
STUDIA MATHEMATICA 150 (2) (2002)

Almost periodicity of C-semigroups,
integrated semigroups and C-cosine functions

by

Xiaohui Gu, Miao Li and Falun Huang (Chengdu)

Abstract. We investigate the characterization of almost periodic C-semigroups, via
the Hille–Yosida space Z0, in case of R(C) being non-dense. Analogous results are obtained
for C-cosine functions. We also discuss the almost periodicity of integrated semigroups.

0. Introduction. Characterizations of almost periodic semigroups and
groups of class C0 were studied by Bart and Goldberg [1] in 1978. Later,
Cioranescu [3], Piskarev [14, 15] and others discussed the almost periodicity
of strongly continuous cosine functions. Recently, Zheng and Liu [21] studied
the almost periodicity of C-semigroups and C-cosine functions under the
assumption that R(C) is dense.

In this paper, we investigate the situation where R(C) is allowed to be
non-dense. We characterize the generator of an almost periodicC-semigroup,
A, via the Hille–Yosida space, Z0, which is a maximal continuously imbed-
ded subspace of X on which A generates a strongly continuous semigroup.
Kantorovitz [13] first introduced the Hille–Yosida space for a closed operator
A with (0,∞) ⊂ %(A), on which the restriction of A generates a semigroup
of class C0. R. deLaubenfels [8] extended it to more general cases that A has
no eigenvalues in (0,∞), and used it to connect C-semigroups with semi-
groups of class C0. Similarly, Cioranescu [2] constructed the Hille–Yosida
space of cosine functions. For the extensive literature on this subject, we
refer to [19].

Let I := span{x ∈ D(A) : Ax = irx for some r ∈ R}. We show in
Theorem 2.4 that if A has no eigenvalues in (0,∞) and C−1AC = A, then
A generates an almost periodic C-semigroup if and only if the image of C is
contained in (Z0)a, the closure of I in Z0, the Hille–Yosida space for A; and
(Z0)a is proved to be a maximal continuously imbedded subspace of X on
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which A generates an almost periodic semigroup of class C0 of contractions
(Theorem 2.6). The key fact here is that a solution of the abstract Cauchy
problem is almost periodic in Z0 if and only if it is almost periodic in X.
The same method applies to the case of asymptotic almost periodicity of
C-semigroups; but this is the subject of another paper ([18]). Theorem 4.2
gives the analogous result for C-cosine functions. We also consider the pe-
riodicity (Theorems 2.8 and 4.3). Our results generalize the corresponding
ones in [21].

If σ(A) ∩ iR is at most countable, then a C-semigroup T (t) is almost
periodic if and only if e−λtT (t)x has uniformly convergent means for λ ∈
σ(A) ∩ iR, x ∈ X. This is proved in Theorem 2.9.

In Section 3 the almost periodicity of integrated semigroups is discussed.
Theorem 3.3 asserts that, if A generates a bounded (r−A)−1-semigroup T (t)
and a bounded integrated semigroup S(t), then T (t) is almost periodic if
and only if S(t) is almost periodic. Theorem 3.3 relates almost periodicity
of bounded (r − A)−1-groups and bounded integrated groups to uniformly
convergent means.

Throughout this paper, X will be a Banach space, the dual space will
be denoted by X∗. All operators are linear. The space of all bounded linear
operators on X will be denoted by B(X). C ∈ B(X) will be injective.
For an operator A, we will write D(A) for its domain, R(A) for its range.
Finally, J = R or R+, where R+ = [0,∞).

1. Preliminaries. First, we recall the definition and basic properties of
C-semigroups or groups.

Definition 1.1. A strongly continuous family T (t) (t ∈ J) ⊂ B(X) is
called a C-semigroup (J = R+) or a C-group (J = R) if T (t+s)C = T (t)T (s)
for t, s ∈ J and T (0) = C. The generator A is defined by

D(A) = {x ∈ X : lim
J3t→0

t−1(T (t)x− Cx) exists and belongs to R(C)}

with
Ax = C−1( lim

J3t→0
t−1(T (t)x− Cx)) for x ∈ D(A).

The complex number λ is in %C(A), the C-resolvent set of A, if λ−A is
injective and R(C) ⊆ R(λ− A); we set σC(A) := C \ %C(A).

