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The Shirali–Ford theorem as a consequence of
Pták theory for hermitian Banach algebras

by

Maria Fragoulopoulou (Athens)

Dedicated to the memory of Professor Vlastimil Pták

Abstract. A simple application of Pták theory for hermitian Banach algebras, com-
bined with a result on normed Q-algebras, gives a non-technical new proof of the Shirali–
Ford theorem. A version of this theorem in the setting of non-normed topological algebras
is also provided.

0. Introduction. The aim of this paper is, on the one hand, to give
a new proof of the celebrated Shirali–Ford theorem [17] by using the pow-
erful results of V. Pták [13; Section 5] for hermitian Banach algebras (see
Theorem 3.3), and on the other hand, to provide a generalization of the
same theorem in the more general framework of (non-normed) topologi-
cal algebras (cf. Theorem 4.7). The idea for the afore-mentioned new proof
originates from an “algebraic analogue” of the Shirali–Ford theorem due to
D. Birbas [4; Theorem 3.2]; see also Theorem 4.1 in Section 4.

A generalization of the Shirali–Ford theorem to involutive Arens–Michael
algebras (inverse limits of Banach algebras) appears in a 1985 paper by
D. Štěrbová [19; Theorem 2.5]. But the proof of this result depends upon
Lemma 2.1 of [19], in the proof of which relation (2) is unclear. A proof
of the Shirali–Ford theorem in the class of involutive Arens–Michael Q-
algebras has been given by this author (see, e.g., [7; Theorem 7.2]) by ap-
plying standard techniques. The corresponding result presented here (The-
orem 4.7) contains the previous one and it is obtained as a corollary of
the afore-mentioned “algebraic analogue” of the Shirali–Ford theorem by
D. Birbas [4].
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1. Preliminaries. Throughout this paper we deal with complex alge-
bras and Hausdorff topological spaces.

A topological algebra is an algebra, which is, in addition, a topological
vector space such that the ring multiplication is separately continuous. An
lmc (locally m-convex) algebra is a topological algebra A whose topology is
defined by a saturated family, say Γ = {p}, of algebra seminorms; i.e., each
seminorm p ∈ Γ is submultiplicative, in the sense that p(xy) ≤ p(x)p(y)
for x, y ∈ A. A complete lmc algebra is called an Arens–Michael algebra
[8; p. 65, Definition (I.2.4)]. Let (A,Γ = {p}) be an Arens–Michael algebra
and Np ≡ ker(p), p ∈ Γ . The Banach algebra completion of the normed
algebra (A/Np, ‖ · ‖p), with ‖xp‖p := p(x) for xp ≡ x + Np ∈ A/Np, is
denoted by Ap, p ∈ Γ . It is known (cf., e.g., [8, 9]) that

A = lim←−Ap,
up to a topological algebraic isomorphism. A topological algebra A is called
a Q-algebra if the set Gq

A of its quasi-invertible elements is open. An element
x ∈ A is called quasi-invertible if there is y ∈ A with x ◦ y = 0 = y ◦ x,
where x ◦ y := x + y − xy. In the case of a unital algebra A, with unit
e, GA stands for the invertible elements of A. In this case, x ∈ Gq

A with
quasi-inverse y ∈ A iff x− e ∈ GA with inverse y − e. Given an algebra A
and an element x ∈ A denote by spA(x) (resp. rA(x)) the spectrum (resp.
spectral radius) of x. Y. Tsertos has proved in [20; Corollary 4.1] that an
lmc algebra (A,Γ = {p}) is a Q-algebra iff there is p0 ∈ Γ such that

(1.1) rA(x) ≤ p0(x), ∀x ∈ A;

in fact, this characterization is shown for any topological algebra A, with
the gauge function of a balanced 0-neighborhood in place of p0 (ibid., The-
orem 4.1). The corresponding result for a normed algebra is due to B. Yood
[22; Lemma 2.1]. Now a topological algebra A is called advertibly complete
(Warner; see [21] and [9; p. 45, Definition 6.4]) whenever every Cauchy net
(xλ)λ∈Λ in A with the property

(1.2) xλ ◦ x→ 0← x ◦ xλ, for some x ∈ A,
converges in A. Every Q-algebra A is advertibly complete, and when A
is a normed algebra the two notions coincide [21; Theorem 7]. The alge-
bra D(R) of compactly supported C∞-functions on R, endowed with the
C∞-topology from C∞(R) is an advertibly complete, non-complete, non-Q-
algebra. But with its usual inductive limit topology, D(R) is a Q-algebra
(see, e.g., [6; p. 86]).

