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Harmonic measures for symmetric stable processes

by

Jang-Mei Wu (Urbana, IL)

Abstract. Let D be an open set in Rn (n ≥ 2) and ω(·,D) be the harmonic measure
on Dc with respect to the symmetric α-stable process (0 < α < 2) killed upon leaving D.
We study inequalities on volumes or capacities which imply that a set S on ∂D has zero
harmonic measure and others which imply that S has positive harmonic measure. In
general, it is the relative sizes of the sets S and Dc \S that determine whether ω(S,D) is
zero or positive.

We study null sets of harmonic measures for symmetric α-stable pro-
cesses. A symmetric α-stable process X on Rn is a Lévy process whose tran-
sition density p(t, x−y) relative to Lebesgue measure is uniquely determined
by its Fourier transform �

Rn
eix·ξp(t, x) dx = e−t|ξ|

α

.

Here α must be in the interval (0, 2]. When α = 2, it is a Brownian motion
running with a time clock twice as fast as the standard one. From now on,
we assume 0 < α < 2, when referring to symmetric stable processes. Un-
like the Brownian motion, the generator of a symmetric α-stable process is
nonlocal, as it is the fractional Laplacian −(−∆)α/2, an integro-differential
operator. A symmetric stable process has discontinuous sample paths and
heavy tails, while Brownian motion has continuous sample paths and expo-
nentially decaying tails. Basic properties of symmetric stable processes and
their potential-theoretic formulations in terms of Riesz kernels can be found
in [BG] and [L].

From now on, D is an open set in Rn (n ≥ 2), 0 < α < 2, XD is the sym-
metric α-stable processX killed upon leavingD, and τD is the first exit time.

An α-harmonic function u in D is a locally integrable function in Rn
continuous in D satisfying � |x|>1 |u(x)| · |x|−n−α dx <∞ and

(0.1) u(x) = Exu(XτB(x,r))
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for all balls B(x, r) ⊆ B(x, r) ⊆ D; u is said to be regular α-harmonic in D
if, in addition,

(0.2) u(x) = Exu(XτD) ∀x ∈ D,
and u is said to be singular α-harmonic if it is α-harmonic in D and u ≡ 0
in Dc. The strong Markov property yields that (0.2) implies (0.1); and if
u is α-harmonic in D then u is regular α-harmonic in B(x, r) whenever
B(x, r) ⊆ D.

For x ∈ D, the α-harmonic measure ωx(·,D) is the measure on Dc

given by
ωx(A,D) = P x(XτD ∈ A), A ⊆ Dc.

Fix A ⊆ Dc, and let ωx(A,D) be 1 for x ∈ A, and 0 for x ∈ Dc \ A; then
ωx(A,D) is regular α-harmonic in D.

We say A has zero harmonic measure if ωx(A,D) = 0 for some x ∈
D, equivalently for all x ∈ D by the Harnack inequality; we then write
ω(A,D) = 0.

If u is regular α-harmonic in D, then

(0.3) u(x) =
�
Dc

u(y) dωx(y,D) ∀x ∈ D.

In the case of a ball B = B(0, r), it was shown by M. Riesz that

(0.4) dωx(y,B) = kB(x, y)dy

where

(0.5) kB(x, y) =




C1(n, α)

[
r2 − |x|2
|y|2 − r2

]α/2
|x− y|−n, |y| > r,

0, |y| ≤ r.
Denote by G the Green function of X. Then

G(x, y) =
∞�
0

p(t, x− y) dt = C2(n, α)|x− y|−n+α

and G(·, y) is α-harmonic in Rn \ {y}. The Green function GD of XD is
defined by

GD(x, y) = C2(n, α)
[
|x− y|−n+α −

�
Dc

|y − z|−n+α dωx(z,D)
]
;

note that GD(x, x) = ∞ if x ∈ D, GD(x, y) = 0 in (D ×D)c, GD(x, y) =
GD(y, x) and GD( , y) is α-harmonic in D \ {y}. It is known that for any
measurable f ≥ 0 on D,

Ex
[ τD�

0

f(Xs) ds
]

=
�
D

GD(x, y)f(y) dy ∀x ∈ D.
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For any bounded measurable φ ≥ 0 on Dc,

Ex[φ(XτD) : XτD 6= XτD− ] = C3(n, α)
�
Dc

�
D

GD(x, y)
|y − z|n+α dy φ(z) dz,

where XτD− = limt↑τD X(t) exists a.s. ([IW]). Note from XτD− ∈ D that

dωx(z,D) = C3(n, α)
( �
D

GD(x, y)
|y − z|n+α dy

)
dz ∀x ∈ D and z ∈ Dc.

