such that
a1 + . . .+ an = 1 and Sp(ak) ⊂ Uk for all k = 1, . . . , n.

Proof. For every ϕ ∈ Σ(A) there is Ui in the covering U such that ϕ ∈ Ui.
Since Σ(A) is a Hausdorff topological space, an open neighbourhood Wϕ of
ϕ can be found such that Wϕ ⊂ Wϕ ⊂ Ui. The family {Wϕ; ϕ ∈ Σ(A)} is
an open covering of Σ(A) and since Σ(A) is compact there are ϕ1, . . . , ϕm
in Σ(A) such that Σ(A) = Wϕ1 ∪ . . . ∪Wϕm . Let Ei be the union of those
Wϕj which are subsets of Ui. Thus, for every index i the set Ei is a compact
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subset of Ui and E1 ∪ . . . ∪ En = Σ(A). By Corollary 2.9 there are ci ∈ A,
i = 1, . . . , n, such that ĉi(τ) = 1 for all τ ∈ Ei and Sp(ci) ∩ U c

i = ∅.
Set

b1 = c1, b2 = (1− c1)c2, . . . , bn = (1− c1)(1− c2) . . . (1− cn−1)cn.

Then Sp(bi)⊆Sp(ci)⊂Ui and it is easily seen by induction that b1 + . . .+ bk
= 1−(1−c1) . . . (1−ck). Thus, we have b1 +. . .+bn = 1−(1−c1) . . . (1−cn).
Since every ϕ ∈ Σ(A) is in some Ei, we have ϕ(1 − ci) = 0. It follows
that c = (1 − c1) . . . (1 − cn) is in the radical of A. Thus, 1 − c is invert-
ible. If we set ai = bi(1 − c)−1 for all i = 1, . . . , n, then a1 + . . . + an
= 1 and Sp(ai) ⊂ Ui.

It is clear (see the second part of the proof of Lemma 2.6) that a unital
commutative Banach algebra is spectrally separable if for any open covering
U = {U1, . . . , Un} of Σ(A) there exist a1, . . . , an in A such that a1 + . . .+an
= 1 and Sp(ak) ⊂ Uk (k = 1, . . . , n).

3. Multiplication operators. In this section we characterize the spec-
trally separable algebras by means of multiplication operators. We first recall
some basic notions from the axiomatic spectral theory of linear operators
on Banach spaces. The reader is referred to [14], especially to Chapters 1
and 4 of this excellent monograph, for details.

A bounded linear operator T on a complex Banach space X is decompos-
able if for every open covering {U, V } of the complex plane there are closed
subspaces Y and Z of X which are invariant for T, their sum is X , and the
spectrum σ(T ) of T splits in the sense that σ(T |Y) ⊂ U and σ(T |Z) ⊂ V.

We shall also need the following closely related notions. An operator
T ∈ B(X ) is said to have Bishop’s property (β) if for every open subset U
of C and for every sequence of analytic functions fn : U → X for which
(T − λ)fn(λ) converges uniformly to zero on each compact subset of U, we
have fn(λ)→ 0 as n→∞, uniformly on each compact subset of U. Property
(β) implies that T has the single-valued extension property (SVEP), which
means that for every open U ⊆ C the only analytic solution f : U → X of
the equation (T − λ)f(λ) = 0 for all λ ∈ U is the constant f ≡ 0. Finally,
an operator T ∈ B(X ) has the decomposition property (δ) if for an arbitrary
open covering {U1, U2} of C every x ∈ X admits a decomposition x = u1+u2
where the vectors u1 and u2 satisfy

uk = (T − λ)fk(λ) for all λ ∈ C \ Uk

and some analytic functions fk : C \ Uk → X , k = 1, 2.
An operator T ∈ B(X ) is decomposable if and only if it has both prop-

erties (β) and (δ). It has been shown in [1] that the properties (β) and (δ)
are dual to each other: the operator T satisfies (β) if and only if the adjoint
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operator T ∗ on the dual space X ∗ satisfies (δ), and the statement remains
valid if the properties are interchanged.

If S is any family of bounded linear operators on a Banach space X
we will denote by LatS the family of all closed subspaces of X which are
invariant for all operators in S. Let cl(C) be the family of all closed subsets
of the complex plane.