Lemma 1.2 ([8]). Let T (t) (t ∈ J) be a C-semigroup or C-group with
generator A. Then

(a) A is closed and R(C) ⊂ D(A);
(b)

� t
0 T (s)x ds ∈ D(A) with A

� t
0 T (s)x ds = T (t)x − Cx for all x ∈ X

and t ∈ J ;
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(c) T (t)x ∈ D(A) with AT (t)x = T (t)Ax, and
� t
0 T (s)Axds = T (t)x

− Cx for all x ∈ D(A) and t ∈ J ;
(d) if T (t) is uniformly bounded , then {λ ∈ C : Reλ ∈ J\{0}} ⊂ %C(A)

and (λ− A)−1Cx =
� ∞
0 e−λtT (t)x dt for all x ∈ X and Reλ > 0.

Next, we need to introduce the Hille–Yosida space for an operator; for
the details we refer to [8].

Definition 1.3. Suppose A has no eigenvalues in (0,∞) and is a closed
linear operator. The Hille–Yosida space for A, Z0, is defined by

Z0 = {x ∈ X : the Cauchy problem u′(t) = Au(t), u(0) = x has a

bounded uniformly continuous mild solution u(·, x)}
with

‖x‖Z0 = sup{‖u(t, x)‖ : t ≥ 0} for x ∈ Z0.

Lemma 1.4 ([8]). Let A generate a bounded strongly uniformly continu-
ous C-semigroup T (t). Then R(C) ⊂ Z0 and A|Z0 generates a contraction
semigroup of class C0 given by S(t) = C−1T (t) and

Z0 = {x : t→ C−1T (t)x is bounded and uniformly continuous}
with

‖x‖Z0 = sup
t≥0
‖C−1T (t)x‖.

Now we introduce the notion of a mild C-existence family, which is more
general than C-semigroup.

Definition 1.5. The family of operators {T (t)}t≥0 ⊆ B(X) is a mild
C-existence family for A if

(a) the map t 7→ T (t)x, from [0,∞) into X, is continuous, for all x ∈ X;
(b) for all x ∈ X and t > 0,

� t
0 T (s)x ds ∈ D(A) with A(

� t
0 T (s)x ds) =

T (t)x− Cx.

Definition 1.6. (a) A function f ∈ C(J,X) is almost periodic, written
f ∈ AP(J,X), if for every ε > 0, there exists l > 0 such that every subinter-
val of J of length l contains at least one τ satisfying ‖f(t+ τ) − f(t)‖ ≤ ε
for all t ∈ J .

(b) Let F (t) ∈ B(X) (t ∈ J) be a strongly continuous operator family.
Then F (t) is almost periodic if for every x ∈ X, F (·)x is almost periodic;
F (t) is periodic with period p if F (t+ p) = F (t) for all t ∈ J .

We collect some basic results on vector-valued almost periodic functions
in the following lemma (see [21]).
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Lemma 1.7. Let f ∈ AP(R,X). Then

(a) f(t) is bounded , i.e., supt∈R ‖f(t)‖ <∞;
(b) if g ∈ AP(R,X), h ∈ AP(R, C), then f + g, hf ∈ AP(R,X);
(c) ar(f) := limt→∞ t−1

� t
0 e
−irsf(s) ds exists and

ar(f) = lim
t→∞

1
t

α+t�

α

e−irsf(s) ds for all r, α ∈ R;

(d) if ar(f) = 0 for all r ∈ R, then f(t) = 0 for all t ∈ R;
(e) σ(f) := {r ∈ R : ar(f) 6= 0} is at most countable;
(f) if X 6⊃ c0 (that is, X does not contain an isomorphic copy of c0,

where c0 is the space of all numerical sequences converging to 0), and g(t) =� t
0 f(s) ds (t ∈ R) is bounded , then g ∈ AP(R,X);

(g) if {fn}n∈N ⊂ AP(R,X) and {fn}n∈N converges uniformly to f , then
f ∈ AP(R,X);

(h) if f ′(t) exists and is uniformly continuous, then f ′ ∈ AP(R,X).

The following lemma follows immediately from Lemmas 1.4 and 1.7.

Lemma 1.8. Suppose T (t) is an almost periodic C-semigroup with gen-
erator A. Then

(a) T (t) is bounded and strongly uniformly continuous;
(b) R(C) ⊂ Z0, the Hille–Yosida space for A, and T (t) = etA|Z0C.

2. Almost periodic C-semigroups and C-groups. In this section,
we discuss the almost periodicity of C-semigroups and C-groups. The fol-
lowing is the main result of this section.