From this it follows that ωx(·,D) and the Lebesgue measure are mutually
absolutely continuous in Dc.

Consider S ⊆ ∂D. If S has positive Lebesgue measure then by (0.4),
ωx(S,D) > ωx

(
S,B

(
x, 1

2d(x, ∂D)
))

; and if S has zero α-capacity then
ωx(S,D) = 0 ([L]). Therefore in determining null sets for harmonic mea-
sures, it remains to study subsets of the boundary which have positive α-
capacity and zero volume. (The definition of α-capacity will be given in §1.)

Potential-theoretic problems for α-processes for various domains have
been studied by Byczkowski, Bogdan, Chen, Kulczycki, Song, and Wu. Bog-
dan [B1, B2] proved that for a Lipschitz domain Ω, the α-harmonic measure
of ∂Ω is zero, the boundary Harnack principle holds and the Martin bound-
ary coincides with the Euclidean boundary. Subsequently, Song and Wu
[SW] extended the boundary Harnack principle to all bounded open sets
and showed that the Martin boundary and the Euclidean boundary are the
same for slit domains. The discontinuity of the processes and the nonlocal
definition of harmonicity have imposed many technical complications; on
the other hand, the results of Song and Wu suggest that the jumps of the
processes make the roughness of ∂D and the disconnectedness ofD harmless.

Bogdan’s result on harmonic measure says that in a Lipschitz domain Ω,
the α-processes skip the boundary and jump directly to Ωc almost surely.
It would be interesting to know which other open sets have this property;
we have no answer to this question.

In this note, we study inequalities on volumes or capacities which imply
that a set S on ∂D has zero harmonic measure, and others which imply a
set has positive harmonic measure. In general, it is the relative sizes of the
sets S and Dc \ S that determine whether ω(S,D) is positive or zero.

In the following, we use c to denote positive constants depending at most
on n and α, use a & b when a/b ≥ c for some c > 0, and use a ∼= b when a & b
and b & a. We use d to denote the Euclidean distance, |S| to denote the
Lebesgue measure (or volume) of a set S and dimS to denote the Hausdorff
dimension of S.

The author thanks R. Song for discussions related to Theorem 1.
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1. Zero harmonic measure. Let D be an open set. We say Dc satisfies
the volume density condition (VDC) provided that there exists c > 0 so that

(1.1) |Dc ∩B(x, 2d(x, ∂D))| > cd(x, ∂D)n ∀x ∈ D.
We note that in (1.1), balls are centered in the interior of D. There is

a more commonly used volume density condition (VDCb) which states that
there exists c > 0 so that

|Dc ∩B(x, r)| > crn ∀x ∈ ∂D and r > 0.

It is easy to check that VDCb implies VDC and that VDCb implies |∂D| = 0.
On the other hand, there exist domains D such that Dc satisfies VDC and
yet |∂D| > 0; for example, let D be a domain having the shape of an infinite
branching tree and with branches accumulating at a Cantor set S of positive
volume, and having branches chosen so that Dc satisfies VDC.

Our first theorem generalizes Bogdan’s result on harmonic measures for
Lipschitz domains and possibly has been known to him; however the analytic
approach here is more direct.

Theorem 1. Let 0 < α < 2 and D be an open set. If Dc satisfies the vol-
ume density condition (VDC) and ∂D has zero volume then ω(∂D,D)=0.

Theorem 1 follows from the more technical result below.

Theorem 1′. Let 0 < α < 2, D be an open set and S be a measurable
subset of ∂D of zero volume. Suppose that there exists c′ > 0 so that

(1.2) |Dc ∩B(x, 2d(x, S))| > c′d(x, S)n ∀x ∈ D.
Then ω(S,D) = 0.

