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The Shirali—-Ford theorem as a consequence of
Ptak theory for hermitian Banach algebras

by
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Dedicated to the memory of Professor Viastimil Ptdk

Abstract. A simple application of Ptdk theory for hermitian Banach algebras, com-
bined with a result on normed @-algebras, gives a non-technical new proof of the Shirali—
Ford theorem. A version of this theorem in the setting of non-normed topological algebras
is also provided.

0. Introduction. The aim of this paper is, on the one hand, to give
a new proof of the celebrated Shirali-Ford theorem [17] by using the pow-
erful results of V. Ptak [13; Section 5] for hermitian Banach algebras (see
Theorem 3.3), and on the other hand, to provide a generalization of the
same theorem in the more general framework of (non-normed) topologi-
cal algebras (cf. Theorem 4.7). The idea for the afore-mentioned new proof
originates from an “algebraic analogue” of the Shirali—Ford theorem due to
D. Birbas [4; Theorem 3.2]; see also Theorem 4.1 in Section 4.

A generalization of the Shirali-Ford theorem to involutive Arens—Michael
algebras (inverse limits of Banach algebras) appears in a 1985 paper by
D. Sterbova [19; Theorem 2.5]. But the proof of this result depends upon
Lemma 2.1 of [19], in the proof of which relation (2) is unclear. A proof
of the Shirali-Ford theorem in the class of involutive Arens—Michael Q-
algebras has been given by this author (see, e.g., [7; Theorem 7.2]) by ap-
plying standard techniques. The corresponding result presented here (The-
orem 4.7) contains the previous one and it is obtained as a corollary of
the afore-mentioned “algebraic analogue” of the Shirali-Ford theorem by
D. Birbas [4].
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1. Preliminaries. Throughout this paper we deal with complex alge-
bras and Hausdorff topological spaces.

A topological algebra is an algebra, which is, in addition, a topological
vector space such that the ring multiplication is separately continuous. An
Ime (locally m-convex) algebra is a topological algebra A whose topology is
defined by a saturated family, say I' = {p}, of algebra seminorms; i.e., each
seminorm p € I is submultiplicative, in the sense that p(zy) < p(z)p(y)
for x,y € A. A complete lmc algebra is called an Arens—Michael algebra
[8; p. 65, Definition (1.2.4)]. Let (A,I' = {p}) be an Arens—Michael algebra
and N, = ker(p), p € I'. The Banach algebra completion of the normed
algebra (A/Np,| - ||p), with |zp|, := p(z) for x, = z + N, € A/N,, is
denoted by A,, p € I'. It is known (cf., e.g., [8, 9]) that

A=limA,,

up to a topological algebraic isomorphism. A topological algebra A is called
a Q-algebra if the set G of its quasi-invertible elements is open. An element
x € A is called quasi-invertible if there is y € A with x oy = 0 = y o x,
where x oy := x + y — xy. In the case of a unital algebra A, with unit
e, G stands for the invertible elements of A. In this case, x € G with
quasi-inverse y € A iff x —e € G 4 with inverse y — e. Given an algebra A
and an element x € A denote by sp4(x) (resp. ra(x)) the spectrum (resp.
spectral radius) of x. Y. Tsertos has proved in [20; Corollary 4.1] that an
Ime algebra (A, I' = {p}) is a Q-algebra iff there is po € I' such that

(1.1) ra(z) <po(x), Vo€ 4

in fact, this characterization is shown for any topological algebra A, with
the gauge function of a balanced 0-neighborhood in place of pg (ibid., The-
orem 4.1). The corresponding result for a normed algebra is due to B. Yood
[22; Lemma 2.1]. Now a topological algebra A is called advertibly complete
(Warner; see [21] and [9; p. 45, Definition 6.4]) whenever every Cauchy net
(x)rea in A with the property

(1.2) xyox — 0« zoxy, forsomezxe A,

converges in A. Every Q-algebra A is advertibly complete, and when A
is a normed algebra the two notions coincide [21; Theorem 7]. The alge-
bra D(R) of compactly supported C*°-functions on R, endowed with the
C*°-topology from C'*°(R) is an advertibly complete, non-complete, non-Q-
algebra. But with its usual inductive limit topology, D(R) is a Q-algebra
(see, e.g., [6; p. 86]).