Theorem 2.1. Let T (t) be a C-semigroup on X with generator A. Then
T (t) is almost periodic if and only if R(C) ⊂ (Z0)a, the closure of I in Z0.

Proof. Sufficiency. Since R(C) ⊂ (Z0)a, for fixed x ∈ X and ε > 0,
there exist finitely many points rk ∈ R and xk ∈ ker(irk − A) such that
‖Cx−∑αkxk‖Z0 ≤ ε. Thus ‖etA|Z0Cx−∑αke

tA|Z0xk‖Z0 ≤ ε. But Axk =
irkxk, so etA|Z0xk = eirktxk ∈ AP(R+,X), i.e.,

∥∥∥etA|Z0Cx−
∑

αke
irktxk

∥∥∥
Z0

≤ ε.

So we have∥∥∥etA|Z0Cx−
∑

αke
irktxk

∥∥∥ ≤
∥∥∥etA|Z0Cx−

∑
αke

irktxk

∥∥∥
Z0
≤ ε for t ≥ 0.

Hence T (t)x = etA|Z0Cx ∈ AP(R+,X), and so T (t) is almost periodic.
Necessity. Define Prx = limt→∞ t−1

� t
0 e
−irsT (s)x ds for each r ∈ R and

x ∈ X. Then by Lemma 1.7(c) and from the proof of [21, Theorem 2.1], we
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know that Prx exists and belongs to D(A) with APrx = irPrx. Thus,

T (t)Prx = lim
s→∞

1
s

s�

0

e−irτT (t+ τ)Cxdτ = C lim
s→∞

1
s

t+s�

t

e−ir(τ−t)T (τ)x dτ

= Ceirt lim
s→∞

1
s

t+s�

t

e−irτT (τ)x dτ = eirtCPrx.

Hence, T (t)Prx ∈ R(C) and C−1T (t)Prx = eirtPrx is bounded, and uni-
formly continuous. This implies Prx ∈ Z0 and {Prx : r ∈ R, x ∈ X} ⊂
D(A|Z0) with A|Z0Prx = irPrx.

For every x ∈ X, since t 7→ T (t)x is bounded and uniformly continu-
ous, we see that T (t)x ∈ Z0 for t ≥ 0. Next, we show T (t)x ∈ AP(R+, Z0).
Since T (t)x ∈ AP(R+,X), for every ε > 0, there exists l > 0 such
that every subinterval of R+ of length l contains at least one τ satisfying
supt∈R+ ‖T (t+ τ)x− T (t)x‖ ≤ ε. Then

sup
t≥0
‖T (t+ τ)x− T (t)x‖Z0 = sup

t,s≥0
‖C−1T (s)T (t+ τ)x− C−1T (s)T (t)x‖

= sup
t,s≥0

‖T (t+ s+ τ)x− T (t+ s)x‖

≤ sup
t≥0
‖T (t+ τ)x− T (t)x‖ ≤ ε,

i.e., T (t)x ∈ AP(R+, Z0). If f ∈ Z∗0 is such that f(Prx) ≡ 0 for all x ∈ X and
r ∈ R, then limt→∞ t−1

� t
0 e
−irsf(T (s)x) ds = f(Prx) ≡ 0. But f(T (t)x) ∈

AP(R+,C). Thus by Lemma 1.7(d), we get f(T (t)x) ≡ 0 for all t ∈ R+

and x ∈ X. In particular, f(Cx) ≡ 0. Therefore, {Prx : r ∈ R, x ∈ X}⊥ ⊂
R(C)⊥, i.e.,

R(C) ⊂ ⊥(R(C)⊥) ⊂ ⊥({Prx : r ∈ R, x ∈ X}⊥)

= span{Prx : r ∈ R, x ∈ X} ⊂ (Z0)a = I,
where all the closures are taken in Z0.

Now we have the following result ([21, Theorem 2.1]) as a corollary.

Corollary 2.2. If R(C) = X, then T (t) is an almost periodic C-semi-
group with generator A if and only if T (t) is bounded and X = Xa, where
Xa is the closure of I in X.

Proof. The sufficiency is obvious. For the converse, since Z0 ↪→ X, a
Cauchy sequence in Z0 is also a Cauchy sequence in X, so that (Z0)a ⊆ Xa.
By Theorem 2.1, R(C) ⊂ (Z0)a, hence R(C) ⊂ Xa; taking closure on both
sides yields X = Xa.

