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Compact operators whose adjoints
factor through subspaces of lp

by

Deba P. Sinha and Anil K. Karn (New Delhi)

Abstract. For p ≥ 1, a subset K of a Banach space X is said to be relatively p-
compact if K ⊂ {∑∞n=1 αnxn : {αn} ∈ Ball(lp′)}, where p′ = p/(p− 1) and {xn} ∈ lsp(X).
An operator T ∈ B(X,Y ) is said to be p-compact if T (Ball(X)) is relatively p-compact
in Y . Similarly, weak p-compactness may be defined by considering {xn} ∈ lwp (X). It is
proved that T is (weakly) p-compact if and only if T ∗ factors through a subspace of lp
in a particular manner. The normed operator ideals (Kp, κp) of p-compact operators and
(Wp, ωp) of weakly p-compact operators, arising from these factorizations, are shown to
be complete. It is also shown that the adjoints of p-compact operators are p-summing.

It is further proved that for p ≥ 1 the identity operator on X can be approximated
uniformly on every p-compact set by finite rank operators, or in other words, X has
the p-approximation property, if and only if for every Banach space Y the set of finite
rank operators is dense in the ideal Kp(Y,X) of p-compact operators in the factorization
norm ωp. It is also proved that every Banach space has the 2-approximation property
while for each p > 2 there is a Banach space that fails the p-approximation property.

1. Introduction and notations. The approximation property of Ba-
nach spaces and its natural relationship with the theory of tensor products,
studied by Grothendieck [5], draw heavily on his visualization of a relatively
compact set as one sitting inside the convex hull of a norm null sequence
of vectors. Surprisingly enough, the scope of such visualizations, viz. sets
sitting inside the convex hulls of special type of null sequences, was never
studied. On the other hand, definitions of special types of approximation
properties that were studied later (e.g., p-approximation properties studied
by Saphar [12] for 1 ≤ p <∞ and by Rĕınov [9] for 0 < p <∞) were always
conceived via the tensor product route.

In this paper, hopefully in the spirit of A. Grothendieck, we define a
p-compact set for p ≥ 1 as one sitting inside the p-convex hull (to be defined
later) of a p-summable sequence of vectors, and a p-compact operator as
one that maps bounded sets to relatively p-compact sets. We study the
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factorization of p-compact operators. This factorization yields a complete
norm κp on the operator ideal Kp of p-compact operators. We study the
position of (Kp, κp) in operator ideals and observe that the adjoints of p-
compact operators are p-summing. The ideas of p-compact sets, p-compact
operators and their factorization can be studied in a more general context,
namely that of weak p-compactness. We show that the operator ideal Wp

of weakly p-compact operators is complete in the factorization norm ωp.
It is interesting to note that p-summing operators map weakly p-compact
sets to p-compact sets. Thus p-summing operators may be thought of as
“p-completely continuous” maps.

We consider the approximation of the identity operator on p-compact
sets by finite rank operators, that is, the p-approximation property (for
short, p-a.p.). The classical approximation property is equivalent to the den-
sity of the finite rank operators F (Y,X) in the ideal K(Y,X) of compact
operators for every Banach space Y in the operator norm. Surprisingly, we
prove that the p-a.p. on X is equivalent to the ωp-density of F (Y,X) in
Kp(Y,X). We show that every Banach space has the 2-a.p. while for each
p > 2 there is a Banach space that fails the p-a.p.

At the end of the paper we study the p-approximation properties due
to Saphar [12] and Rĕınov [9] through the notion of (q, p)-approximation
property, 1 ≤ p ≤ q ≤ ∞, which is weaker than the p-a.p.

We denote Banach spaces by X and Y , the closed unit ball of X by
Ball(X), the dual of X by X∗ and the space of all bounded linear operators
from X to Y by B(X,Y ). In B(X,Y ) the subspaces of all finite rank and
all compact operators are denoted by F (X,Y ) and K(X,Y ), respectively.
Further the projective tensor product X ⊗̃π Y of X and Y consists of all
elements ϕ having a representation of the form ϕ =

∑∞
n=1 xn ⊗ yn with

{xn} ⊂ X and {yn} ⊂ Y such that
∑∞

n=1 ‖xn‖ · ‖yn‖ < ∞. The projective
norm of ϕ is the infimum of

∑∞
n=1 ‖xn‖ · ‖yn‖ over all such representations.

For any operator T ∈ B(X,Y ), N(T ) and R(T ) denote the null space and
range of T respectively. Finally, for a bounded sequence {xn} in X the
convex hull of {xn} is denoted by conv{xn} and is given by

conv{xn} =
{ ∞∑

n=1

αnxn : 0 ≤ αn ≤ 1,
∞∑

n=1

αn = 1
}
.

2. Compact operators—expanding the scope. Let us recall the
following characterization of relatively compact sets in Banach spaces: A
subset K of a Banach space X is relatively compact if and only if there is
a null sequence {xn} in X such that K ⊂ conv{xn}. Moreover, given ε > 0
we can choose {xn} such that sup{‖x‖ : x ∈ K} + ε > sup{‖xn‖ : n ∈ N}.
Expanding the scope, in order to study particular types of compact sets and
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allied notions, it may be assumed that {xn} is p-summable for some p > 0.
This is the main purpose of this paper. To this end, we find it desirable to
modify the notion of convex hull. We start with the following concepts.

A Tool Box. Let X be a Banach space, p ≥ 1 and let lwp (X) denote the
set of all weakly p-summable sequences in X. Then lwp (X) is a Banach space
with the norm

‖{xn}‖wp = sup{‖{f(xn)}‖p : f ∈ Ball(X∗)}.
If p > 1, then lwp (X) is isometrically isomorphic to B(lp′ ,X) where p′ =
p(p − 1)−1. For p = 1, lw1 (X) is isometrically isomorphic to B(c0,X). Let
these isometries be denoted by E : lwp (X) → B(lp′ ,X) (resp. E : lw1 (X) →
B(c0,X)), x (= {xn}) 7→ Ex, where Ex({αn}) =

∑∞
n=1 αnxn. Write

p-conv x := Ex(Ball(lp′)) for 1 ≤ p < ∞ and ∞-conv{xn} := abs-conv{xn}
:= Ex(Ball(l1)), the absolute convex hull of {xn}. (Here lp′ = (lp)∗.)