A spectral algebra (Palmer, [11; Definition 2.4.1]) is an algebra A that
can be equipped with an algebra seminorm ¢ such that r 4(z) < g(z) for all
x € A.If Aisan involutive algebra and q a *-preserving (i.e., g(x*) = q(z) for
all z € A) algebra seminorm on A satisfying the preceding inequality, then
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A is said to be a spectral x-algebra. Such algebras are called by Palmer [12]
S*-algebras. The algebra seminorm ¢ is called a spectral seminorm in the
first case and spectral *-seminorm in the second case. Furthermore, if A
is an involutive algebra and q a C*-seminorm on A (i.e., ¢(z*z) = q(z)?
for all x € A) that dominates the spectral radius r4, then A is called a
C*-spectral algebra and q a spectral C*-seminorm. Such algebras were intro-
duced and studied by S. J. Bhatt, A. Inoue and H. Ogi [3]. Later, in a series
of papers by the same authors and sometimes jointly with K.-D. Kiirsten
(cf., e.g., [2]), these algebras were used, very effectively and in a smart way,
for the construction of unbounded *-representations. Algebras of this kind
have also been considered in [12; Section 10.4]. In the category of involutive
Banach algebras, C*-spectral algebras are exhausted by the hermitian ones
[3; Corollary 2.7]. Some further information on C*-spectral algebras, fitting
to the present environment, is given in Remark 3.5.

Note that every spectral algebra is a (not necessarily Hausdorff) Imc
Q-algebra and every Imc Q-algebra is a spectral algebra (see (1.1)). But a
spectral Imc algebra (A, I' = {p}) is not a Q-algebra unless the spectral
seminorm q belongs to I'.

Let us now fix some further notation. Given an algebra A, denote by J4
the Jacobson radical of A. For an involutive algebra A, set

HA)={zeA: 2" =z}, NA) ={recA:z"x=uzxa"}

the elements of H(A) are called self-adjoint, while those of N(A) are named
normal. A subset S of A is called self-adjoint if z € S implies z* € S. It
is easily seen (apply, e.g., [6; Lemma 8.11]) that in an involutive algebra A,
the Jacobson radical Ja is a self-adjoint ideal. An involutive algebra A is
called hermitian (resp. symmetric) if sp4(xz) C R for all z € H(A) (resp.
—z*r € G4 for all x € A; or e+ z*x € G4 for all x € A, in the case where
A is unital with unit e). In the notions of hermitian (resp. symmetric) topo-
logical algebra no continuity of the involution is assumed. On the contrary,
the terms hermitian (resp. symmetric) topological x-algebra always postu-
late continuity of the involution. A useful geometrical characterization of a
symmetric algebra A is given by the positivity of the elements z*z (z € A),
in the sense that these elements have positive spectra. As a direct conse-
quence, every C*-algebra is symmetric (see, e.g., [5; Theorem (12.6)]). For
a more general result of this kind, cf. [6; Corollary 6.2].

2. Some general results. The following can be found implicitly in
[9; p. 95, Remark], for lmc algebras.

2.1. PROPOSITION. Let A be an advertibly complete topological algebra
whose completion A is also a topological algebra (take, for instance, A to
have continuous multiplication). Let z € A. Then x € G} < = € G7.
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Proof. Clearly xz € A with z € G yields z € G}. So let x € A with
x € G%. Then there is y € A such that
(2.1) zoy=0=you.
In addition, there is a net (yx)rea in A with y = lim) y,. Using continuity
of addition and separate continuity of multiplication in A we get
(2:2) zoyy — 0 —yroux,

where (yx)aea is moreover a Cauchy net in A. Since A is advertibly complete
we deduce from (2.2) (see also (1.2)) that (yx)xea converges in A, say to
z € A. Then (2.2) implies

(2.3) roz=0=zoux.
From (2.1), (2.3) we clearly have y = z € A, so that z € G. =

As we noticed in Section 1, advertible completeness coincides with prop-
erty @ in normed algebras. Hence one has the following (see also [6; Corol-
lary 2.3]).

2.2. COROLLARY. Let A be a normed Q-algebra and A the Banach al-
gebra completion of A. Let x € A. Then v € G &z € G}. "

In 1966 B. A. Barnes proved in [1; Lemma 1.2] that a pre-C*-algebra A
(i.e., an involutive algebra A equipped with an algebra norm satisfying the
C*-property) is a Q-algebra iff ra(xz) < ||z| for all x € H(A). In fact, he
proved the following more general result.