By Definition 1.5 and combining Theorem 2.1 with [8, Theorem 5.16],
we have
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Theorem 2.3. Suppose A has no eigenvalues in (0,∞). Then there ex-
ists an almost periodic mild C-existence family for A if and only if R(C)
⊂ (Z0)a.

Moreover, combining Theorem 2.1 with [8, Theorem 5.17] and [10, Corol-
lary 3.14] gives

Theorem 2.4. Suppose A is closed and has no eigenvalues in (0,∞),
and C−1AC = A. Then A generates an almost periodic C-semigroup if and
only if R(C) ⊂ (Z0)a.

Now we investigate a special case.

Corollary 2.5. If C = (r − A)−n for some n ∈ N, and T (t) is a
bounded strongly uniformly continuous C-semigroup generated by A, then
T (t) is almost periodic if and only if S(t) := etA|Z0 is almost periodic.

Proof. From the proof of Theorem 2.1, we see that T (t) almost periodic
on X implies T (t) = S(t)(r − A)−n is almost periodic on Z0. Applying
Lemma 1.7(h) n times, we deduce that S(t) is almost periodic. The converse
holds since T (t) = S(t)C and Z0 ↪→ X.

The following theorem clarifies the relations between almost periodic
C-semigroups and semigroups of class C0.

Theorem 2.6. Let T (t) be an almost periodic C-semigroup with gen-
erator A. Then there exists a maximal continuously imbedded subspace W
of X such that A|W generates a contraction almost periodic semigroup of
class C0 on W and R(C) ⊂ W ; W is maximal-unique in the sense that if
Y ↪→ X and A|Y generates a contraction almost periodic semigroup of class
C0 on Y , then Y ↪→W .

Proof. Let S(t) be the semigroup of class C0 generated by A|Z0 . Since
S(t)x = eirtx, for Ax = irx, S(t) clearly takes I to itself, therefore, since
S(t) is continuous, it takes the closure of I to itself, that is to say, S(t)(Z0)a
⊂ (Z0)a. Set W = (Z0)a; the first half of the result follows.

Now suppose Y ↪→ X and A|Y generates a contraction almost pe-
riodic semigroup of class C0. Then Y ↪→ Z0, since Z0 is maximal (cf.
[8, Theorem 5.5]). It follows that (Z0)a contains the closure of span{x ∈
D(A|Y ) : Ax = irx for some r ∈ R} in Y , which is exactly Y , so that
Y ↪→W = (Z0)a.

Remark 2.7. We can consider (Z0)a for any closed operator A with
s−A injective for s > 0. The results of Theorem 2.5 are also true, and it is
not hard to see that (Z0)a equals the set of all almost periodic orbits.

Theorem 2.8. Assume that A generates a C-group T (t). Then T (t)
is a periodic C-group with period p if and only if σC(A) ⊂ (2πi/p)Z and
R(C) ⊂ (Z0)a.
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Proof. Necessity. By Lemma 1.2(b) and the fact that T (p) = C,

(λ−A)
p�

0

e−λsT (s)x ds = (1− e−λp)Cx for all x ∈ X.

Combining this with T (s)Ax = AT (s)x for every x ∈ D(A), we get σC(A) ⊂
(2πi/p)Z, while R(C) ⊂ (Z0)a follows from Theorem 2.1.

Sufficiency. If x ∈ ker(2πik/p − A) for some k ∈ Z, then T (t)x =
e2πikt/pCx, which implies T (t + p)x = T (t)x for t ∈ R; the same holds
for every x ∈ I. Since T (t) is continuous in Z0, we have T (t+ p)x = T (t)x
for all x ∈ (Z0)a; in particular, T (t + p)Cx = T (t)Cx for all x ∈ X by
our assumption R(C) ⊂ (Z0)a, therefore, since C is injective, we obtain
T (t+ p) = T (t).

It is shown in [1] that every almost periodic semigroup of class C0 can
be extended to an almost periodic group; from [21, Theorem 3.1], we know
that every almost periodic C-semigroup can also be extended to an almost
periodic C-group. So we can assume that A generates an almost periodic
C-group.

Applying [17, Theorem 4.4] and the Hille–Yosida space, we obtain the
following result, where we say that a function u has uniformly convergent
means if

lim
R→∞

1
R

a+R�

a−R
u(s) ds

exists, uniformly in a ∈ R.

Theorem 2.9. Suppose T (t) is a bounded strongly uniformly continuous
C-group with generator A such that σ(A) ∩ iR is at most countable. Then
the following assertions are equivalent.