A spectral algebra (Palmer, [11; Definition 2.4.1]) is an algebra A that
can be equipped with an algebra seminorm q such that rA(x) ≤ q(x) for all
x ∈ A. IfA is an involutive algebra and q a ∗-preserving (i.e., q(x∗) = q(x) for
all x ∈ A) algebra seminorm on A satisfying the preceding inequality, then
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A is said to be a spectral ∗-algebra. Such algebras are called by Palmer [12]
S∗-algebras. The algebra seminorm q is called a spectral seminorm in the
first case and spectral ∗-seminorm in the second case. Furthermore, if A
is an involutive algebra and q a C∗-seminorm on A (i.e., q(x∗x) = q(x)2

for all x ∈ A) that dominates the spectral radius rA, then A is called a
C∗-spectral algebra and q a spectral C∗-seminorm. Such algebras were intro-
duced and studied by S. J. Bhatt, A. Inoue and H. Ogi [3]. Later, in a series
of papers by the same authors and sometimes jointly with K.-D. Kürsten
(cf., e.g., [2]), these algebras were used, very effectively and in a smart way,
for the construction of unbounded ∗-representations. Algebras of this kind
have also been considered in [12; Section 10.4]. In the category of involutive
Banach algebras, C∗-spectral algebras are exhausted by the hermitian ones
[3; Corollary 2.7]. Some further information on C∗-spectral algebras, fitting
to the present environment, is given in Remark 3.5.

Note that every spectral algebra is a (not necessarily Hausdorff) lmc
Q-algebra and every lmc Q-algebra is a spectral algebra (see (1.1)). But a
spectral lmc algebra (A, Γ = {p}) is not a Q-algebra unless the spectral
seminorm q belongs to Γ .

Let us now fix some further notation. Given an algebra A, denote by JA
the Jacobson radical of A. For an involutive algebra A, set

H(A) := {x ∈ A : x∗ = x}, N(A) := {x ∈ A : x∗x = xx∗};
the elements of H(A) are called self-adjoint , while those of N(A) are named
normal . A subset S of A is called self-adjoint if x ∈ S implies x∗ ∈ S. It
is easily seen (apply, e.g., [6; Lemma 8.11]) that in an involutive algebra A,
the Jacobson radical JA is a self-adjoint ideal . An involutive algebra A is
called hermitian (resp. symmetric) if spA(x) ⊆ R for all x ∈ H(A) (resp.
−x∗x ∈ Gq

A for all x ∈ A; or e+ x∗x ∈ GA for all x ∈ A, in the case where
A is unital with unit e). In the notions of hermitian (resp. symmetric) topo-
logical algebra no continuity of the involution is assumed. On the contrary,
the terms hermitian (resp. symmetric) topological ∗-algebra always postu-
late continuity of the involution. A useful geometrical characterization of a
symmetric algebra A is given by the positivity of the elements x∗x (x ∈ A),
in the sense that these elements have positive spectra. As a direct conse-
quence, every C∗-algebra is symmetric (see, e.g., [5; Theorem (12.6)]). For
a more general result of this kind, cf. [6; Corollary 6.2].