Definition 3.1. Let T be a bounded linear operator on a Banach space
X . A mapping E : cl(C)→ Lat{T} is a spectral capacity for T if the following
conditions are fulfilled:

(a) E(∅) = {0} and E(C) = X ;
(b) X = E(U1) + . . . + E(Un) for every finite open cover {U1, . . . , Un}

of C;
(c) E(

⋂∞
n=1 Fn) =

⋂∞
n=1 E(Fn) for every countable family of closed sets

Fn ⊆ C;
(d) σ(T |E(F )) ⊆ F for every closed set F ⊆ C.
Let T be a bounded linear operator on a Banach space X . Then the local

resolvent set %T (x) of T at the point x ∈ X is defined as the union of all
open subsets U of C for which there is an analytic function f : U → X such
that

(T − λ)f(λ) = x for all λ ∈ U.
The local spectrum σT (x) of T at x is then defined as σT (x) := C \ %T (x).
Evidently, %T (x) is open and σT (x) is closed. The resolvent set %(T ) is always
a subset of %T (x), hence σT (x) is a subset of the spectrum σ(T ) of T.

We define the analytic spectral subspaces of T by

XT (M) := {x ∈ X ; σT (x) ⊆M}
for all subsets M ⊆ C. It is clear that XT (M) = XT (M ∩ σ(T )) and
XT (M) ⊆ XT (N) whenever M ⊆ N ⊆ C. In fact, it follows immediately
from the definition that

XT

(⋂

i∈I
Mi

)
=
⋂

i∈I
XT (Mi)

for every family of sets Mi ⊆ C.
Every analytic spectral subspace XT (M) of T is a linear subspace of

X but in general it is not closed. It is well known that a bounded linear
operator T on a Banach space X is decomposable if and only if there is a
spectral capacity for T. Moreover, if the operator T is decomposable, then
for every closed F ⊆ C the corresponding analytic spectral subspace XT (F )
is closed, and the spectral capacity of the operator T is uniquely determined
and given by E(F ) = XT (F ) for all closed subsets F ⊆ C (see [14], Theorem
1.2.23).
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The following theorem is an extension of a part of Theorem 2 of [3].

Theorem 3.2. Let A be a spectrally separable algebra and let X be a
Banach left A-module. Then every multiplication operator Ta : X → X , x 7→
ax, a ∈ A, x ∈ X , has a spectral capacity. Thus, every Ta is decomposable.

Proof. Let a ∈ A. The Gelfand transform â of a is a continuous function.
Hence â−1(M) is an open (resp. closed) subset of Σ(A) if M is an open (resp.
closed) subset of C. Thus, if F ⊆ C is closed then â−1(F ) is a compact subset
of Σ(A) and, by Proposition 2.7, X (â−1(F )) is an A-submodule of X . Define
a mapping E : cl(C) → Lat{Ta} by E(F ) = X (â−1(F )). We will show that
E is a spectral capacity for Ta.

Clearly, E(∅) = X (∅) = {0} and E(C) = X (Σ(A)) = X . It is also quite
standard to see that the condition (c) of Definition 3.1 is fulfilled.

Let {U1, . . . , Un} be an open covering of the complex plane C. Then
{U1, . . . ,Un}, Uk = â−1(Uk), is an open covering of Σ(A). Of course, for an
open subset U ⊆ C and U = â−1(U) the closure U is a subset of â−1(U).
Thus, X (Uk) ⊆ X (â−1(Uk)) = E(Uk). The inclusion E(U1)+. . .+E(Un) ⊆ X
is clear. Let x ∈ X . By Theorem 2.10 there are ck in A, k = 1, . . . , n, such
that c1+. . .+cn = 1 and Sp(ck) ⊆ Uk, k = 1, . . . , n. Hence x = c1x+. . .+cnx
and Sp(ckx) ⊆ Uk ⊆ Uk, k = 1, . . . , n. It follows x ∈ E(U 1) + . . .+ E(Un).

Let F be a closed subset of C and define F = â−1(F ). If λ is any
point in F c then there is an open neighbourhood U of F such that λ 6∈ U.
We have mentioned that U ⊆ â−1(U), where U = â−1(U). Set H = U c and
H = â−1(H). The setsH andH are closed. It is evident that F∩H = ∅. Since
Hc = â−1(Hc) and Hc = U we have Hc ⊆ â−1(U). Hence the spectrum of
the quotient algebraA/A(H) is contained in â−1(U), becauseΣ(A/A(H)) =
h(A(H)) = Hc by [10], Theorem 7.3.1. Consider the element a−λ+A(H) ∈
A/A(H). For each ϕ ∈ Σ(A/A(H)) we have ϕ(a − λ +A(H)) = â(ϕ)− λ.
Since ϕ is not in U it follows that â(ϕ) 6= λ. Thus, zero is not in the spectrum
σ(a− λ+A(H)) or, equivalently, a− λ+A(H) has an inverse in A/A(H),
that is, there exists b ∈ A such that (b+A(H))(a− λ+A(H)) = 1 +A(H).
Let d ∈ A(H) be such that b(a − λ) = 1 + d. For every x ∈ X (F) we
have

Tb|X (F)(Ta|X (F) − λ)x = b(a− λ)x = x+ dx.

