A simplification in the proof of the non-isomorphism between $H^1(\delta)$ and $H^1(\delta^2)$

by

PAUL F. X. MÜLLER (Linz)

Abstract. The proof that $H^1(\delta)$ and $H^1(\delta^2)$ are not isomorphic is simplified. This is done by giving a new and simple proof to a martingale inequality of J. Bourgain.

In this note we present a simplification in the proof that $H^1(\delta)$ and $H^1(\delta^2)$ are not isomorphic. The analytic backbone of this result is a martingale inequality of J. Bourgain. Here we will strengthen this inequality and simplify its proof.

We let \mathcal{D} denote the collection of dyadic intervals in the interval [0, 1]. For $I \in \mathcal{D}$ we let h_I be the L^{∞} -normalized Haar function supported on the interval I. The Haar function h_I takes the value +1 on the left half of the interval I, and the value -1 on the right half of I. For a function h with Haar expansion $h = \sum b_I h_I$, $b_I \in \mathbb{R}$, we say that h belongs to the dyadic BMO space if

$$\sup_{I\in\mathcal{D}}\left(\frac{1}{|I|}\sum_{J\subseteq I}b_J^2|J|\right)^{1/2}<\infty.$$

We write BMO(δ) for the dyadic BMO space and we denote the above supremum by $||h||_{BMO(\delta)}$. For $f = \sum a_J h_J$ we have the dyadic square function given as

$$S(f)(x) = \left(\sum a_J^2 \mathbf{1}_J(x)\right)^{1/2}.$$

If g is a positive integrable function then the martingale inequality of J. Bourgain relates the above expressions as follows:

$$\int gS(h) \ge \delta \int fh \, dx - \delta^{-1} \|S(f) - g\|_{L^1}^{1/2} \|S(f)\|_{L^1}^{1/2} \|h\|_{\text{BMO}(\delta)},$$

where $\delta > 0$ is a universal constant. In [B] J. Bourgain uses this inequality to obtain estimates from below for $\int gS(h)$ under the hypotheses that $\int fh = 1$

²⁰⁰⁰ Mathematics Subject Classification: 30D55, 46B03, 60G46.

The author was partially supported by OAAD Pr.Nr 11/99.

and that the error term $||S(f) - g||_{L^1}^{1/2}$ is small. It follows from the proof in [B] that improvements in the estimates for the error term translate into better estimates for the main theorem in [B]. It is the purpose of this note to improve this error term. We also obtain simple numerical constants from a simple straightforward proof.

THEOREM 1. Let $h \in BMO(\delta)$, $g \in L^1([0,1])$, $g \ge 0$, and let f be a function with $S(f) \in L^1([0,1])$. Then

$$\int gS(h) \, dx \ge \frac{1}{2} \int fh \, dx - 2 \|S(f) - g\|_{L^1} \|h\|_{\text{BMO}}.$$

COMMENT. The proof we give is just the standard proof of H^1 -BMO duality as in [F-S], pp. 148–149. Clearly it is only the contrast to the original—quite delicate—argument of J. Bourgain [B] that justifies its presentation below.

Proof. We let $f = \sum a_I h_I$ and $h = \sum b_I h_I$ be the Haar expansions of f and h. Then we write

$$S(f,m)(x) = \left(\sum_{|I| \le 2^{-m}} a_I^2 \mathbf{1}_I(x)\right)^{1/2}, \quad h^{\#}(x) = \sup_{I \ni x} \left(\frac{1}{|I|} \sum_{J \subseteq I} b_J^2 |J|\right)^{1/2}.$$

Now we define the following stopping time:

$$m(x) = \inf\{m : S(h,m)(x) < 2h^{\#}(x)\}.$$

We will use the following estimate which will be proved below:

$$|\{x \in I : 2^{-m(x)} < |I|\}| \le |I|/2.$$

It follows from biorthogonality of the Haar functions, Fubini's theorem and the Cauchy–Schwarz inequality that

$$\begin{split} \int f(x)h(x) \, dx &\leq \int \sum_{I \in \mathcal{D}} |a_I b_I| \mathbf{1}_I(x) \, dx \leq 2 \int \sum_{\{I:|I| < 2^{-m(x)}\}} |a_I b_I| \mathbf{1}_I(x) \, dx \\ &\leq 2 \int S(f)(x) S(h, m(x))(x) \, dx. \end{split}$$

We now add and subtract the function g, and we finish the proof using the defining property of the stopping time m(x):

$$\begin{split} \int f(x)h(x) \, dx &\leq 2 \int (S(f)(x) - g(x))S(h, m(x))(x) \, dx + 2 \int g(x)S(h, m(x)) \, dx \\ &\leq 4 \int (S(f)(x) - g(x))h^{\#}(x) \, dx + 2 \int g(x)S(h)(x) \, dx \\ &\leq 4 \|S(f) - g\|_1 \|h\|_{\text{BMO}(\delta)} + 2 \int g(x)S(h)(x) \, dx. \end{split}$$

We have used the equality $\|h^{\#}\|_{\infty} = \|h\|_{BMO(\delta)}$ to obtain the last line.