(a) T (t) is almost periodic.
(b) For λ ∈ σ(A)∩iR, x ∈ X, e−λtT (t)x has uniformly convergent means.

Proof. By [21, Theorem 3.1], A and −A generate C-semigroups T (t) and
T (−t) (t ≥ 0), respectively, so that the Cauchy problem u′(t) = Au(t) has
a bounded uniformly continuous mild solution T (t)x on R.

Suppose S(t) is the semigroup of class C0 generated by A|Z0 . From the
proof of Theorem 2.1, we know T (t)x is almost periodic if and only if S(t)Cx
is almost periodic in Z0. To see that (b) implies (a), by [17, Theorem 4.4],
we only need to show that e−λtS(t)Cx has uniformly convergent means in
Z0 for λ ∈ σ(A|Z0) ∩ iR. This can be achieved by a small modification of
[9, Theorem 4].

(a)⇒(b) is trivial, since T (t)x and e−λtT (t)x (λ ∈ iR) are almost peri-
odic.
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3. Almost periodicity of integrated semigroups. An integrated
semigroup is a strongly continuous family S(t) such that S(0) = 0 and

S(t)S(s) =
s+t�

t

S(r) dr −
s�

0

S(r) dr(1)

for all s, t ≥ 0.
Let r ∈ %(A) 6= ∅. From [8, Theorem 18.3], we know that A generates an

(r−A)−1-semigroup T (t) if and only if A generates an integrated semigroup
S(t), and T (t)x = d

dtS(t)(r − A)−1x.
Suppose T (t) and S(t) are bounded, and strongly uniformly continuous.
If S(t) is almost periodic, then S(t)(r − A)−1x is almost periodic, and

T (t)x = d
dtS(t)(r − A)−1x is uniformly continuous, so that T (t)x is almost

periodic.
Conversely, suppose T (t) is almost periodic, and X does not contain an

isomorphic copy of c0. Since

S(t)x = (r − A)
t�

0

T (s)x ds = r

t�

0

T (s)x ds− T (t)x+ (r − A)−1x(2)

is bounded, we conclude that
� t
0 T (s)x ds is bounded; by Lemma 1.7(f),

� t
0 T (s)x ds is almost periodic, therefore so is S(t)x.

Combining the above with Theorem 2.1, we have

Theorem 3.1. Suppose r ∈ %(A) 6= ∅, A generates a bounded strongly
uniformly continuous (r − A)−1-semigroup T (t) and a bounded integrated
semigroup S(t), and suppose X does not contain an isomorphic copy of c0.
Then the following statements are equivalent.

(a) T (t) is almost periodic.
(b) S(t) is almost periodic.
(c) D(A) ⊂ (Z0)a.

Remark 3.2. (a) If A generates an almost periodic (r−A)−1-semigroup
T (t), then A also generates an integrated semigroup S(t). However, the
almost periodicity of T (t) does not guarantee the almost periodicity of S(t).
In fact, if T (t) is periodic with period p, and

� p
0 T (t)x dt 6= 0, then

� t
0 T (s)x ds

is not bounded, so that S(t)x is not bounded. So the assumption that S(t)
is bounded in Theorem 3.1 is necessary.

(b) The assumption that X 6⊃ c0 is not needed for the implication
(b)⇒(a) of Theorem 3.1; the same holds for (b)⇒(a) of Theorem 3.3.

Let C = (r − A)−1. Suppose A generates a C-group T (t). Then A and
−A generate C-semigroups T (t) and T (−t) (t ≥ 0), respectively. Hence A
and −A also generate integrated semigroups S(t) and S(−t) (t ≥ 0) such
that T (t) = d

dtS(t)(r − A)−1, T (−t) = d
dtS(−t)(r − A)−1, respectively. It is
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easy to verify that (1) holds for all t, s ∈ R. So we call S(t) (t ∈ R) an
integrated group.

Theorem 3.3. Let r ∈ %(A) 6= ∅. Suppose A generates a bounded
strongly uniformly continuous (r − A)−1-group T (t) and a bounded inte-
grated group S(t) such that σ(A) ∩ iR is at most countable, and X does
not contain an isomorphic copy of c0. Then the following statements are
equivalent.

(a) T (t) is almost periodic.
(b) S(t) is almost periodic.
(c) For λ ∈ σ(A) ∩ iR and x ∈ X, e−λtT (t)x has uniformly convergent

means.
(d) For λ ∈ σ(A) ∩ iR and x ∈ X, e−λtS(t)x has uniformly convergent

means.