Next, let lsp(X) be the subspace of lwp (X) of all p-summable sequences in
X (1 ≤ p ≤ ∞) and cs

0(X) the space of all norm null sequences in X. Then
lsp(X) is a Banach space with the norm

‖{xn}‖sp =
( ∞∑

n=1

‖xn‖p
)1/p

, 1 ≤ p <∞.

Also ls∞(X) is a Banach space in the norm

‖{xn}‖s∞ (= ‖{xn}‖w∞) = sup
n∈N
‖xn‖.

Moreover, cs
0(X) is a closed subspace of ls∞(X) in the above norm. We write

E(lsp(X)) = Ep(X) (1 ≤ p ≤ ∞) and E(cs
0(X)) = E0(X). Note that ls1(X) ⊂

lsp(X) ⊂ lsq(X) ⊂ cs
0(X) if 1 ≤ p ≤ q <∞.

Redefining compact sets. Let K be a relatively compact set in a Banach
space X and let ε > 0. We can find x = {xn} ∈ cs

0(X) with ‖xn‖∞ <
sup{‖x‖ : x ∈ K} + ε such that K ⊂ abs-conv{xn} = Ex(Ball(l1)). Put
xn = ‖xn‖−1xn (if xn 6= 0, otherwise xn = 0) and let λn = ‖xn‖. Then
x = {xn} ∈ Ball(l∞(X)) (or {xn} is a sequence in Ball(X)) and λ = 〈λn〉 ∈
c0 with K ⊂ ExMλ(Ball(l1)) where Mλ : l1 → l1 is given by Mλ(α) =
〈λnαn〉, α = 〈αn〉 ∈ l1. Thus K ⊂ {∑∞n=1 αnxn : 〈αn〉 ∈Mλ(Ball(l1))} with
{xn} ∈ Ball(l∞(X)). Next, let λ ∈ lp (1 ≤ p < ∞, so that λ ∈ c0). Then
Mλ(lp′) ⊂ l1 if p ≥ 1 where lp′ = (lp)∗.

Definition 2.1. Let X be a Banach space and K ⊂ X. Then K is said
to be relatively p-compact (1 ≤ p ≤ ∞) if given ε > 0 there is a sequence
{xn} in Ball(X) and λ ∈ lp (λ ∈ c0 if p = ∞) with ‖λ‖p < sup{‖x‖ :
x ∈ K} + ε such that K ⊂ {∑∞n=1 αnxn : 〈αn〉 ∈ Mλ(Ball(lp′))}, where
lp′ = (lp)∗ (1 ≤ p <∞) and lp′ = l1 if p =∞.
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Alternatively, K is said to be relatively p-compact, 1 ≤ p ≤ ∞, if there
is x = {xn} ∈ lsp(X) (1 ≤ p < ∞) (x = {xn} ∈ cs

0(X) if p = ∞) such that
K ⊂ Ex(Ball(lp′)), where lp′ is suitably defined. Note that the ∞-compact
sets are precisely the compact sets and that p-compact sets are q-compact if
1 ≤ p ≤ q ≤ ∞. Furthermore, it is easy to see that in an arbitrary Banach
space, for 1 ≤ p < q ≤ ∞, a q-compact set may not be p-compact.

Definition 2.2. For Banach spaces X, Y and 1 ≤ p ≤ ∞, an operator
T ∈ B(X,Y ) is said to be p-compact if T maps bounded subsets of X
to relatively p-compact subsets of Y . In other words there is a y ∈ lsp(Y )
(y ∈ cs

0(Y ) if p =∞) such that T (Ball(X)) ⊂ Ey(Ball(lp′)).

Parallel to these concepts we define weakly (relatively) p-compact sets
and weakly p-compact operators as follows:

Definition 2.3. Let X be a Banach space and K ⊂ X. Then K is
said to be relatively weakly p-compact (1 ≤ p < ∞) if there is x ∈ lwp (X)
such that K ⊂ Ex(lp′) (lp′ = (lp)∗), and K is said to be relatively weakly
∞-compact if there is x ∈ cw

0 (X) such that K ⊂ Ex(Ball(l1)).

Definition 2.4. For Banach spaces X, Y and p ≥ 1, an operator T ∈
B(X,Y ) is said to be weakly p-compact if there is a y ∈ lwp (Y ) such that
T (Ball(X)) ⊂ Ey(Ball(lp′)).

Let Kp(X,Y ) denote the set of p-compact operators and Wp(X,Y ) the
set of weakly p-compact operators in B(X,Y ), 1 ≤ p ≤ ∞. Note that for 1 ≤
p ≤ q ≤ ∞, Kp(X,Y ) ⊂ Kq(X,Y ), Wp(X,Y ) ⊂Wq(X,Y ) and Kp(X,Y ) ⊂
Wp(X,Y ). Moreover, Ep(X) ⊂ Kp(lp′ ,X) where lp′ is the predual of lp,
1 ≤ p < ∞ and E0(X) ⊂ K(l1,X) for all Banach spaces X. Again, note
that Wp(lp′ ,X) = B(lp′ ,X) where lp′ is the predual of lp, 1 ≤ p < ∞
(lp′ = c0 if p = 1).

3. Factorization of p-compact operators. Throughout this section
we fix p, 1 ≤ p <∞. Let X be a Banach space and x ∈ lwp (X). Then Ex ∈
Wp(lp′ ,X) = B(lp′ ,X), where lp′ is the predual of lp (i.e., lp′ = c0 if p = 1).
Let N(x) denote the null space of Ex. If qx denotes the quotient map from
lp′ to lp′/N(x) and if Ẽx is the corresponding operator in B(lp′/N(x),X),
then we have Ex = Ẽxqx. This idea can be generalized to weakly p-compact
operators.

Let X and Y be Banach spaces and let T ∈ Wp(X,Y ). Find y ∈ lwp (Y )
such that T (Ball(X)) ⊂ Ey(Ball(lp′)). Let x ∈ Ball(X). Then there is an
α ∈ Ball(lp′) such that Tx = Ey(α). If there is another β ∈ Ball(lp′) with
Ey(β) = Tx, then α − β ∈ N(y). Thus each x ∈ X determines an α ∈ lp′
contractively (i.e., ‖α‖p′ ≤ ‖x‖), which is also unique up to N(y). In this
way, we obtain an operator Ty : X → lp′/N(y) uniquely determined by
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T and y with the property that for each x ∈ X there is an α ∈ lp′ with
‖α‖p′ ≤ ‖x‖ such that Ty(x) = α+N(y). In particular, Ty is a contraction.
Note that N(Ty) = N(T ). We shall call Ty the essential quotient of T with
respect to y. It is now immediate that T = ẼyTy. We shall say, in such
a case, that T is quotiented in lp′ by y ∈ lwp (Y ). Thus T ∈ B(X,Y ) is
quotiented in lp′ by some y ∈ lwp (Y ) if and only if T ∈Wp(X,Y ).