2. Some general results. The following can be found implicitly in
[9; p. 95, Remark], for lmc algebras.

2.1. Proposition. Let A be an advertibly complete topological algebra
whose completion Ã is also a topological algebra (take, for instance, A to
have continuous multiplication). Let x ∈ A. Then x ∈ Gq

A ⇔ x ∈ Gq
Ã

.
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Proof. Clearly x ∈ A with x ∈ Gq
A yields x ∈ Gq

Ã
. So let x ∈ A with

x ∈ Gq
Ã

. Then there is y ∈ Ã such that

(2.1) x ◦ y = 0 = y ◦ x.
In addition, there is a net (yλ)λ∈Λ in A with y = limλ yλ. Using continuity
of addition and separate continuity of multiplication in A we get

(2.2) x ◦ yλ → 0← yλ ◦ x,
where (yλ)λ∈Λ is moreover a Cauchy net in A. Since A is advertibly complete
we deduce from (2.2) (see also (1.2)) that (yλ)λ∈Λ converges in A, say to
z ∈ A. Then (2.2) implies

(2.3) x ◦ z = 0 = z ◦ x.
From (2.1), (2.3) we clearly have y = z ∈ A, so that x ∈ Gq

A.

As we noticed in Section 1, advertible completeness coincides with prop-
erty Q in normed algebras. Hence one has the following (see also [6; Corol-
lary 2.3]).

2.2. Corollary. Let A be a normed Q-algebra and Ã the Banach al-
gebra completion of A. Let x ∈ A. Then x ∈ Gq

A ⇔ x ∈ Gq
Ã

.

In 1966 B. A. Barnes proved in [1; Lemma 1.2] that a pre-C∗-algebra A
(i.e., an involutive algebra A equipped with an algebra norm satisfying the
C∗-property) is a Q-algebra iff rA(x) ≤ ‖x‖ for all x ∈ H(A). In fact, he
proved the following more general result.

2.3. Proposition. Let A be an involutive algebra. The following are
equivalent :

(1) A is a spectral ∗-algebra.
(2) rA(x) ≤ q(x) for all x ∈ H(A), for some ∗-preserving algebra semi-

norm q on A.

Proof. (1)⇒(2). This is immediate from the definition of a spectral
∗-algebra (see Section 1).

(2)⇒(1). Repeat the corresponding proof of [1; Lemma 1.2] with q in
place of the C∗-norm.

3. A new proof of the Shirali–Ford theorem. Let A be an involu-
tive algebra and

(3.1) pA(x) := rA(x∗x)1/2, ∀x ∈ A;

we call pA the Pták function of A. T. W. Palmer names the preceding func-
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tion the Răıkov–Pták functional (see [12; Definition 10.2.5 and comments
on p. 1095], while he uses the term Răıkov’s inequality (cf. [10; p. 524]) for
what we call Pták inequality (see Theorem 3.2(3) below).

The following is a direct consequence of (3.1).

3.1. Proposition. The Pták function pA of an involutive algebra A has
the following properties:

(1) pA(λx) = |λ|pA(x) for all λ ∈ C, x ∈ A.
(2) pA(x∗) = pA(x) for all x ∈ A.
(3) pA(x∗x) = pA(x)2 for all x ∈ A.
(4) pA(x) = rA(x) for all x ∈ H(A).
(5) JA ⊆ {x ∈ A : pA(x) = 0}.

V. Pták proved in 1972 that hermiticity of a Banach algebra is equiv-
alent to subadditivity of the Pták function [13; Theorem (5,10)]; so that
for each hermitian Banach algebra A, the real-valued function pA is a C∗-
seminorm (cf. Proposition 3.1). In fact, the Pták function is an algebra
C∗-seminorm for any hermitian Banach algebra A and its subadditivity is
a consequence of its submultiplicativity; the latter is not a general rule,
since according to a result of Z. Sebestyén [16] (see also [5; Theorem (38.1)])
any C∗-senimorm on an involutive algebra A is automatically submulti-
plicative (and ∗-preserving). It is worth mentioning that pA is the largest
C∗-seminorm on a (unital) hermitian Banach ∗-algebra A. This follows eas-
ily from D. A. Răıkov’s criterion for symmetry (see [14] and/or [15; Theorem
(4.7.21)]), which, in fact, can be reformulated (referee’s remark) in the fol-
lowing way: a (unital) Banach ∗-algebra A is symmetric if and only if pA
is the largest C∗-seminorm on A.