Proof. Fix c0 ∈ (0, 1/2), depending only on n and c′, so that

(1.3) |Dc ∩B(x, 2d(x, S)) \B(x, c0d(x, S))| > c′

2
d(x, S)n ∀x ∈ D.

For x ∈ D, let ∆x = B(x, c0 dist(x, S)). Then by the Markov property
and the maximum principle,

ωx(S,D) = P x{Xτ∆x∩D ∈ S}+ P{Xτ∆x∩D ∈ D \∆x, XτD ∈ S}(1.4)

= ωx(S,∆x ∩D) +
�

D\∆x
ωy(S,D) dωx(y,∆x ∩D)

≤ ωx(S,∆x) + sup
y∈D

ωy(S,D)ωx(D \∆x,∆x ∩D)

≤ sup
y∈D

ωy(S,D)ωx(D \∆x, ∆x).

Note that ωx(S,∆x) = 0 because S is contained in ∆c
x and has zero volume.

It follows from the integral representation for α-harmonic functions in the
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ball ∆x ((0.3)–(0.5)) and (1.3) that

ωx(Dc \∆x,∆x) ≥ ωx(Dc ∩B(x, 2d(x, S) \∆x),∆x)

& |Dc ∩B(x, 2d(x, S) \∆x)|d(x, S)−n > c0 > 0.

Therefore

(1.5) sup
x∈D

ωx(D \∆x,∆x) < 1− c0 < 1,

and it follows from (1.4) that

(1.6) sup
x∈D

ωx(S,D) < 1− c0.

Applying (1.5) and (1.6) to (1.4), we obtain ωx(S,D) < (1 − c0)2 for all
x ∈ D. Iterating this process, we obtain supD ω

x(S,D) < (1 − c0)k for all
k ≥ 1. Therefore ω(S,D) = 0.

In examining the sharpness of (1.2), we arrive at the following example.

Example 1. Let 0<α<2, λ>(n+α)/(n−α) and h(t)=(log+(1/t))−λ.
Then there exist an open set D in Rn and a Cantor set S ⊆ ∂D of dimension
n− α such that

(1.7) |Dc ∩B(x, 2d(x, S))| & d(x, S)nh(d(x, S)) ∀x ∈ D;

however ω(S,D) > 0. Moreover ω(∂D,Dc) = 0.
When n ≥ 3 or when n = 2 and 0 < α ≤ 1, ∂D can be chosen to be the

image of a sphere under a homeomorphism of Rn.

A detailed construction will be given in §3.
We believe that the sharp condition to replace (1.2) in Theorem 1′ lies

strictly between (1.2) and (1.7).
Next, we give a sufficient condition for a set S to have zero α-harmonic

measure by comparing the capacities of S and Dc \ S.
For 0 < α < n and S compact in Rn, the α-capacity of S, Cα(S), is

inf
{
µ(S) :

�
S

|x− y|−n+α dµ(y) ≥ 1 on S
}
.

There exists a measure µ (α-capacitory measure) for which the infimum is
attained; furthermore µ(S) = Cα(S) and �

S
|x − y|−n+α dµ(y) = 1 on S

except on a set of zero α-capacity.
For a Borel set T , define

Cα(T ) = sup{Cα(S) : S compact, S ⊆ T},
and note that

Cα(B(0, r)) ∼= rn−α.
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Let D be an open set in Rn (n ≥ 2). We say Dc satisfies the α-capacity
density condition (α-CDC) provided that there exists τ > 0 so that

(1.8) Cα(Dc ∩B(x, 2d(x, ∂D))) > τd(x, ∂D)n−α ∀x ∈ D.
Here again our condition is weaker than the usual one, namely, that there

exists τ > 0 so that

Cα(Dc ∩B(x, r)) > τrn−α ∀x ∈ ∂D, r > 0.

Theorem 2. Let 0 < α < 2, D an open set and S a compact subset of
∂D. Suppose that Dc satisfies the α-capacity density condition (1.8) and S
satisfies

(19) Cα(S ∩B(x, 5d(x, ∂D)))

<
τ

4
(2−n+α − 3−n+α)d(x, ∂D)n−α ∀x ∈ D.