Next, note that N(y)⊥ can be identified with R(E∗y). It follows that
T ∗ factors through a subspace R(y) = R(E∗y) of lp. More precisely, we have
T ∗ = SyE

∗
y. Here E∗y : Y ∗ → R(y) ⊂ lp is given by E∗y(f) = 〈f(yn)〉, f ∈ Y ∗.

Also, Sy : R(y)→ X∗ is given by Sy(〈f(xn)〉) = T ∗f , f ∈ Y ∗. It follows that
Sy can be identified with T ∗y and E∗y with Ẽ∗y in the identification of N(y)⊥

with R(y). Hence, the above leads us to the following characterization of
weakly p-compact operators.

Theorem 3.1. Let X and Y be Banach spaces, 1 ≤ p < ∞ and T ∈
B(X,Y ). Then the following statements are equivalent :

(a) T is weakly p-compact.
(b) T is quotiented in lp′ by some y ∈ lwp (Y ).
(c) There are y ∈ lwp (Y ) and Sy ∈ B(R(y),X∗) such that T ∗ = SyE

∗
y.

With little modifications in the proof of the above theorem, similar char-
acterizations for p-compact operators can be obtained:

Theorem 3.2. Let X and Y be Banach spaces, 1 ≤ p ≤ ∞ and T ∈
B(X,Y ). Then the following statements are equivalent :

(a) T is p-compact.
(b) T is quotiented in lp′ by some y ∈ lsp(Y ).
(c) There are y ∈ lsp(Y ) and Sy ∈ B(R(y),X∗) such that T ∗ = SyE

∗
y.

(d) There is a sequence y ∈ Ball(l∞(Y )), λ ∈ lp and Sy ∈ B(R(y),X∗)
such that T ∗ = SyMλE

∗
y. Here y = {λnyn} ∈ lsp(Y ).

4. The operator ideal of p-compact operators. Let X, Y and Z
be Banach spaces and p ≥ 1. If x ∈ lwp (X), then for any S ∈ B(X,Y ) we
have SEx = ESx, where Sx = {Sxn} if x = {xn}. Thus Sx ∈ lwp (Y ). Again
if T ∈ B(Z, Y ), then ExT (Ball(Z)) ⊂ ‖T‖Ex(Ball(X)). Now, it follows that
Wp(X,Y ) is an operator ideal. In the same manner it may be shown that
Kp(X,Y ) is also an operator ideal.

Next, using the factorization of weakly p-compact and p-compact op-
erators we obtain norms on Wp(X,Y ) and Kp(X,Y ) as follows: For T ∈
Wp(X,Y ) define

ωp(T ) = inf{‖Sy‖ · ‖Ey‖ : T ∗ = SyE
∗
y in Theorem 3.1(c)}

= inf{‖Sy‖ · ‖y‖wp : T ∗ = SyE
∗
y in Theorem 3.1(c)}.
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Similarly, for T ∈ Kp(X,Y ) we define

κp(T ) = inf{‖Sy‖ · ‖Mλ‖ · ‖Ey‖ : T ∗ = SyMλE
∗
y in Theorem 3.2(d)}

= inf{‖Sy‖ · ‖λ‖ · ‖y‖∞ : T ∗ = SyMλE
∗
y in Theorem 3.2(d)}

= inf{‖Sy‖ · ‖y‖sp : T ∗ = SyE
∗
y in Theorem 3.2(c)}.

It is immediate that for T ∈ Kp(X,Y ) ⊂ Wp(X,Y ) we have ‖T‖ ≤
ωp(T ) ≤ κp(T ). In general, the two norms are different and even non-
equivalent.

Theorem 4.1. (Wp(X,Y ), ωp) is a Banach operator ideal.

Proof. It is easy to see that for T ∈ Wp(X,Y ), we have ωp(STU) ≤
‖S‖ωp(T )‖U‖ for any operators S ∈ B(Y,Z), U ∈ B(W,X) and for every
choice of Banach spaces Z and W .

Let {Tn} be a sequence in Wp(X,Y ) with
∑∞

n=1 ωp(Tn) < ∞. Then∑∞
n=1 ‖Tn‖ < ∞, and consequently we find a T ∈ B(X,Y ) such that

‖∑n
k=1 Tk − T‖ → 0 as n → ∞. Let ε > 0. For each n, we can find

yn = {ykn}∞k=1 ∈ lwp (Y ) and Sn ∈ B(R(yn),X∗) with T ∗n = SnE
∗
yn such

that

‖Sn‖ < (ωp(Tn) + ε/2n)1/p′ , ‖yn‖wp < (ωp(Tn) + ε/2n)1/p.

Note that
∑∞

n=1 (‖yn‖wp )p ≤∑∞n=1 ωp(Tn) + ε < ∞ so that y = {yn} ∈
lsp(l

w
p (Y )) ⊂ lwp (Y ). Next put R =

⊕
p(R(yn)). Then R is a subspace of lp

with R = R(y). Now define S : R→ X∗ by

S(〈E∗yn(f)〉) =
∞∑

n=1

SnE
∗
yn(f), f ∈ Y ∗.

Then

‖S‖ = sup
{∥∥∥

∞∑

n=1

SnE
∗
yn(f)

∥∥∥ : ‖〈E∗yn(f)〉‖p ≤ 1
}

≤
( ∞∑

n=1

‖Sn‖p
′
)1/p′

≤
( ∞∑

n=1

ωp(Tn) + ε
)1/p′

<∞.

Thus S ∈ B(R(y),X∗). Moreover, T ∗(f) =
∑∞

n=1 T
∗
n(f) =

∑∞
n=1 SnE

∗
y(f)

= SE∗y(f) for all f ∈ Y ∗. Thus T ∗ = SE∗y, and consequently T ∈Wp(X,Y ).
Also

ωp(T ) ≤ ‖S‖ · ‖y‖wp ≤
∞∑

n=1

ωp(Tn) + ε,

so that ωp(T ) ≤∑∞n=1 ωp(Tn), for ε > 0 is arbitrary. The above construction
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yields, in general, for every n ∈ N,

ωp

(
T −

n∑

k=1

Tk

)
≤

∞∑

k=n+1

ωp(Tk).