In the next theorem we list some well-known properties of hermitian
(resp. symmetric) algebras, which we use in the proof of Theorem 3.3.
Complete proofs of these results can be found in the book of Doran–Belfi
[5; Proposition (32.9), Theorems (33.1), (33.7) and Proposition (B.5.14)(a)].

For more general classes of hermitian algebras than that of hermitian
Banach algebras, the reader should consult the second volume of T. W. Pal-
mer’s book [12, Section 10.4], where apart from the interesting material he
will find important comments and historical notes.

3.2. Theorem. Let A be an involutive algebra.

(1) (Wichmann) If I is a self-adjoint ideal of A, then A is hermitian
(resp. symmetric) iff I and A/I are hermitian (resp. symmetric).

(2) JA is a self-adjoint ideal of A, which (consisting entirely of quasi-
invertible elements) is symmetric, hence hermitian.
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If A is moreover Banach, one has:

(3) (Pták) A is hermitian iff rA(x) ≤ pA(x) for all x ∈ A (Pták in-
equality).

(4) (Pták) A is hermitian iff pA(x+ y) ≤ pA(x) + pA(y) for all x ∈ A;
in other words (see also Proposition 3.1), A is hermitian iff pA is a C∗-
seminorm.

(5) (Pták) A hermitian implies JA = ker(pA).

A direct consequence of Theorem 3.2(1), (2) is that: The problem of prov-
ing hermiticity or symmetry of an involutive algebra A always reduces to the
semisimple case through the involutive algebra B ≡ A/JA.

The proofs of the Shirali–Ford theorem one usually meets in the literature
are technical (see, for instance, [5; Theorem (33.2) and comments before it],
as well as [13; Theorem (5,9)]), based on: (i) Gel’fand representation theory
applied to a suitable commutative ∗-subalgebra of the given hermitian Ba-
nach algebra, say A; and (ii) the fact that the positive elements of A form a
convex cone. A different (less technical) proof, involving properties of max-
imal modular left ideals, has been given by T. W. Palmer [10]; in the same
paper, hermiticity of an involutive Banach algebra is characterized (among
other conditions) by the “property Q” of the Gel’fand–Naimark pseudo-
norm (see e.g. (1.1) with the Gel’fand–Naimark pseudo-norm in place of p0).

In this section, thanks to Pták’s smart theory for hermitian Banach
algebras (see Theorem 3.2) and to a suitable use of the “property Q” (cf.
Corollary 2.2), we present a new proof of the Shirali–Ford theorem that
provides a more conceptual argument that frees us from calculations.

3.3. Theorem (Shirali–Ford). Every hermitian Banach algebra A is
symmetric.

Proof. According to the above, it suffices to show that the semisimple
hermitian Banach algebra B ≡ A/JA is symmetric. Hermiticity of B implies

(3.2) rB(x+ JA) ≤ pB(x+ JA), ∀x ∈ A,
with pB a C∗-seminorm and JB = ker(pB). Semisimplicity of B makes
pB a C∗-norm. Thus the completion B̃ of (B, pB) is a C∗-algebra, hence
symmetric, while from (3.2) (see also (1.1)) (B, pB) is a (normed) Q-algebra.
Applying now Corollary 2.2, we clearly get symmetry of B.

3.4. Corollary. An involutive Banach algebra is hermitian iff it is
symmetric.

We now give some extra information about C∗-spectral algebras that we
promised in Section 1.
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3.5. Remark. (1) Every spectral C∗-seminorm is unique and coincides
with the Pták function (cf. e.g., [2; Lemma 4.5(1)] and [12; Proposi-
tion 9.5.3]).

(2) Every C∗-spectral algebra is symmetric.

Proof. (1) If (A, q) is a C∗-spectral algebra, one has

q(x)2 = q(x∗x) = rA(x∗x) = pA(x)2, ∀x ∈ A,
where the middle equality follows from the formula rA(x) = limn q(xn)1/n,
x ∈ A (cf. [11; Theorem 2.2.5]), due to the spectrality of A.