Then ω(S,D) = 0.

The theorem says that if the α-capacity of Dc is large and the α-capacity
of S is small in comparison at all scales then ω(S,D) = 0.

Proof. Let T = Dc \S, and for a given x ∈ D, let cB = B(x, cd(x, ∂D)).
Note from (1.8) and (1.9) that Cα(T ∩ 2B) > 3

4τd(x, ∂D)n−α. Choose a
compact subset T̃ of T ∩ 2B so that Cα(T̃ ) > (τ/2)d(x, ∂D)n−α and let µ
be its α-capacitory measure.

Let Ω = (D ∩ 5B)∪ ((5B \ 2B) \S) and note that Ωc = (T ∩ 2B)∪ (S ∩
5B) ∪ (5B)c. It follows from the maximum principle that

ωx(T,D) ≥ ωx(T ∩ 2B,Ω).

Since ω(T ∩ 2B,Ω) + ω(S ∩ 5B, 5B \ S) and ω(T̃ , 5B \ T̃ ) are α-harmonic
in Ω and

(1.10) ω(T ∩ 2B,Ω) + ω(S ∩ 5B, 5B \ S) ≥ ω(T̃ , 5B \ T̃ )

in Ωc, the inequality (1.10) holds at x also.
Then, by the conditions imposed on T̃ ,

(1.11) ωx(T̃ , 5B \ T̃ )

≥
�
T̃

|x− y|−n+α dµ(y)−
�

(5B)c

�
T̃

|z − y|−n+α dµ(y) dωx(z, 5B)

≥
�
T̃

|x− y|−n+α dµ(y)− (3 dist(x, ∂D))−n+αµ(T̃ )

≥ (2−n+α − 3−n+α)d(x, ∂D)−n+αµ(T̃ ) ≥ (2−n+α − 3−n+α)τ/2.
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Let ν be the α-capacity measure for S ∩ 5B. Then

ωx(S ∩ 5B, 5B \ S) ≤
�

S∩5B

|x− y|−n+α dµ(y)(1.12)

≤ µ(S ∩ 5B)d(x, ∂D)−n+α.

From (1.9)–(1.12) and the subadditivity of capacity it follows that

ωx(T,D) ≥ τ

4
(2−n+α − 3−n+α) ∀x ∈ D,

or
ωx(S,D) < c(n, α, τ) < 1 ∀x ∈ D.

Therefore ω(S,D) = 0 by Lemma 1 below.

Let HD be the class of functions continuous in Rn and α-harmonic
in D, C(Dc) be the class of functions f continuous in Dc satisfying

�
Dc∩{|x|>1} |f(x)| · |x|−n−α dx < ∞, and H(D) be the class of functions

on Rn, α-harmonic in D. Following Landkof ([L], Chap. IV, 15 and 21),
there exists a unique positive linear operator A from C(Dc) into H(D) so
that for f ∈ HD, A(f |Dc) = f in Rn; moreover

Af(x) =
�
Dc

f(y) dωx(y,D) on D,

and Af(x) is the unique (up to a set of α-capacity zero) α-harmonic function
in D which has limit f(z) at each regular boundary point z. The set of irreg-
ular boundary points has zero α-capacity, hence zero α-harmonic measure;
and Af is called the solution of the Dirichlet problem for the given f .

Given f ∈ C(Dc), let Pf (Perron family) be the class of functions u, α-
subharmonic in D, with u ≤ f in Dc and boundary values u∗ ≤ f on ∂D.
(An α-subharmonic function in D is a function locally integrable in Rn,
upper semicontinuous in D satisfying � |x|>1 |u(x)| · |x|−n−α dx < ∞ and

u(x) ≤ Exu(XτB(x,r)) for all balls B(x, r) ⊆ B(x, r) ⊆ D; and u∗(z) ≡
lim supu(x) as x→ z in D for z ∈ ∂D.) Define

Lf(x) = sup{u(x) : u ∈ Pf} in Rn.