Thus
∑∞

n=1 Tn → T in the ωp-norm. In particular, if we take Tn = 0 for
n > 2, we obtain ωp(T1 + T2) ≤ ωp(T1) + ωp(T2).

Summing up, we conclude that (Wp(X,Y ), ωp) is a Banach operator
ideal.

Along the lines of the above proof we can also obtain the following result.

Theorem 4.2. (Kp(X,Y ), κp) is a Banach operator ideal.

Proposition 4.3. Let 1 ≤ p < q ≤ ∞. Then Kp(X,Y ) ⊂ Kq(X,Y ) for
all Banach spaces X and Y . Also, κq(T ) ≤ κp(T ) for any T ∈ Kp(X,Y ).

Proof. Let T ∈ Kp(X,Y ). Find y = {yn} ⊂ Ball(X) and λ = 〈λn〉 ∈ lp
such that T (Ball(X)) ⊂ EyMλ(Ball(lp′)). Put µn = |λn|p/q−1λn (if λn 6= 0,
and µn = 0 otherwise). Then

∑∞
n=1 |µn|q =

∑∞
n=1 |λn|p < ∞, so that

µ = 〈µn〉 ∈ lq. Next, put βn = |λn|1−p/q and β = 〈βn〉. Then β ∈
lpq/(p−q) and Mλ = MµMβ. Also, Mβ(Ball(lp′)) ⊂ ‖β‖pq/(q−p) Ball(lq′) =

‖λ‖1−p/qp Ball(lq′). Thus

T (Ball(X)) ⊂ ‖λ‖1−p/qp EyMλ(Ball(lq′)),

so that T ∈ Kq(X,Y ). Further, since ‖λ‖1−p/qp ‖µ‖q = ‖λ‖p, we conclude
that κq(T ) ≤ κp(T ).

5. Position of (Kp, κp) in operator ideals. We note, by abuse of
language, that at the “p-level” (p ≥ 1), the operator ideal of all p-summing
operators is the largest and that of p-nuclear operators is the smallest. In this
section we show that the dual of (Kp, κp) lies between the above-mentioned
two operator ideals. To this end we recall the following definitions.

Definition 5.1. Let p ≥ 1 and let X and Y be Banach spaces. An
operator T ∈ B(X,Y ) is said to be p-(absolutely) summing if {Txn} ∈ lsp(Y )
for all {xn} ∈ lwp (X).

The set Πp(X,Y ) of all p-summing operators forms a Banach space with
the norm

πp(T ) = sup{‖{Txn}‖sp : ‖{xn}‖wp ≤ 1}.
We note that (Πp, πp) is an operator ideal.

Pietsch Factorization Theorem [7]. Let X and Y be Banach spaces
and p ≥ 1. Then T ∈ Πp(X,Y ) if and only if there is a probability measure
µ on Ball(X∗) and an operator T̂ ∈ B(Xp, Y ) such that T = T̂ jXp i. Here i
is the natural inclusion map from X into C(Ball(X∗)), jXp = jp|i(X) where
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jp is the canonical embedding of C(Ball(X∗)) into Lp(µ) and Xp = jpi(X)
is a closed subspace of Lp(µ). Moreover , we have ‖T̂‖ = πp(T ).

Definition 5.2. For Banach spaces X and Y and p ≥ 1, an operator
T ∈ B(X,Y ) is said to be p-nuclear if there are A ∈ B(lp, Y ), B ∈ B(X, c0)
and λ ∈ lp such that T = AMλB.

The set Np(X,Y ) of all p-nuclear operators in B(X,Y ) forms a Banach
space with the norm

νp(T ) = inf{‖A‖ · ‖B‖ · ‖λ‖p},
where the infimum is taken over all p-nuclear factorizations T = AMλB
of T . We again note that (Np, νp) is an operator ideal.

Let (A,α) be a Banach operator ideal for Banach spaces X and Y . Put

Ad(X,Y ) = {T ∈ B(X,Y ) : T ∗ ∈ A(Y ∗,X∗)}.
For T ∈ Ad(X,Y ), write αd(T ) = α(T ∗). Then (Ad, αd) is again an operator
ideal and is called the dual ideal of (A,α).

If we compare the factorization of a p-summing operator, of a p-nuclear
operator and that of the adjoint of a p-compact operator, we obtain the
following result.

Proposition 5.3. Let X and Y be Banach spaces and p ≥ 1. Then

(a) Np(X,Y ) ⊂ Kd
p (X,Y ).

(b) Kp(X,Y ) ⊂ Πd
p (X,Y ).

(c) Kd
p (X,Y ) ⊂ Πp(X,Y ).

Remark. (1) If Y is reflexive, then it may be shown that Nd
p (X,Y ) ⊂

Kp(X,Y ). However, we have not been able to prove or disprove it in general.
(2) In connection with the inclusions proved in the above proposition

we can further show that the corresponding norms also have the desirable
behaviour as follows:

(a) If T ∈ Np(X,Y ), then νp(T ) ≥ κd
p(T ).

(b) If T ∈ Kp(X,Y ), then κp(T ) ≥ πd
p (T ).

(c) If T ∈ Kd
p (X,Y ), then κd

p(T ) ≥ πp(T ).

Before we pass to some special cases concerning these operator ideals,
we prove the following interesting result.

Proposition 5.4. For all p ≥ 1, p-summing operators map weakly p-
compact sets to p-compact sets. Moreover , for Banach spaces X, Y and Z,
we have

Πp(Y,Z)Wp(X,Y ) ⊂ Kp(X,Z).

Proof. Let T ∈ Πp(X,Y ) and let C be a weakly p-compact set in X.
Then there is an x = {xn} ∈ lwp (X) such that C ⊂ Ex(Ball(lp′)). Put
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y = {Txn}. Then y ∈ lsp(Y ) for T ∈ Πp(X,Y ). Thus T (C) ⊂ Ey(Ball(lp′))
so that T (C) is a p-compact set in Y .

Next, let S ∈ Πp(Y,Z) and T ∈ Wp(X,Y ). Then there is a y = {yn} ∈
lwp (Y ) such that T (Ball(X)) ⊂ Ey(Ball(lp′)). Since S ∈ Πp(Y,Z), we get z =
{Syn} ∈ lsp(Z) so that ST (Ball(X)) ⊂ Ez(Ball(lp′)) and ST ∈ Kp(X,Z).
Finally

κp(ST ) ≤ ‖z‖sp ≤ πp(S)‖y‖wp .
Taking infimum over y we conclude that κp(ST ) ≤ πp(S)ωp(T ).