2.3. PROPOSITION. Let A be an involutive algebra. The following are
equivalent:

(1) A is a spectral x-algebra.
(2) ra(x) < q(x) for all x € H(A), for some x-preserving algebra semi-
norm q on A.

Proof. (1)=>(2). This is immediate from the definition of a spectral
x-algebra (see Section 1).

(2)=-(1). Repeat the corresponding proof of [1; Lemma 1.2] with ¢ in
place of the C*-norm. m

3. A new proof of the Shirali—-Ford theorem. Let A be an involu-
tive algebra and

(3.1) paz) :=ralz*z)/?, Ve A
we call p4 the Ptdk function of A. T. W. Palmer names the preceding func-
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tion the Raikov—Pték functional (see [12; Definition 10.2.5 and comments
on p. 1095], while he uses the term Raikov’s inequality (cf. [10; p. 524]) for
what we call Ptdk inequality (see Theorem 3.2(3) below).

The following is a direct consequence of (3.1).

3.1. PROPOSITION. The Ptdk function pa of an involutive algebra A has
the following properties:

(1) pa(Az) = |Apa(zx) for all X € C, z € A.
(x*) = pa(x) for all z € A.

pa(x*x) = pa(x)? for all v € A.
(

V. Pték proved in 1972 that hermiticity of a Banach algebra is equiv-
alent to subadditivity of the Ptdk function [13; Theorem (5,10)]; so that
for each hermitian Banach algebra A, the real-valued function p 4 is a C*-
seminorm (cf. Proposition 3.1). In fact, the Ptak function is an algebra
C*-seminorm for any hermitian Banach algebra A and its subadditivity is
a consequence of its submultiplicativity; the latter is not a general rule,
since according to a result of Z. Sebestyén [16] (see also [5; Theorem (38.1)])
any C*-senimorm on an involutive algebra A is automatically submulti-
plicative (and *-preserving). It is worth mentioning that p4 is the largest
C*-seminorm on a (unital) hermitian Banach *-algebra A. This follows eas-
ily from D. A. Raikov’s criterion for symmetry (see [14] and/or [15; Theorem
(4.7.21)]), which, in fact, can be reformulated (referee’s remark) in the fol-
lowing way: a (unital) Banach x-algebra A is symmetric if and only if pa
is the largest C*-seminorm on A.

In the next theorem we list some well-known properties of hermitian
(resp. symmetric) algebras, which we use in the proof of Theorem 3.3.
Complete proofs of these results can be found in the book of Doran—Belfi
[5; Proposition (32.9), Theorems (33.1), (33.7) and Proposition (B.5.14)(a)].

For more general classes of hermitian algebras than that of hermitian
Banach algebras, the reader should consult the second volume of T. W. Pal-
mer’s book [12, Section 10.4], where apart from the interesting material he
will find important comments and historical notes.

3.2. THEOREM. Let A be an involutive algebra.

(1) (Wichmann) If I is a self-adjoint ideal of A, then A is hermitian
(resp. symmetric) iff 1 and A/I are hermitian (resp. symmetric).

(2) Ja is a self-adjoint ideal of A, which (consisting entirely of quasi-
invertible elements) is symmetric, hence hermitian.
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If A is moreover Banach, one has:

(3) (Ptak) A is hermitian iff ra(x) < pa(x) for all x € A (Ptdk in-
equality).

(4) (Ptak) A is hermitian iff pa(z +y) < pa(x) +paly) for all x € A;
in other words (see also Proposition 3.1), A is hermitian iff pa is a C*-
SEemInoOTm.

(5) (Ptdk) A hermitian implies J4 = ker(pa). m

A direct consequence of Theorem 3.2(1), (2) is that: The problem of prov-
ing hermiticity or symmetry of an involutive algebra A always reduces to the
semisimple case through the involutive algebra B = A/J 4.

The proofs of the Shirali-Ford theorem one usually meets in the literature
are technical (see, for instance, [5; Theorem (33.2) and comments before it],
as well as [13; Theorem (5,9)]), based on: (i) Gel’fand representation theory
applied to a suitable commutative x-subalgebra of the given hermitian Ba-
nach algebra, say A; and (ii) the fact that the positive elements of A form a
convex cone. A different (less technical) proof, involving properties of max-
imal modular left ideals, has been given by T. W. Palmer [10]; in the same
paper, hermiticity of an involutive Banach algebra is characterized (among
other conditions) by the “property @” of the Gel’fand-Naimark pseudo-
norm (see e.g. (1.1) with the Gel’fand-Naimark pseudo-norm in place of py).