(2) Let (A, q) be a C∗-spectral algebra. The result follows directly from
Theorem 4.1 below, by using (1). It is also easily derived from [6; Corol-
lary 6.2], if we endow A with the topology induced by the C∗-seminorm q.

Nevertheless, one can give a self-reliant proof based on the spirit of
the proof of Theorem 3.3. Indeed, since JA = ker(q) ≡ Nq (see e.g., [6;
Lemma 8.11]), one has

rA/Nq (xq) ≤ rA(x) ≤ q(x) =: ‖xq‖q, ∀xq ∈ A/Nq;
therefore (A/Nq, ‖ · ‖q) is a Q-algebra whose completion is symmetric as a
C∗-algebra. So A/Nq (hence A too) is symmetric by Proposition 2.1.

A consequence of (2) is that every C∗-spectral algebra is hermitian. This
property can also be proved independently, but symmetry cannot be derived
from hermiticity, since an arbitrary C∗-spectral algebra is not necessarily
complete, so Theorem 4.7 e.g. (cf. Section 4) cannot be applied.

4. A generalization of the Shirali–Ford theorem. In 1998 D. Bir-
bas [4; Theorem 3.2(i)] proved an “algebraic analogue” of the Shirali–Ford
theorem. More precisely, using the result of B. A. Barnes mentioned in Sec-
tion 2 (cf., e.g., Proposition 2.3), D. Birbas [4; Lemma 3.1] showed that an
involutive algebra A with subadditive real-valued Pták function satisfies the
statements (3) and (5) of Theorem 3.2, i.e.,

rA(x) ≤ pA(x), ∀x ∈ A; JA = ker(pA).

Using the preceding results, as well as two algebraic facts: Theorem 3.2(1)
and the identification of the spectral radii rA, rA/JA , for any algebra A
[5; Proposition (B.5.16)], he applied arguments similar to those of Theo-
rem 3.3, to obtain the following.

4.1. Theorem (Birbas). Let A be an involutive algebra having a subad-
ditive real-valued Pták function. Then A is symmetric.

In this section we prove that a certain class of hermitian Arens–Michael
algebras, containing all hermitian Arens–Michael Q-algebras, have a subad-
ditive real-valued Pták function (see Proposition 4.6); so that one has from
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Theorem 4.1 a non-normed version of the Shirali–Ford theorem (cf. Theo-
rem 4.7). The technique we use is that of [13] combined with the general
theory of non-normed topological algebras (see, e.g., [9]). Although some
of these results have been exposed in [6; Section 8] for symmetric Arens–
Michael (occasionally Q-) algebras, we shall outline their proofs for clarity’s
sake.

4.2. Theorem. Let (A, Γ = {p}) be an involutive Arens–Michael alge-
bra. Consider the following conditions:

(1) A is hermitian.
(2) rA(x) ≤ pA(x) for all x ∈ A.
(3) rA(x)2 = rA(x∗x) ⇔ rA(x) = pA(x), for all x ∈ N(A).

Then (1)⇒(2)⇒(3) and if moreover rA(x) <∞ for all x ∈ H(A), one also
has (3)⇒(1).

Proof. (1)⇒(2). The unitization A1 of A endowed with the product
topology is a hermitian (cf. [5; Proposition (32.8)]) Arens–Michael algebra.
So without loss of generality we may suppose that A is unital with unit e.
Suppose that (2) is not true. Then there are x ∈ A and λ ∈ spA(x) such
that

|λ| > pA(x) ⇔ |λ|2 > rA(x∗x).

Thus if z ≡ λ−1x, we have

rA(e− (e− z∗z)) < 1 with e− z∗z ∈ H(A),

whence (see [18; Theorem 3.9]) there is a unique y ∈ H(A) with

y2 = e− z∗z and rA(e− y) < 1.