Remark. Recall that completely continuous operators map weakly
compact sets into compact sets. Thus p-summing operators may be thought
of as being “p-completely continuous” for p ≥ 1.

Now we consider some special cases of the operator ideals discussed.

Proposition 5.5. Let X be any Banach space. Then

(a) Πp(lp′ ,X) ⊂ Ep(X) ⊂ Nd
p (lp′ ,X), p ≥ 1.

(b) Πd
p (X, lp) ⊂ Ed

p (X) ⊂ Np(X, lp), p > 1.

Here Ed
p (X) = {(Ex∗)∗ : x∗ ∈ lsp(X∗)}, where (Ex∗)∗ denotes the preadjoint

of Ex∗ .

Proof. (a) Let p ≥ 1 and T ∈ Πp(lp′ ,X). Since {en} ∈ lwp (lp′), we have
{Ten} ∈ lsp(X). Put Ten = xn for all n. Then T = Ex, so that Π(lp′ ,X) ⊂
Ep(X). Next, let x ∈ lsp(X). Then (Ex)∗ = IMλ(Ex)∗, where λ = 〈‖xn‖〉 ∈
lp and x = {xn} with xn = ‖xn‖−1xn for all n. Thus (Ex)∗ ∈ Np(X∗, lp) so
that Ep(X) ⊂ Nd

p (lp′ ,X).
(b) Let p > 1. If T ∈ Πd

p (X, lp), then T ∗ ∈ Πp(lp′ ,X∗). Thus as in (a),
there is an x∗ ∈ lsp(X∗) such that T ∗ = Ex∗ and it follows that Πd

p (X, lp) ⊂
Ed
p (X). Finally, let x∗ ∈ lsp(X∗). Then trivially, (Ex∗)∗ ∈ Np(X, lp). Thus

Ed
p (X) ⊂ Np(X, lp).

Remark. (i) Let T ∈ Πp(lp′ ,X) and find x ∈ lsp(X) such that T = Ex.
Then it is easy to see that πp(T ) ≥ ‖x‖sp ≥ νd

p (T ).
(ii) Again if T ∈ Πd

p (X, lp) and if T = (Ex∗)∗ for some x∗ ∈ lsp(X∗), we
can show that πd

p (T ) ≥ ‖x∗‖sp ≥ ν(T ).
(iii) It follows from the definition that Ep(X) ⊂ Kp(lp′ ,X) for p ≥ 1.
(iv) It follows from the above propositions that

(a) Np(lp′ ,X) ⊂ Kd
p (lp′ ,X) ⊂ Πp(lp′ ,X) ⊂ Ep(X) ⊂ Nd

p (lp′ ,X) for
p ≥ 1.

(b) Nd
p (X, lp) ⊂ Kp(X, lp) ⊂ Πd

p (X, lp) ⊂ Ed
p (X) ⊂ Np(X, lp) ⊂

Kd
p (X, lp) ⊂ Πp(X, lp) for p > 1.

(c) Nd
p (lp′ ,X) ⊂ Kp(lp′ ,X) ⊂ Πd

p (lp′ ,X) for p > 1.
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(v) Putting X = lp in (iv)(a) and X = lp′ in (iv)(b), we obtain Np(lp′ , lp)
= Nd

p (lp′ , lp) = Kp(lp′ , lp) = Kd
p (lp′ , lp) = Πp(lp′ , lp) = Πd

p (lp′ , lp) = Ep(lp)
= Ed

p (lp′) (isometrically) for p > 1.

6. Approximation on p-compact sets. Following Grothendieck [5],
a Banach space X is said to have the approximation property (for short,
a.p.) if the identity operator can be approximated uniformly on compact
sets by finite rank operators. Equivalently, a Banach space has the a.p. if
and only if the identity operator is in the closure of the finite rank opera-
tors in the locally convex topology of uniform convergence on compact sets.
The question whether every Banach space has the a.p., raised in 1956 by
Grothendieck himself, was solved by Enflo [4] in 1973 by producing a sepa-
rable Banach space that fails the a.p. This was followed by several authors
giving simpler constructions of Banach spaces without the a.p. For instance,
Davie [1, 2] gave a probabilistic construction. A comprehensive exposition
of this problem and its solutions can be found in the book of Lindenstrauss
and Tzafriri [6].

From this section onwards, we study weaker forms of approximating
the identity operator by finite rank operators. We start with the following
definition.

Definition 6.1. A Banach space X is said to have the p-approximation
property (for short, p-a.p.), for p ≥ 1, if for every p-compact set K in X and
every ε > 0, there is a finite rank operator T ∈ B(X) such that ‖Tx−x‖ < ε
for all x ∈ K.

Let X and Y be Banach spaces and 1 ≤ p ≤ ∞. Let τp denote the topol-
ogy in B(X,Y ) of uniform convergence on p-compact sets in X. Since finite
sets are p-compact, τp is a locally convex topology generated by seminorms
of the form

‖T‖K = sup{‖Tx‖ : x ∈ K}, T ∈ B(X,Y ),

where K varies over all p-compact sets in X. Let x = {xn} ∈ lsp(X). Then
K = Ex(Ball(lp′)) is a p-compact set in X and we have

‖T‖K = sup{‖Ty‖ : y ∈ Ex(Ball(lp′))}
= ‖E〈Txn〉‖ = ‖{Txn}‖wp , T ∈ B(X,Y ).

Write ‖〈Txn〉‖wp = ‖T‖x for all x = {xn} ∈ lsp(X) and T ∈ B(X,Y ).
Then the family {‖·‖x : x ∈ lsp(X)} of seminorms generates the topology τp.
Moreover, we note that X has the p-a.p. if and only if given x ∈ lsp(X) and
ε > 0, there is an S ∈ F (X) such that ‖S − I‖x ≤ ε.

The following result is immediate.



Compact operators 27

Proposition 6.2. Let 1 ≤ p ≤ ∞. Then for a Banach space X the
following statements are equivalent :

(a) X has the p-approximation property.
(b) For any Banach space Y the set F (Y,X) (respectively , F(X ,Y )) of

finite rank operators is τp-dense in B(Y,X) (respectively , B(X,Y )).