Since Sp(dx) ⊆ Sp(d) ∩ Sp(x) ⊆ H ∩ F = ∅, the vector dx is zero and
hence

Tb|X (F)(Ta|X (F) − λ)x = x, x ∈ X (F).

Thus, Ta|X (F) − λ is invertible and it follows that σ(Ta|X (F)) ⊆ F.
Definition 3.3. A bounded linear operator T on a Banach space X is

super-decomposable if for every pair of open sets U, V ⊆ C which cover C,
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there exists S ∈ B(X ) such that ST = TS, σ(T |imS) ⊂ U and σ(T |im(I−S))
⊂ V.

The notion of super-decomposable operators was introduced in [11] by
Laursen and Neumann. They proved that an operator T ∈ B(X ) is super-
decomposable if and only if for every open covering {U1, U2} of C there are
subspaces X1,X2 ∈ Lat{T} as well as operators S1, S2 ∈ B(X ), commuting
with T, such that S1 + S2 = I, Sk(X ) ⊆ Xk, k = 1, 2 and σ(T |Xk) ⊂ Uk,
k = 1, 2 (see [11], Theorem 1.4). Since every super-decomposable operator is
decomposable (cf. [11], Theorem 1.3), the following theorem is an improve-
ment of Theorem 3.2 and hence of Theorem 2 in [3].

Theorem 3.4. Let A be a spectrally separable algebra and let X be a
Banach left A-module. Then the multiplication operator Ta : x 7→ ax, x ∈ X ,
is super-decomposable for every a ∈ A.

Proof. Let a ∈ A. If {W1,W2} is an open covering of C let {U1, U2} be an
open covering of C such that Uk ⊂ Uk ⊂ Wk, k = 1, 2. The pair {U1,U2},
where Uk = â−1(Uk), k = 1, 2, is an open covering of Σ(A). Hence, by
Theorem 2.10, there are b1 and b2 in A such that b1 + b2 = 1 and Sp(bk) ⊂
Uk, k = 1, 2. The operators Sk = Tbk , k = 1, 2, commute with Ta and
S1 + S2 = I. According to the proof of Theorem 3.2 the spectral subspaces
Xk = X (â−1(Uk)), k = 1, 2, are in Lat{Ta} and σ(Ta|Xk) ⊆ Uk ⊂ Wk,
k = 1, 2. Hence for every x ∈ X we have

Sp(Skx) = Sp(bkx) ⊆ Sp(bk) ⊂ Uk ⊆ â−1(Uk), k = 1, 2.

Thus, imSk ⊆ Xk, k = 1, 2.

The following theorem improves Theorem 2 of [3] in the opposite direc-
tion.

Theorem 3.5. Let A be a unital commutative Banach algebra. If there is
a subset A0 in A such that the Gelfand transforms of elements in A0 separate
points of the spectrum Σ(A) and for every a ∈ A0 the multiplication operator
Ta : A → A has the decomposition property (δ), then A is a spectrally
separable algebra.

Proof. Let ϕ and ψ be two distinct functionals in Σ(A). Then there is
a ∈ A0 such that λ0 = â(ϕ) 6= â(ψ) = µ0. Define ε = |λ0 − µ0| and let
U = {z ∈ C; |λ0 − z| < ε/3}, V = {z ∈ C; |µ0 − z| < ε/3}, W = {z ∈
C; |λ0 − z| > ε/4 and |µ0 − z| > ε/4}, and U1 = V ∪W, V1 = U ∪W. Since
Ta has the decomposition property (δ) and {U,U1} is an open covering of
C, every x ∈ A admits a decomposition x = u+ u1 where u = (Ta − λ)f(λ)
for all λ ∈ C \ U and an analytic function f : C \ U → A and similarly
u1 = (Ta−λ)f1(λ) for all λ ∈ C\U 1 and an analytic function f1 : C\U1 → A.
It follows that σTa(u) ⊆ U and σTa(u1) ⊆ U1. Of course, x ∈ A also admits
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a decompostion x = v + v1 where v and v1 have similar properties with
respect to V, V1.

For x = 1 we have 1 = u+ (Ta− λ)f1(λ), λ ∈ C \U1. Since λ0 ∈ C \U1,
it follows from 1 = u + (a − λ0)f1(λ0) that û(ϕ) = 1. In the same way we
can see that v̂(ψ) = 1. Hence, it remains to prove that uv = 0.