It remains to prove the estimate $|\{x \in I : 2^{-m(x)} < |I|\}| \leq |I|/2$. We fix $I \in \mathcal{D}$ and write $A = \{x \in I : 2^{-m(x)} < |I|\}$. Then we choose $m \in \mathbb{N}$ such that

$$|I| = 2^{-m}$$
.

Note that for $x \in A$ we have the following pointwise estimate:

$$S^{2}(h, m(x) - 1)(x) \ge 4h^{\#2}(x) \ge 4\frac{1}{|\tilde{I}|} \int_{\tilde{I}} S^{2}(h, m - 1)(t) dt,$$

where \tilde{I} is the dyadic interval satisfying $I \subseteq \tilde{I}$, $|\tilde{I}| = 2|I|$. We also have

$$S^{2}(h, m-1)(x) \ge S^{2}(h, m(x) - 1)(x)$$
 for $x \in A$.

Hence

$$\frac{1}{|\tilde{I}|} \int_{\tilde{I}} S^2(h, m-1)(x) \, dx \ge \frac{1}{|\tilde{I}|} \int_A S^2(h, m(x)-1)(x) \, dx$$
$$\ge 4 \frac{|A|}{|\tilde{I}|} \cdot \frac{1}{|\tilde{I}|} \int_{\tilde{I}} S^2(h, m-1)(x) \, dx.$$

Cancelling $|\tilde{I}|^{-1} \int_{\tilde{I}} S^2(h, m-1)(x) dx$ from both sides of the above estimate gives $|A| \leq |I|/2$, as claimed.

REMARKS. 1. Note that we actually proved more than we claimed. In fact we showed that the integral

$$\int g(x) \min\{S(h)(x), 2h^{\#}(x)\} dx$$

dominates the expression

$$\frac{1}{2} \int fh \, dx - 2 \|S(f) - g\|_{L^1} \|h\|_{\text{BMO}(\delta)}.$$

We should remark that this improvement of Bourgain's martingale inequality has further consequences. It allows us to break the proof of the nonisomorphism theorem in [B] into two independent pieces, in such a way that the only place where one uses the notion of "order-inversion" is in Lemma 5 of [B]. In this way the content of the present paper helps to clarify somewhat the role played by the concept of "order-inversion" in the proof of the non-isomorphism between H^1 spaces.

2. The above proof uses only well known and well understood tools developed to prove H^1 -BMO duality. Therefore it is clear that the validity of Theorem 1 is not limited to the case of dyadic martingales. Analogous versions can be obtained, e.g., for the case of H^1 spaces consisting of harmonic functions in the upper half space \mathbb{R}^{n+1}_+ which are defined as follows. For an integrable function $f : \mathbb{R}^n \to \mathbb{R}$ we denote by $F : \mathbb{R}^{n+1}_+ \to \mathbb{R}$ its harmonic

P. F. X. Müller

extension to the upper half space $\mathbb{R}^{n+1}_+ = \{(y,t) : y \in \mathbb{R}^n, t > 0\}$. Then the square function is

$$S(f)(x) = \left(\int_{\Gamma(x)} |\nabla F(y,t)|^2 t^{1-n} \, dt \, dx\right)^{1/2},$$

where $\Gamma(x) = \{(y,t) \in \mathbb{R}^{n+1}_+ : |x-y| < t\}$. For $h : \mathbb{R}^n \to \mathbb{R}$ locally integrable, we let

$$\|h\|_{\mathrm{BMO}(\mathbb{R}^n)} = \left(\sup_{Q} \int_{Q} \left| h(x) - \int_{Q} h(y) \frac{dy}{|Q|} \right|^2 \frac{dx}{|Q|} \right)^{1/2},$$

where the supremum is taken over all cubes in \mathbb{R}^n . Finally, we let $g \in L^1(\mathbb{R}^n)$ be a non-negative integrable function. With essentially the same proof as above we can show that

$$\int_{\mathbb{R}^n} g(x) S(h)(x) \, dx \ge \delta \int_{\mathbb{R}^n} f(x) h(x) \, dx - \delta^{-1} \| S(f) - g \|_{L^1(\mathbb{R}^n)} \| h \|_{\mathrm{BMO}(\mathbb{R}^n)},$$

where $\delta > 0$ is a universal constant. (See [F-S], pp. 148–149.)

References

- [B] J. Bourgain, The non-isomorphism of H¹-spaces in one and several variables, J. Funct. Anal. 46 (1982), 45–57.
- [F-S] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137–193.

Institut f. Analysis u. Numerik J. Kepler Universität Linz A-4040 Linz, Austria E-mail: pfxm@caddo.bayou.uni-linz.ac.at

> Received May 2, 2000 Revised version February 23, 2001 (4524)