The classical approximation property for a Banach space X is equivalent
to the density of the finite rank operators in the ideal K(Y,X) of compact
operators for every Banach space Y in the operator norm. For p-a.p. we
have the following surprising result.

Theorem 6.3. Let 1 ≤ p ≤ ∞. Then a Banach space X has the p-
approximation property if and only if for every Banach space Y , F (Y,X) is
ωp-dense in Kp(Y,X).

Proof. First assume that X has the p-a.p. Let Y be a Banach space,
T ∈ Kp(Y,X) and ε > 0. Then there is an x ∈ lsp(X) such that T (Ball(Y ))
⊂ Ex(Ball(lp′)). Since X has the p-a.p., there is an S ∈ F (X) such that
‖S − I‖x ≤ ε. Put S1 = ST . Then S1 ∈ F (Y,X) and we have

(S1 − T )(Ball(Y )) = (S − I)T (Ball(Y )) ⊂ (S − I)Ex(Ball(lp′))

= E{Sxn−xn}(Ball(lp′)).

Thus ωp(S1 − T ) ≤ ‖{Sxn − xn}‖wp = ‖S − I‖x ≤ ε so that F (Y,X) is
ωp-dense in Kp(Y,X).

For the converse, suppose that for any Banach space Y , F (Y,X) be
ωp-dense in Kp(Y,X). Then the proof that X has the p-a.p. is a variation of
the proof of the implication (v)⇒(i) in [6, Theorem 1.e.4]. We only need to
mention the following. Let x = {xn} ∈ lsp(X) and K = Ex(Ball(lp′)). We can
choose tn > 0 for all n such that tn →∞ as n→∞ and

∑∞
n=1 t

p
n‖xn‖p <∞.

Put zn = tnxn and U = Ez(Ball(lp′)), where z = {zn} ∈ lsp(X). Then U is
a compact convex set symmetric with respect to origin, which is also a
p-compact set.

Remark. In the above result one expects that ωp could be replaced
by κp. In this regard it would be desirable to introduce some other type of
approximation property of Banach spaces. However, our definition (of the
p-approximation property) exhibits the following beautiful behavior in Ba-
nach spaces. (Nevertheless, we consider two other notions of p-approximation
properties, one due to P. D. Saphar and the other due to O. I. Rĕınov, in
the next section.)

Theorem 6.4. Every Banach space has the 2-approximation property
(and thus the p-approximation property if 1 ≤ p ≤ 2).

In order to prove this result we need the following lemma.
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Lemma 6.5. Let X be a Banach space, H a Hilbert space, K a com-
pact set in H and S ∈ B(H,X). Then the identity operator on X can be
approximated uniformly on S(K) by finite rank operators.

Proof. Without loss of generality, we may assume that S has zero null
space. Indeed, we can replace H by H ′ = H/N(S), K by K ′ = {x+N(S) :
x ∈ K} and S by the induced map S ′ ∈ B(H ′,X).

Now, fix ε > 0. Let P be a finite rank operator on H with ‖Px− x‖ < ε
for all x ∈ K. Since N(S) = {0}, the set of functionals ϕ on X defined by
ϕ(x) = ψ(Sx) where ψ ∈ X∗, is dense in H∗; so we can find a finite rank
operator T ∈ B(X,H) such that ‖P − TS‖ < ε and it follows that

‖TSx− x‖ < (1 +M)ε for all x ∈ K,
where M = sup{‖x‖ : x ∈ K}. Consequently, ‖STy− y‖ < (1 +M)‖S‖ε for
all y ∈ S(K).

Proof of Theorem 6.4. Let X be a Banach space, x = {xn} = ls2(X)
and ε > 0. We can find λ = 〈λn〉 ∈ c0 and z = {zn} ∈ ls2(X) such that
λn > 0 and xn = λnzn for all n. Consider Ez ∈ E2(X) ⊂ B(l2,X) and put
K0 = Mλ(Ball(l2)). Then K0 is a compact set in l2. Thus by Lemma 6.5,
there is an S ∈ F (X) such that ‖(S−I)y‖ ≤ ε for all y ∈ Ez(Mλ(Ball(l2))) =
Ex(Ball(l2)). It follows that ‖S − I‖x ≤ ε, so that X has the 2-a.p.

Remark. The above result is optimal in the sense that for every p > 2
there is a Banach space that fails the p-a.p. To this end we need the following
probabilistic construction due to Davie [1, 2].

Lemma 6.6. There exists an infinite matrix A = (anm)∞n,m=1 of scalars
in which for each n, anm = 0 for all but finitely many indices m, such that

(i)
∑∞

n=1 (max1≤m<∞ |anm|)r <∞ for every r > 2/3,
(ii) A2 = 0,

(iii) traceA 6= 0.

It is interesting to note that Grothendieck [5, Remark I.14] observed that
if an infinite matrix A = (anm)∞n,m=1 satisfies limm→∞ anm = 0 for all n,∑∞

n=1 (max1≤m<∞ |anm|)2/3 < ∞ and A2 = 0, then traceA = 0. A proof
of this is indicated in [6, Remark 1, p. 90]. Another proof was obtained by
Rĕınov [10].

Theorem 6.7. Let p > 2. Then there is a Banach space that fails the
p-a.p.

Proof. Put r = p(p + 1)−1 so that r > 2/3. In Lemma 6.6 put an =
max1≤m<∞ |anm| for all n. Then 〈an〉 ∈ lr. Thus we can find 〈λn〉 ∈ l1 and
〈bn〉 ∈ lp such that λn > 0 and an = λnbn for all n. Put bnm = λ−1

n anm for
all n,m ∈ N. Then for each n, bnm = 0 for all but finitely many indices m.
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Put xn = 〈bnm〉∞m=1. Let E be the closed linear span of {xn} in c0 and let
fn = λnen|E for all n, where {en} is the standard unit vector basis of l1.
Then {xn} ∈ lp(E) and {fn} ∈ l1(E∗). Note that

∞∑

n=1

fn(xm)xn =
〈 ∞∑

n=1

λnbmnbnk

〉
k

= λ−1
m

〈 ∞∑

n=1

amnank

〉
k

= 0

for all m, so that
∑∞

n=1 fn(x)xn = 0 for all x ∈ E. However,
∑∞

n=1 fn(xn) =∑∞
n=1 λnbnn =

∑∞
n=1 ann 6= 0. Now, it follows from the next result that E

fails the p-a.p.