Following the argument for Brownian motion (α = 2) as in [F] or [H], we
can prove that Lf is α-harmonic in D, and L is a positive linear operator
from C(Dc) into H(D) with A(f |Dc) = f for f ∈ HD. By the uniqueness,
L = A.

The lemma below is known for the Brownian motion (α = 2). When
0 < α < 2, it is less apparent and is false if the assumption S ⊆ ∂D is
removed; note for example that if D = B(0, 1) and S = {2 ≤ |x| ≤ 3}, then
supx∈D ω

x(S,D) < 1 and ω0(S,D) > 0.
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Lemma 1. Let 0 < α < 2, D be an open set and S be a compact subset
of ∂D. Suppose that supx∈D ω

x(S,D) < 1. Then ω(S,D) = 0.

Proof. Let fk be a decreasing sequence of continuous functions on Dc

with 0 ≤ fk ≤ 1, supp fk ↓ S and fk ↓ χS . Then

Afk(x) =
�
Dc

fk(y) dωx(y,D) ↓ ωx(S,D) on D.

Let a = supx∈D ω
x(S,D) < 1. We claim that for each k,

(1.13) ωx(S,D) ≤ aAfk(x) on D.

This shows that ωx(S,D)≤aωx(S,D) on D, which implies that ω(S,D)=0.
To prove (1.13), we fix k and let

v(x) = ωx(S,D)− aAfk(x) in Rn.

Note that v ≤ 1 and that v∗(z) ≤ 0 at every regular boundary point z. Take
ε > 0 and let Fε be the set of boundary points z where v∗(z) ≥ ε. The set Fε
is closed and consists of irregular points only, hence ω(Fε,D) = 0. Choose
a decreasing sequence of continuous functions gj on Dc with 0 ≤ gj ≤ 1,
supp gj ↓ Fε and gj ↓ χFε . Then v ∈ Pε+gj for each j. Therefore

v(x) ≤ L(ε+ gj)(x) = ε+ Lgj(x) = ε+ Agj(x)

for each j. Since Agj(x) ↓ ωx(Fε,D) = 0 in D, we have v(x) ≤ ε in D for
any ε > 0. This proves the claim and thus the lemma.

2. Positive harmonic measure

Theorem 3. Let 0 < α < 2, D be an open set and S be a compact
subset of ∂D having positive α-capacity. Suppose that Cα({x ∈ Dc : 0 <
d(x, S) ≤ a})→ 0 as a→ 0. Then ω(S,D) > 0.

Proof. We assume as we may that S ⊆ B(0, 1/2). Let T = Dc \ S, and
let Ta = {x ∈ Dc : 0 < d(x, S) ≤ a} and Ta,b = {x ∈ Dc : b ≤ d(x, S) ≤ a}
for 0 < b < a < 1/10. Then

Cα(Ta) = sup
b>0

Cα(Ta,b).

Choose and fix a > 0 so that

Cα(Ta) < 2−n+α−1(1− 2−n+α)Cα(S),

and let b ∈ (0, a). Denote by µ and ν the α-capacitory measures of S and
Ta,b respectively. Let

U(x) =
�
S

|x− y|−n+α dµ(y), V (x) =
�

Ta,b

|x− y|−n+α dν(y).
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Recall that U and V are positive α-harmonic in Rn \S and Rn \Ta,b respec-
tively, with U ≡ 1 on S and V ≡ 1 on Ta,b except possibly on some sets of
zero α-capacity, and µ(S) = Cα(S) and ν(Ta,b) = Cα(Ta,b). Hence

ν(Ta,b) < 2−n+α−1(1− 2−n+α)µ(S).

Note that for |x| ≥ 3,

V (x) ≤ (|x| − 1)−n+αν(Ta,b)(2.1)

< (|x| − 1)−n+α2−n+α−1(1− 2−n+α)µ(S)

< 2−n+α−1(1− 2−n+α)
( |x| − 1
|x|+ 1

)−n+α

U(x)

≤ 2−1(1− 2−n+α)U(x).

Define u(x) = ωx(S,B(0, 10)), v(x) = ωx(Ta,b, B(0, 10)) and let ũ be the
function in Rn α-harmonic in B(0, 10) with ũ ≡ U on B(0, 10)c, i.e.