From [9; p. 101, Proposition 6.1] we now deduce that y ∈ GA. On the other
hand, denoting by i the imaginary unit we have

(4.1) (e+ z∗)(e− z) = y2 − (z − z∗) = −iy(ie− iy−1(z − z∗)y−1)y,

where w ≡ iy−1(z − z∗)y−1 ∈ H(A), therefore spA(w) ⊆ R by (1). Hence
i 6∈ spA(w) ⇔ ie− w ∈ GA, consequently (4.1) implies that (e+ z∗)(e− z)
∈ GA. So e − z has a left inverse. Now since rA(xx∗) = rA(x∗x) < |λ|2,
we can repeat the preceding argument for the element e − zz∗ ∈ H(A) to
deduce that e− z has a right inverse. Thus

e− z ∈ GA ⇔ λe− x ∈ GA ⇔ λ 6∈ spA(x),

which is a contradiction. Therefore rA(x) ≤ pA(x) for all x ∈ A.
(2)⇒(3). Let x ∈ N(A). Then (cf. [9; p. 100, Corollary 6.1(5)]) rA(x∗x)

≤ rA(x∗)rA(x) = rA(x)2, whence pA(x) ≤ rA(x).
(3)⇒(1). Suppose rA(x) < ∞ for all x ∈ H(A) and let x ∈ H(A) with

α+ iβ ∈ spA(x), α, β ∈ R, β 6= 0. Then
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y ≡ β−1(x− αe) ∈ H(A) and i ∈ spA(y).

Let n be an arbitrary natural number and z ≡ y + ine ∈ A. Then

z∗z = zz∗ = y2 + n2e and (n+ 1)i ∈ spA(z);

so that from (3) and [9; p. 100, Corollary 6.1(4)] one obtains

|(n+ 1)i|2 ≤ rA(z)2 = rA(z∗z) = rA(y2 + n2e) ≤ rA(y)2 + n2.

This yields 2n + 1 ≤ rA(y2), where y2 ∈ H(A), therefore rA(y2) < ∞. For
n→∞ we are led to a contradiction. Thus β = 0, and this proves (1).

4.3. Proposition. For a hermitian spectral Arens–Michael algebra
(A,Γ = {p}), we have:

(1) rA(xy) ≤ rA(x)rA(y) for all x, y ∈ H(A).
(2) pA(xy) ≤ pA(x)pA(y) for all x, y ∈ A.

That is, the spectral radius rA is submultiplicative on the self-adjoint ele-
ments of A, while pA is submultiplicative everywhere on A.

Proof. (1) Let x, y ∈ H(A). Using Theorem 4.2 and standard properties
of the spectral radius, we have

rA(xy)2 ≤ rA((xy)∗(xy)) = rA(yxxy) = rA(x2y2).

Inductively one gets

(4.2) rA(xy) ≤ rA(x2ny2n)1/2n , ∀x, y ∈ H(A), n ∈ N.
Since A is spectral, there is a spectral seminorm q on A such that rA(x)
≤ q(x) for all x ∈ A, so that (4.2) implies

rA(xy) ≤ q(x2n)1/2nq(y2n)1/2n , ∀x, y ∈ H(A), n ∈ N.
But [11; p. 210, Theorem 2.2.2] limn q(xn)1/n ≤ rA(x) for all x ∈ A, therefore
taking limits for all n→∞, we deduce (1).

(2) Using standard properties of the spectral radius and (1) we have

pA(xy)2 = rA((xy)∗(xy)) = rA(x∗xyy∗) ≤ rA(x∗x)rA(yy∗)

= pA(x)2pA(y)2, ∀x, y ∈ A.
Let A be an involutive algebra. An element x ∈ A is called positive,

resp. strictly positive (in symbols x ≥ 0, resp. x > 0) if x ∈ H(A) and
spA(x) ⊆ [0,∞), resp. spA(x) ⊆ (0,∞).

4.4. Proposition. For a hermitian spectral Arens–Michael algebra
(A,Γ = {p}), we have:

(1) x+ y ≥ 0 for any positive elements x, y ∈ A.
(2) rA(x+ y) ≤ rA(x) + rA(y) for all x, y ∈ H(A).