Proposition 6.8. Let X be a Banach space and let 1 ≤ p ≤ ∞. If X
has the p-approximation property then for every choice of {xn} ∈ lsp(X) and
{fn} ∈ ls1(X∗) with

∑∞
n=1 fn(x)xn = 0 for all x ∈ X, we have

∑∞
n=1 fn(xn)

= 0.

Proof. Let X have the p-a.p. Let {xn} ∈ lsp(X) and {fn} ∈ ls1(X∗) be
such that

∑∞
n=1 fn(x)xn = 0 for all x ∈ X. Then by linearity

∑∞
n=1 fn(Sxn)

= 0 for all S ∈ F (X). Now for each ε > 0 there is an S ∈ F (X) such that
‖{Sxn − xn}‖wp ≤ ε. Thus

∣∣∣
∞∑

n=1

fn(xn)
∣∣∣ =

∣∣∣
∞∑

n=1

fn(Sxn − xn)
∣∣∣ ≤ ‖{fn}‖s1‖{Sxn − xn}‖∞

≤ ‖{fn}‖s1‖{Sxn − xn}‖wp ≤ ε‖{fn}‖s1.
Since ε > 0 is arbitrary, we obtain

∑∞
n=1 fn(xn) = 0.

7. Connections with p-approximation properties of Saphar and
Rĕınov. Grothendieck [5] proved that a Banach space X has the a.p. if and
only if for every Banach space Y (equivalently, for Y = X), the natural map
from Y ∗ ⊗̃π X into B(Y,X) is one-to-one. Weaker forms of the a.p. were
defined by restricting the above maps to certain subspaces of the projective
tensor product. For instance, let gp for p ≥ 1 be the projective tensor norm
of Saphar [11] and let Y ∗⊗̃gpX be the completion of the tensor product of Y ∗

and X under this norm. If 1/p+ 1/p′ = 1, then (Y ∗ ⊗̃gp X)∗ = Πp′(X,Y ∗∗).
Now, Saphar’s p-approximation property (for short, Saphar’s p-a.p.) defined
in [12] is equivalent to the following: A Banach space X has Saphar’s p-a.p.
if and only if the natural map from Y ∗ ⊗̃gp′ X into B(Y,X) is one-to-one. In
the same direction Rĕınov [9] also studied a p-approximation property (for
short, Rĕınov’s p-a.p.) for 0 < p <∞. Consider the subspace (Y ∗⊗̃πX)p of
Y ∗⊗̃πX consisting of elements

∑∞
n=1 fn ⊗ xn with {fn} ⊂ Y ∗ and {xn} ⊂ X

satisfying
∑∞

n=1 (‖fn‖ · ‖xn‖)p <∞. Then a Banach space X is said to have
Rĕınov’s p-a.p. if for every Banach space Y , the natural map from (Y ∗⊗̃πX)p
into B(Y,X) is one-to-one.
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In Proposition 6.8, we essentially used the fact that ‖ · ‖∞ ≤ ‖ · ‖wp [on
lwp (X) (⊂ l∞(X))]. This fact motivates us to further weaken the definition
of the p-approximation property.

Definition 7.1. Let 1 ≤ p ≤ q ≤ ∞. We say that a Banach space X
has the (q, p)-approximation property (for short, (q, p)-a.p.) if given {xn} ∈
lsp(X) ({xn} ∈ cs

0(X) if p = ∞) and ε > 0 there is an S ∈ F (X) such that
‖{Sxn − xn}‖sq ≤ ε.

Note. (1) (∞,∞)-a.p. = a.p. (=∞-a.p.).
(2) p-a.p.⇒ (∞, p)-a.p.
(3) (q, p)-a.p.⇒ (t, s)-a.p. if 1 ≤ s ≤ p ≤ q ≤ t ≤ ∞.

Let X and Y be Banach spaces and 1 ≤ p ≤ q ≤ ∞. For x = {xn} ∈
lsp(X) (x ∈ cs

0(X) if p =∞), we define

‖T‖q,x = ‖{Txn}‖sq, T ∈ B(X,Y ).

The family {‖ · ‖q,x} of seminorms defines a locally convex topology on
B(X,Y ) which is denoted by τq,p. It is routine to verify the following result.

Proposition 7.2. Let 1 ≤ p ≤ q ≤ ∞. Then for any Banach space X
the following statements are equivalent :

(a) X has the (q, p)-approximation property.
(b) For any Banach space Y , F (X,Y ) (respectively , F (Y,X)) is τq,p-

dense in B(X,Y ) (respectively , B(Y,X)).

Lemma 7.3. Let 1 ≤ p ≤ q ≤ ∞ and let X and Y be Banach spaces.
Then the τq,p-continuous linear functionals on B(X,Y ) are precisely those
of the form

(†) φ(T ) =
∞∑

n=1

gn(Txn), T ∈ B(X,Y ),

where {xn} ∈ lsp(X) and {gn} ∈ lsq′(Y ∗).

Proof. Let x = {xn} ∈ lsp(X) and {gn} ∈ lsq′(Y ∗). Then

∞∑

n=1

|gn(Txn)| ≤
∞∑

n=1

‖gn‖ · ‖Txn‖ ≤ ‖{gn}‖sq′‖{Txn}‖sq

= ‖{gn}‖sq′‖T‖q,x, T ∈ B(X,Y ).

Thus φ given by (†) is τq,p-continuous.
Conversely, let φ be a τq,p-continuous linear functional on B(X,Y ). Then

there is an x = {xn} ∈ lsp(X) and M > 0 such that

|φ(T )| ≤M‖T‖q,x, T ∈ B(X,Y ).
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Define Sx : B(X,Y ) → lsq(Y ) by Sx(T ) = {Txn}, T ∈ B(X,Y ). Then
Sx ∈ B(B(X,Y ), lsq(Y )) and consequently we obtain a bounded linear func-
tional ψ on Sx(B(X,Y )) ⊂ lsq(Y ) given by ψ(Sx(T )) = φ(T ), T ∈ B(X,Y ).
Extending ψ to lsq(Y ), by the Hahn–Banach theorem, we obtain {gn} ∈
lsq′(Y

∗) ∼= (lsq(Y ))∗ with φ(T ) = ψ(Sx(T )) = 〈{gn}, {Txn}〉=
∑∞

n=1 gn(Txn)
for all T ∈ B(X,Y ).