In this section, thanks to Ptak’s smart theory for hermitian Banach
algebras (see Theorem 3.2) and to a suitable use of the “property Q" (cf.
Corollary 2.2), we present a new proof of the Shirali-Ford theorem that
provides a more conceptual argument that frees us from calculations.

3.3. THEOREM (Shirali-Ford). Ewvery hermitian Banach algebra A is
symmetric.

Proof. According to the above, it suffices to show that the semisimple
hermitian Banach algebra B = A/J 4 is symmetric. Hermiticity of B implies

(3.2) rp(x+Ja) <pplz+Ja), VreA,

with pp a C*-seminorm and Jp = ker(pp). Semisimplicity of B makes
pp a C*-norm. Thus the completion B of (B,pp) is a C*-algebra, hence
symmetric, while from (3.2) (see also (1.1)) (B, pg) is a (normed) Q-algebra.
Applying now Corollary 2.2, we clearly get symmetry of B. =

3.4. COROLLARY. An involutive Banach algebra is hermitian iff it is
symmetric. m

We now give some extra information about C'*-spectral algebras that we
promised in Section 1.
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3.5. REMARK. (1) Every spectral C*-seminorm is unique and coincides
with the Ptdk function (cf. e.g., [2; Lemma 4.5(1)] and [12; Proposi-
tion 9.5.3]).

(2) Every C*-spectral algebra is symmetric.
Proof. (1) If (A, q) is a C*-spectral algebra, one has
q(z)? = q(a*z) = ra(z*z) = pa(x)?, Vze A,

where the middle equality follows from the formula r4(z) = lim,, ¢(z™)'/",
x € A (cf. [11; Theorem 2.2.5]), due to the spectrality of A.

(2) Let (A, q) be a C*-spectral algebra. The result follows directly from
Theorem 4.1 below, by using (1). It is also easily derived from [6; Corol-
lary 6.2], if we endow A with the topology induced by the C*-seminorm g.

Nevertheless, one can give a self-reliant proof based on the spirit of
the proof of Theorem 3.3. Indeed, since J4 = ker(q) = N, (see e.g., [6;
Lemma 8.11]), one has

TA/N, (rq) <ra(r) <q(x) = |z4llgy Vrq € A/Ny;

therefore (A/Ng, | - ||;) is a Q-algebra whose completion is symmetric as a
C*-algebra. So A/N, (hence A too) is symmetric by Proposition 2.1. =

A consequence of (2) is that every C*-spectral algebra is hermitian. This
property can also be proved independently, but symmetry cannot be derived
from hermiticity, since an arbitrary C*-spectral algebra is not necessarily
complete, so Theorem 4.7 e.g. (cf. Section 4) cannot be applied.

4. A generalization of the Shirali-Ford theorem. In 1998 D. Bir-
bas [4; Theorem 3.2(i)] proved an “algebraic analogue” of the Shirali-Ford
theorem. More precisely, using the result of B. A. Barnes mentioned in Sec-
tion 2 (cf., e.g., Proposition 2.3), D. Birbas [4; Lemma 3.1] showed that an
involutive algebra A with subadditive real-valued Ptak function satisfies the
statements (3) and (5) of Theorem 3.2, i.e.,

ra(x) <pa(z), VweA; Ja=ker(pa)

Using the preceding results, as well as two algebraic facts: Theorem 3.2(1)
and the identification of the spectral radii ra, r4,;,, for any algebra A
[5; Proposition (B.5.16)], he applied arguments similar to those of Theo-
rem 3.3, to obtain the following.

4.1. THEOREM (Birbas). Let A be an involutive algebra having a subad-
ditive real-valued Ptdk function. Then A is symmetric. m

In this section we prove that a certain class of hermitian Arens—Michael
algebras, containing all hermitian Arens—Michael Q-algebras, have a subad-
ditive real-valued Ptak function (see Proposition 4.6); so that one has from
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Theorem 4.1 a non-normed version of the Shirali-Ford theorem (cf. Theo-
rem 4.7). The technique we use is that of [13] combined with the general
theory of non-normed topological algebras (see, e.g., [9]). Although some
of these results have been exposed in [6; Section 8] for symmetric Arens—
Michael (occasionally )-) algebras, we shall outline their proofs for clarity’s
sake.