ũ(x) =
�

B(0,10)c

U(y) dωx(y,B(0, 10)) in B(0, 10).

Note that
u(x) > U(x)− ũ(x) on B(0, 10).

Since U(y) ≤ 9−n+αµ(S) for |y| ≥ 10, we have ũ ≤ 9−n+αµ(S). Therefore
for |x| < 10,

u(x) > U(x)− 9−n+αµ(S)

= (1− 2−n+α)U(x) + 2−n+αU(x)− 9−n+αµ(S).

Note that for |x| = 3, U(x) > 4−n+αµ(S), and

u(x) > (1− 2−n+α)U(x) > 2V (x) > 2v(x)

from (2.1). Therefore for |x| = 3,

ωx(S ∪ Tb, B(0, 10) \ (S ∪ Ta)) ≥ ωx(S,B(0, 10) \ (S ∪ Ta,b))

≥ u(x)− v(x) >
1
2
u(x)

>
1
2

(1− 2−n+α)U(x) > c(n, α)µ(S)

for some c(n, α) > 0. Letting b→ 0+, we obtain

ωx(S,B(0, 10) \ (S ∪ Ta)) ≥ c(n, α)µ(S) for |x| = 3.

Hence by Lemma 1,

(2.2) sup{ωx(S,B(0, 10) \ (S ∪ Ta)) : x ∈ B(0, 10) \ (S ∪ Ta)} = 1.

If Ta = T ∩B(0, 10), then B(0, 10) \ (S ∪ Ta) = D ∩B(0, 10), thus

ωx(S,D) ≥ ωx(S,B(0, 10) ∩D) > 0 in D ∩B(0, 10).
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If T ∩B(0, 10) \ Ta 6= ∅, let

A = sup{ωx(S,B(0, 10) \ (S ∪ Ta)) : x ∈ B(0, 10) ∩ T \ Ta}.
Because dist(S,B(0, 10) ∩ T \ Ta) ≥ a > 0, we have 0 < A < 1. It follows
from (2.2) that there exists x0 ∈ B(0, 10)\ (S∪Ta) so that ωx0(S,B(0, 10)\
(S ∪ Ta)) > A. Since Dc is the union of two disjoint sets S ∪ Ta and T \ Ta,
it follows from the Markov property and the choice of A and x0 that

ωx0(S,B(0, 10) ∩D) = ωx0(S,B(0, 10) \ (S ∪ Ta))

−
�

B(0,10)∩T\Ta
ωx(S,B(0, 10) \ (S ∪ Ta)) dωx0(x,B(0, 10) \ (S ∪ Ta)) > 0.

This implies that ωx0(S,D) > 0 and proves the theorem.
The proof of Theorem 3 shows in fact the following.

Theorem 3′. There exists c(n, α) > 0 so that for any open set D and
compact set S ⊆ ∂D, if Cα(S) > 0 and

Cα({x ∈ Dc : 0 < d(x, S) ≤ a}) < c(n, α)Cα(S)

for some a > 0, then ω(S,D) > 0.

3. Examples. Our theorems suggest that it is the relative sizes of S and
Dc \S that determine the vanishing of ω(S,D). Examples 1 and 2 reinforce
this observation, and use all three theorems in the reasoning.

First we give the details for Example 1.
Since λ > (n+ α)/(n− α), we have (λ + 1)(n− α)/n > 2. Choose

ε, δ, ak, xk so that 0 < δ < ε < (λ+ 1)(n− α)/n− 2 and

an−αk = 2−nkk1+δ and xn−αk = k−2−ε.

Calculations show that

kxnk = k1−(2+ε)n/(n−α) > k−λ

and for large k, say k ≥ k0,

2ak+1 + 3xkak < ak.

Let S be the Cantor set in the unit cube constructed as follows. Let
Q1

0 = [0, 1]n. Assume that the cubes Qjk (1 ≤ j ≤ 2nk) of side length ak
have been constructed. Inside each Qjk, choose 2n closed subcubes of side
length ak+1 at the vertices of Qjk. Call this collection of subcubes Qik+1 (1 ≤
i ≤ 2n(k+1)). Let

S =
⋂

k

⋃

j

Qjk.
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Let Bjk be the closed ball concentric with Qjk of radius xkak and let

D = Rn \
(
S ∪

⋃ ′
Bjk

)

where
⋃′
Bjk denotes the union

⋃
k≥k0

⋃
j B

j
k. Note that ∂D = S ∪⋃′ ∂Bjk.