Remark. A τq,p-continuous linear functional on B(X,Y ) is given by
(†) where {xn} ⊂ X, {gn} ⊂ Y ∗ and

∑∞
n=1 (‖xn‖ · ‖gn‖)s < ∞ where

1/s = 1/p+1/q′. Thus the τq,p-topological dual of B(X,Y ) is identical with
τ∞,r-topological dual where 1/r = 1/p− 1/q.

Theorem 7.4. Let 1 ≤ p ≤ q ≤ ∞. Then a Banach space X has the
(q, p)-approximation property if and only if for every choice of {xn} ∈
lsp and {fn} ∈ lsq′(X

∗) with
∑∞

n=1 fn(x)xn = 0 for all x ∈ X, we have∑∞
n=1 fn(xn) = 0.

Proof. Duplicating the proof of Proposition 6.8, we obtain the necessary
part.

Conversely, assume that for {xn} ∈ lsp(X) and {fn} ∈ lsq′(X
∗) with∑∞

n=1 fn(x)xn = 0 for all x ∈ X, we have
∑∞

n=1 fn(xn) = 0. We shall prove
that F (X) is τq,p-dense in B(X). Let φ be a τp-continuous linear functional
on B(X) vanishing on F (X). There are {xn} ∈ lsp(X) and {fn} ∈ lq′(X∗)
such that ϕ(T ) =

∑∞
n=1 fn(Txn) for all T ∈ B(X). Thus

∑∞
n=1 fn(Sxn) = 0

if S ∈ F (X). In particular,

f
( ∞∑

n=1

fn(x)xn
)

=
∞∑

n=1

fn((f ⊗ x)xn) = 0, x ∈ X, f ∈ X∗,

so that
∑∞

n=1 fn(x)xn = 0 for all x ∈ X and consequently
∑∞

n=1 fn(x)Txn =
0 for all x ∈ X and T ∈ B(X). Now it follows from the hypothesis that
φ(T ) =

∑∞
n=1 fn(Txn) = 0, T ∈ B(X), so that F (X) is τq,p-dense in B(X).

Hence by Proposition 7.2, X has the (q, p)-a.p.

Corollary 7.5. A Banach space X has the (q, p)-approximation prop-
erty if and only if it has the (∞, r)-approximation property where 1/r =
1/p− 1/q, if and only if it has Rĕınov’s r(r+ 1)−1-approximation property.

The following theorem can be found in [9] (in Rĕınov’s terminology).

Theorem 7.6. Every Banach space has the (∞, 2)-approximation prop-
erty. For each p > 2 there is a Banach space which fails the (∞, p)-approxi-
mation property.

Proof. Since p-a.p. implies (∞, p)-a.p., it follows from Theorem 6.4 that
every Banach space has the (∞, 2)-a.p. Now, for given p > 2 the proof of
Theorem 6.7 shows that the Banach space E fails the (∞, p)-a.p.



32 D. P. Sinha and A. K. Karn

Remark. Since a.p. = (∞,∞)-a.p., we see that a Banach space X has
the a.p. if and only if it has the (p, p)-a.p. for all p ≥ 1. Duplicating the
proof of Theorem 6.3, we conclude that if X has the a.p., then for all p ≥ 1,
F (Y,X) is κp-dense in Kp(X,Y ) for any Banach space Y (we expect that
the converse is true as well).

We propose to call τq,p the topology of q-convergence on p-compact sets.
This notion may be further explored in another direction to meet the notion
of Saphar’s p-a.p.

Let X and Y be Banach spaces and 1 ≤ p ≤ q ≤ ∞. Let σq,p denote
the topology on Πp(X,Y ) of q-convergence on weakly p-compact sets of X,
which is defined as follows: Let K be a weakly p-compact set in X and
T ∈ Πp(X,Y ). Then there is an x ∈ lwp (X) such that K ⊂ Ex(Ball(lp′)), so
that T (K) is a p-compact set in Y . We define

‖T‖wK = sup{‖Tx‖ : x ∈ K}, T ∈ Πp(X,Y ).

Restricting to K = Ex(Ball(lp′)) and x ∈ lwp (X) as before, we may define
‖T‖wx = ‖T‖wK = ‖{Txn}‖wp , and may generalize this idea to obtain semi-
norms ‖ · ‖wq,x on Πp(X,Y ) where

‖T‖wq,x = ‖{Txn}‖sq, T ∈ Πp(X,Y ).

The family {‖ · ‖wq,x : x ∈ lwp (X)} of seminorms determines the locally con-
vex topology σq,p on Πp(X,Y ). It is now routine to verify that the σq,p-
continuous linear functionals on Πp(X,Y ) are precisely those of the form

φ(T ) =
∞∑

n=1

gn(Txn), {xn} ∈ lwp (X), {gn} ∈ lsq′(Y ∗).

Finally, we introduce the following weak topology version of Defini-
tion 7.1.

Definition 7.7. Let 1 ≤ p ≤ q ≤ ∞. A Banach space is said to have the
weak (q, p)-approximation property (for short, weak (q, p)-a.p.) if for every
Banach space Y , x = {xn} ∈ lwp (X), ε > 0 and T ∈ Πp(X,Y ) there is an
S ∈ F (X,Y ) such that ‖S − T‖wq,x ≤ ε.

Note. (1) For 1 ≤ s ≤ p ≤ q ≤ t ≤ ∞, weak (q, p)-a.p. ⇒ weak
(t, s)-a.p.

(2) Weak (p, p)-a.p. = Saphar’s p-a.p., for all p ≥ 1 [12].
(3) It was also shown in [12] that every Banach space has Saphar’s 2-a.p.
(4) Since a.p.⇒ Saphar’s p-a.p., we conclude that a.p.⇒ weak (q, p)-a.p.

for all 1 ≤ p ≤ q ≤ ∞.

Lastly, we record the following theorem for the sake of completeness.

Theorem 7.8. Let X be a Banach space and 1 ≤ p ≤ q ≤ ∞. Then the
following statements are equivalent :
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(a) X has the weak (q, p)-approximation property.
(b) For every Banach space Y , F (X,Y ) is σq,p-dense in B(X,Y ).
(c) For every Banach space Y , and every choice of {xn} ∈ lwp (X) and

{gn} ∈ lsq′(Y
∗) with

∑∞
n=1 f(xn)gn = 0 for all f ∈ X∗, we have∑∞

n=1 gn(Txn) = 0 for all T ∈ Πp(X,Y ).

Acknowledgements. The authors are indebted to Eve Oja for indicat-
ing the connection between the p-approximation property considered in this
paper and that studied by O. I. Rĕınov.
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