Let ξ ∈ A∗. Consider A∗ as a dual Banach left A-module. Since f and
f1 are analytic A-valued functions, the A∗-valued functions F (λ) = f(λ)ξ,
λ ∈ C \ U , and F1(λ) = f1(λ)ξ, λ ∈ C \ U1, are also analytic. We have

uξ = (Ta − λ)f(λ)ξ = (a− λ)f(λ)ξ = (T ∗a − λ)F (λ), λ ∈ C \ U,
and u1ξ = (T ∗a − λ)F1(λ), λ ∈ C \U1, so σT ∗a (uξ) ⊆ U. Similarly, σT ∗a (vξ) ⊆
V . Denote by H the function λ 7→ vF (λ), λ ∈ C \ U. Since H is analytic,
σT ∗a (vuξ) ⊆ U. Similarly, σT ∗a (vuξ) ⊆ V . Hence, σT ∗a (vuξ) ⊆ U ∩ V = ∅.
The operator Ta has property (δ), so the adjoint operator T ∗a has Bishop’s
property (β) and thus has SVEP or, equivalently, A∗Ta∗(∅) = {0}. Therefore
vuξ = 0 and we have 0 = 〈vuξ, 1〉 = 〈ξ, uv〉 for all ξ ∈ A∗. Thus, uv = 0.

Example 3.6. Let X be a Banach space and B(X ) the algebra of all
bounded linear operators on X . Let T ∈ B(X ) be a generalized scalar oper-
ator with a spectral distribution U : C∞(R2) → B(X ) (see [5], Chapter 4).
Denote by A the uniform closure of {U(f); f ∈ C∞(R2)}. Then A is a com-
mutative Banach subalgebra in B(X ) and the identity operator I is in A.
The spectrum Σ(A) can be identified with σ(T ) and the Gelfand transform
of U(f) is f |σ(T ) (cf. [5], Theorem 3.2.1).

Following the proof of Theorem 2.13 in [2] we can see that the multipli-
cation operators LU(f) : A → A, f ∈ C∞(R2), are decomposable. Hence the
algebra is spectrally separable because the f |σ(T ) for f ∈ C∞(R2) separate
points of σ(T ).

Let X and Y be Banach spaces and let T ∈ B(X ) and S ∈ B(Y). If T
has property (δ) and if there is a surjection π ∈ B(X ,Y) such that πT = Sπ,
then also S has property (δ) ([1], Lemma 2). We will use this fact in the
proof of the last theorem of this article.

Theorem 3.7. Let A be a unital commutative Banach algebra and let
X be a left Banach A-module. Assume that A acts cyclically on X and
that annA(X ) = {0}. If there is a subset A0 in A such that the Gelfand
transforms of elements in A0 separate points of the spectrum Σ(A) and for
every a ∈ A0 the multiplication operator La : X → X has the decomposition
property (δ), then A is a spectrally separable algebra.

Proof. Let x ∈ X be cyclic for A, i.e. {ax; a ∈ A} = X . It is clear
that the mapping π : a 7→ ax is a well defined surjection and that it is in
B(A,X ). If ax = 0 for some a ∈ A, then abx = 0 for all b ∈ A. Since x is
cyclic and the annihilator of X is trivial it follows that π is injective. Hence
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π−1 : X → A is a continuous linear map. Let a be in A0 and let Ta and
La be the corresponding multiplication operators on A, respectively on X .
Then Ta has property (δ) because π−1La = Taπ

−1 and La has property (δ).
Now Theorem 3.5 can be used.

The condition annA(X ) = {0} cannot be removed from Theorem 3.7.
Let A be the disc algebra, i.e. the Banach algebra of all continuous complex-
valued functions on the closed unit disc D which are analytic on the open
unit disc D. Since A is not regular it is also not spectrally separable. The
one-dimensional space C is a left A-module if the multiplication is defined by
fz := f(0)z for each f ∈ A and each z ∈ C. Of course, A acts cyclically on
C and the multiplication operator corresponding to f ∈ A is f(0)I, where
I is the identity operator on C. Thus, all conditions of Theorem 3.7 are
fulfilled, except that annA(C) 6= {0}.

The author does not know if Theorem 3.7 is valid when the cyclic action
of A on X is replaced by a weaker condition. However, the following example
shows that some additional condition must be present. Let A again be the
disc algebra and let X be the Banach algebra of all continuous complex-
valued fuctions defined on D. Then each multiplication operator on X by an
element from A is super-decomposable because A ⊂ X and X is spectrally
separable. We also have annA(X ) = {0}. However, A does not act cyclically
on X .
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