The volume condition (1.7) follows easily from the estimate

|Dc ∩Qjk| =
∞∑

m=k

2n(m−k)|B1
m| ∼=

∞∑

m=k

2−nk2nmxnma
n
m

∼= kxnka
n
k ≥ k−λank .

It is clear that dimS = n− α.
To see Cα(S) > 0, we let µ be the measure on S so that µ(S∩Qjk) = 2−kn

and observe that µ(S ∩ B(x, t)) ≤ C(n)tn−α
(

log 2
√
n
t

)−1−δ
for any x ∈ S

and 0 < t ≤ √n. Therefore

�
S

|x− y|−n+α dµ(y) .
√
n�

0

µ(B(x, t))
tn−α+1 dt ≤ c(n, α, δ) <∞

for all x ∈ S; this proves that Cα(S) > 0.
We now prove that

(3.1) Cα(S ∩Qjk) ∼= 2−knkδ = an−αk k−1,

a fact needed in later discussion. Consider the restriction of µ (from the last
paragraph) onto Qjk; then for any x ∈ S ∩Qjk,

�
S∩Qjk

|x− y|−n+α dµ(y) .
√
nak�
0

µ(B(x, t))
tn−α+1 dt ∼= k−δ.

For each x ∈ S ∩Qjk, a mutually disjoint sequence {Qi(m,x)
m : m ≥ k + 1} of

cubes in Qjk can be found so that dist(x,Qi(m,x)
m ) ∼= am; therefore

�
S∩Qjk

|x− y|−n+αdµ(y) &
∞∑

m=k+1

dist(x,Qi(m,x)
m )−n+αµ(Qi(m,x)

m )

∼=
∞∑

m=k+1

a−n+α
m 2−mn ∼= k−δ.

Since µ(S ∩Qjk) = 2−kn, this proves (3.1).
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Define Wk =
⋃
m≥k

⋃
j B

j
m for k ≥ k0. Then by the subadditivity of

capacities,

Cα(Wk) ≤
∞∑

m=k

∑

j

Cα(Bjm) .
∞∑

m=k

2nmxn−αm an−αm

≤
∞∑

m=k

m−1−ε+δ ∼= k−ε+δ.

In fact Cα(Wk) ∼= k−ε+δ; this is not needed in our argument and the detail
is not given.

Since Cα(S) > 0 and Cα(Wk)→ 0 as k →∞, it follows from Theorem 3
that ω(S,D) > 0.

Since the exterior of the open set Dc satisfies the VDC and ∂D has zero
volume, it follows from Theorem 1 that ω(∂D,Dc) = 0.

When n ≥ 3, or when n = 2 and 0 < α ≤ 1, a line segment has zero
α-capacity. Fix a closed ball B0 centered at (1/2, . . . , 1/2) disjoint from
S ∪⋃′Bjk. First connect B0 to each Bik0

by a thin wire Lik0
in the unit cube

and then connect each Bjk (k ≥ k0) to every Bik+1 contained in Qjk by a
thin wire Lik+1 in Qjk so that every wire meets exactly two balls, the entire
collection of wires are mutually disjoint and S ∪ B0 ∪

⋃′(Bjk ∪ L
j
k) is the

image of a closed ball under a global homeomorphism. Let

D = Rn \
(
S ∪B0 ∪

⋃ ′
(Bjk ∪ L

j
k)
)
.

When wires are chosen thin enough, all assertions in Example 1 are still
valid.

Example 2. If we retain S from Example 1 and replace each Bj
k by a

closed set in Qjk \
⋃
iQ

i
k+1 having α-capacity ∼= an−αk , then, in contrast with

Example 1, ω(S,D) = 0. This follows from Theorem 2, the statement (3.1)
and the fact that for the new set D, Dc satisfies α-CDC.
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