4.2. THEOREM. Let (A, I' = {p}) be an involutive Arens—Michael alge-
bra. Consider the following conditions:

(1) A is hermitian.

(2) ra(z) <pa(z) for all x € A.

(3) ra(x)? =ra(z*z) & ra(z) = pa(z), for all z € N(A).

Then (1)=(2)=(3) and if moreover ra(x) < oo for all x € H(A), one also
has (3)=(1).

Proof. (1)=(2). The unitization A; of A endowed with the product
topology is a hermitian (cf. [5; Proposition (32.8)]) Arens-Michael algebra.
So without loss of generality we may suppose that A is unital with unit e.
Suppose that (2) is not true. Then there are x € A and A\ € spy(x) such
that

A > pa(z) & [A? >ra(z*z).
Thus if z = A\~ 'z, we have
rale—(e—2z"2)) <1 with e—z"z¢€ H(A),
whence (see [18; Theorem 3.9]) there is a unique y € H(A) with
y>=e—2"2z and r4(e—vy) < 1.

From [9; p. 101, Proposition 6.1] we now deduce that y € G 4. On the other
hand, denoting by ¢ the imaginary unit we have

(41) (et 2)e—2) =y — (e —2") = —iylie —iy~ ' (= — 2" )y~ )y,

where w = iy~ (2 — 2*)y~! € H(A), therefore sp,(w) C R by (1). Hence
i €spy(w) < ie —w € Gy, consequently (4.1) implies that (e + z*)(e — 2)
€ Ga. So e — z has a left inverse. Now since ra(zz*) = ra(z*z) < |\?,

we can repeat the preceding argument for the element e — zz* € H(A) to
deduce that e — z has a right inverse. Thus

e—2€Ga & de—2€Ga & Ngspy(z),
which is a contradiction. Therefore r4(x) < pa(z) for all z € A.
(2)=(3). Let z € N(A). Then (cf. [9; p. 100, Corollary 6.1(5)]) ra(z*x)
<ra(z*)ra(z) = TA(LL’)Q, whence pa(x) < ra(x).
(3)=(1). Suppose r4(z) < oo for all z € H(A) and let x € H(A) with
a+if €spy(x), a,8 €R, B#0. Then
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y=p"1(r—ae)€ H(A) and i€ spy(y).
Let n be an arbitrary natural number and z = y + ine € A. Then
r=z2" =9y +n% and (n+1)i€spy(2);
so that from (3) and [9; p. 100, Corollary 6.1(4)] one obtains
[(n 4+ 1)if* <7ra(2)? =ra(z"2) = ra(y’ + ne) <ra(y)* +n*.

This yields 2n + 1 < r4(y?), where y* € H(A), therefore r4(y?) < oco. For
n — oo we are led to a contradiction. Thus § = 0, and this proves (1). =

4.3. PROPOSITION. For a hermitian spectral Arens—Michael algebra
(A, I' = {p}), we have:

(1) ra(xy) < ra(z)raly) for all z,y € H(A).

(2) palzy) <pa(x)paly) for all x,y € A.

That is, the spectral radius ra is submultiplicative on the self-adjoint ele-
ments of A, while p4 is submultiplicative everywhere on A.

Proof. (1) Let z,y € H(A). Using Theorem 4.2 and standard properties

of the spectral radius, we have
ra(zy)® < ra((zy)*(zy)) = ralyzay) = ra(zy?).
Inductively one gets
(4.2) ra(zy) < ra(ax? * )V Va,ye H(A), neN.
Since A is spectral, there is a spectral seminorm ¢ on A such that r4(z)
< g(x) for all z € A, so that (4.2) implies
ra(zy) < q(@®)* q(y* )V, Va,y e H(A), neN,

But [11; p. 210, Theorem 2.2.2] lim,, ¢(z™)'/™ < r4(x) for allz € A, therefore
taking limits for all n — oo, we deduce (1).