Proof. We may suppose that A is unital with unit e (see proof of Theo-
rem 4.2).
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(1) If either of x, y or both are zero, the assertion is clear. So let x, y ∈ A
with x > 0 and y > 0. Observe that the elements e+ x, e+ y are invertible
and

x+ y > 0 ⇔ −1 6∈ spA(x+ y) ⇔ e+ x+ y ∈ GA.
On the other hand,

(4.3) e+ x+ y = (e+ x)(e+ y)− xy = (e+ x)(e− zw)(e+ y),

with z = (e+ x)−1x and w = y(e+ y)−1. Additionally [9; p. 93, (4.3)]

spA(z) =
⋃

p∈Γ
spAp((ep + xp)−1xp) = {(1 + λ)−1λ : λ ∈ spA(x)},

where spA(x) ⊆ (0,∞). Hence rA(z) < 1 and similarly rA(w) < 1. On the
other hand, since the inverse of a self-adjoint element is also self-adjoint
and x(e + x)−1 = (e + x)−1x, we conclude that z ∈ H(A). Analogously,
w ∈ H(A). Hence (see Proposition 4.3(1) and [9; p. 101, Proposition 6.1])

rA(zw) ≤ rA(z)rA(w) < 1 ⇒ e− zw ∈ GA,
which according to (4.3) completes the proof of (1).

(2) Let x ∈ H(A). Then rA(x)e± x ∈ H(A) and

spA(rA(x)e± x) = {rA(x)± λ : λ ∈ spA(x)} ≥ 0.

Thus taking a second element y ∈ H(A), we get, by (1),

(rA(x) + rA(y))e± (x+ y) ≥ 0, ∀x, y ∈ H(A),

whence (2) follows.

4.5. Proposition. Let (A, Γ = {p}) be a hermitian spectral Arens–
Michael algebra. Then rA(x+ x∗) ≤ 2pA(x) for all x ∈ A.

Proof. We again suppose that A is unital with unit e. Let x ∈ A. Then
there are unique y, z ∈ H(A) with x = y + iz. Thus

(4.4) xx∗ + x∗x = 2(y2 + z2) ∈ H(A),

where y2 ≥ 0 and z2 ≥ 0. Also rA(y2 + z2)e − (y2 + z2) ≥ 0, so that
(Proposition 4.4(1)) rA(y2 + z2)e − y2 ≥ 0. From the latter inequality we
get

(4.5) rA(y)2 = rA(y2) ≤ rA(y2 + z2).

Using now (4.4), (4.5) and Proposition 4.4(2), we obtain

rA(x+ x∗)2 = 4rA(y2) ≤ 2rA(xx∗ + x∗x)

≤ 4rA(x∗x) = (2pA(x))2, ∀x ∈ A.
4.6. Proposition. Let (A, Γ = {p}) be a hermitian spectral Arens–

Michael algebra. Then pA(x+ y) ≤ pA(x) + pA(y) for all x, y ∈ A.
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Proof. Applying Propositions 4.3–4.5 and 3.1(2), we have

pA(x+ y)2 = rA((x+ y)∗(x+ y)) = rA(x∗x+ y∗y + (x∗y + y∗x))

≤ rA(x∗x) + rA(y∗y) + rA(x∗y + y∗x) ≤ pA(x)2 + pA(y)2 + 2pA(x∗y)

≤ pA(x)2 + pA(y)2 + 2pA(x)pA(y) = (pA(x) + pA(y))2, ∀x, y ∈ A.
We are now in a position to state a version of the Shirali–Ford theorem

in the context of (non-normed) topological algebras.

2.3. Theorem. Every hermitian spectral Arens–Michael algebra A is
symmetric.

Proof. Since A is an Arens–Michael algebra, spA(x) 6= ∅ for all x ∈ A
[9; p. 58, Corollary 4.2]. On the other hand, rA(x) <∞ for all x ∈ A, since A
is spectral. Hence pA is a real-valued function. Additionally, pA is subaddi-
tive from Proposition 4.6, so that the assertion follows from Theorem 4.1.

The next corollary has been proved in [7; Theorem 7.2] by using classical
techniques.

4.8. Corollary. Every hermitian Arens–Michael Q-algebra is symmet-
ric.

Proof. This follows from Theorem 4.7, since every Arens–Michael Q-
algebra is spectral (see (1.1)).
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