(2) Using standard properties of the spectral radius and (1) we have

pa(ey)® = ra((zy) (zy)) = ra(e*zyy”) <ra(z*z)rayy”)
=pa(x)’paly)?, Vr,yc A =
Let A be an involutive algebra. An element x € A is called positive,

resp. strictly positive (in symbols x > 0, resp. x > 0) if z € H(A) and
$pa(z) C [0,50), resp. sp, (x) C (0, 00).

4.4. PROPOSITION. For a hermitian spectral Arens—Michael algebra
(A, I"' = {p}), we have:

(1) x +y > 0 for any positive elements x,y € A.

(2) ralx +y) <ra(z) +raly) for all z,y € H(A).

Proof. We may suppose that A is unital with unit e (see proof of Theo-
rem 4.2).
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(1) If either of x,y or both are zero, the assertion is clear. So let z,y € A
with > 0 and y > 0. Observe that the elements e + z, e + y are invertible
and

r4+y>0 < —1&spy(z+y) & e+r+yeGa.
On the other hand,
(4.3) etzt+y=(etz)lety)—ay=(et+a)(e—2w)le+y),
with z = (e + ) "'z and w = y(e + y) ~!. Additionally [9; p. 93, (4.3)]
spa(2) = [ spa, ((ep +2p) ) = {(1+ X)X A € spu(a)},
perl’

where sp 4(z) C (0,00). Hence r4(2z) < 1 and similarly 74(w) < 1. On the
other hand, since the inverse of a self-adjoint element is also self-adjoint
and z(e + x)~! = (e + z)~tx, we conclude that z € H(A). Analogously,
w € H(A). Hence (see Proposition 4.3(1) and [9; p. 101, Proposition 6.1])

ra(zw) <ra(z)ra(w) <1 = e—zw € Gy,

which according to (4.3) completes the proof of (1).
(2) Let z € H(A). Then ra(x)et z € H(A) and

spa(ra(z)etx) ={ra(x) = X: X €spy(x)} >0.
Thus taking a second element y € H(A), we get, by (1),

(ra(z) +ra(y)ex(z+y) 20, Vz,ye H(A),
whence (2) follows. =

4.5. PROPOSITION. Let (A, I' = {p}) be a hermitian spectral Arens—
Michael algebra. Then ra(x + x*) < 2pa(x) for all x € A.

Proof. We again suppose that A is unital with unit e. Let € A. Then
there are unique y, z € H(A) with x = y 4+ iz. Thus

(4.4) zr* + ot =2y + 2%) € H(A),

where y? > 0 and 22 > 0. Also r4(y? + 2%)e — (y* + 2%) > 0, so that
(Proposition 4.4(1)) ra(y? + 22)e — y? > 0. From the latter inequality we
get

(4.5) ray)? =ray?) <raly® +2%).
Using now (4.4), (4.5) and Proposition 4.4(2), we obtain
ra(z +2%)? =dra(y?) < 2ra(za® + 2*2)
<dra(ztz) = 2pa(z))?, VrcA =

4.6. PROPOSITION. Let (A, I' = {p}) be a hermitian spectral Arens—
Michael algebra. Then pa(x +y) < pa(z) +pa(y) for all x,y € A.
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Proof. Applying Propositions 4.3-4.5 and 3.1(2), we have
paz+y)? =ra((z+y)* (= +y) =ral@ s +y*y + (=Y +y*z))
<ra(@z) +raly*y) +ral@y +y'e) <pa(e)® +pa(y)® +2pa(z*y)

<pa(@)? +pa(y)® +2pa(@)pa(y) = (pa(z) + paly))®, Vo,ycA m

We are now in a position to state a version of the Shirali-Ford theorem
in the context of (non-normed) topological algebras.

2.3. THEOREM. FEvery hermitian spectral Arens—Michael algebra A is
symmetric.

Proof. Since A is an Arens-Michael algebra, sp(z) # () for all x € A
[9; p. 58, Corollary 4.2]. On the other hand, r4(x) < co for all x € A, since A
is spectral. Hence p4 is a real-valued function. Additionally, p 4 is subaddi-
tive from Proposition 4.6, so that the assertion follows from Theorem 4.1. m

The next corollary has been proved in [7; Theorem 7.2] by using classical
techniques.

4.8. COROLLARY. FEwvery hermitian Arens—Michael Q-algebra is symmet-
TiC.

Proof. This follows from Theorem 4.7, since every Arens—Michael Q-
algebra is spectral (see (1.1)). m
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