Proof. We only need to show (c)⇔(d).
(c)⇒(d). By (c) and Theorem 3.1, S(t) is almost periodic, thus S(t) has

uniformly convergent means, i.e., (d) holds for λ = 0.
Now suppose λ ∈ σ(A) ∩ iR\{0}. Fix ε > 0. Then by the assumption

of (c), there exists Tε such that
∥∥∥∥

1
T

h+T�

h−T
e−λtT (t)x dt− 1

S

h+S�

h−S
e−λtT (t)x dt

∥∥∥∥ < ε

for all T, S > Tε and h ∈ R.
To prove e−λtS(t)x has uniformly convergent means, by (2), it suf-

fices to show e−λt
� t
0 T (s)x ds has uniformly convergent means. Suppose

‖
� t
0 T (s)x ds‖ ≤M and T, S > 1/|λε|. Then
∥∥∥∥

1
T

h+T�

h−T
e−λt

t�

0

T (τ)x dτ dt− 1
S

h+S�

h−S
e−λt

t�

0

T (τ)x dτ dt

∥∥∥∥

=

∥∥∥∥
1
λT

h+T�

h−T
e−λtT (t)x dt− 1

λS

h+S�

h−S
e−λtT (t)x dt

− 1
λT

e−λ(h+T )
h+T�

0

T (t)x dt+
1
λT

e−λ(h−T )
h−T�

0

T (t)x dt

+
1
λS

e−λ(h+S)
h+S�

0

T (t)x dt− 1
λS

e−λ(h−S)
h−S�

0

T (t)x dt

∥∥∥∥

< ε+ 4Mε;

the result then follows.
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(d)⇒(c). Given ε > 0 and x ∈ X, there exists Tε such that
∥∥∥∥

1
K

h+K�

h−K
e−λtS(t)(r − A)−1x dt− 1

L

h+L�

h−L
e−λtS(t)(r − A)−1x dt

∥∥∥∥ < ε

for allK,L > Tε and h ∈ R. Suppose ‖S(t)(r−A)−1x‖ ≤M and K,L > 1/ε.
Then
∥∥∥∥

1
K

h+K�

h−K
e−λtT (t)x dt− 1

L

h+L�

h−L
e−λtT (t)x dt

∥∥∥∥

=
∥∥∥∥

1
K

h+K�

h−K
e−λt

d

dt
S(t)(r − A)−1x dt− 1

L

h+L�

h−L
e−λt

d

dt
S(t)(r − A)−1x dt

∥∥∥∥

=
∥∥∥∥
λ

K

h+K�

h−K
e−λtS(t)(r − A)−1x dt− λ

L

h+L�

h−L
e−λtS(t)(r − A)−1x dt

+
1
K
e−λ(K+h)S(h+K)(r −A)−1x− 1

K
e−λ(h−K)S(h−K)(r − A)−1x

− 1
L
e−λ(h+L)S(h+ L)(r − A)−1x+

1
L
e−λ(h−L)S(h− L)(r − A)−1x

∥∥∥∥

< λε+ 4Mε;

thus we get (c).

4. Almost periodic C-cosine functions. A C-cosine function C(t)
is a strongly continuous operator family such that C(0) = C and 2C(t)C(s)
= C(t+s)C+C(s− t)C for all t, s ∈ R. The corresponding C-sine function,
S(t), is defined by S(t) =

� t
0C(s) ds. The generator A of C(t) is defined by

D(A) =
{
x ∈ X : lim

R3t→0

2
t2

(C(t)x− Cx) exists and is in R(C)
}
,

Ax = C−1
(

lim
R3t→0

2
t2

(C(t)x− Cx)
)

for x ∈ D(A).

For more details on cosine and C-cosine functions, we refer to [11,
19, 21].

First we introduce the interpolation space for C-cosine functions (cf.
[19, Theorem 1.2.5]).

Lemma 4.1. Suppose A generates a strongly uniformly continuous and
uniformly bounded C-cosine function. Then there exists a Banach space Y
such that
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(1) A|Y generates a bounded strongly continuous cosine function G(t),
with corresponding sine function H(t);

(2) R(C) ⊂ Y ↪→ X;
(3) C(t) = G(t)C, S(t) = H(t)C, Y may be chosen as

Y = {x ∈ X : t→ C−1C(t)x is bounded and uniformly continuous}
and

‖x‖Y = sup
t∈R
‖C−1C(t)x‖.

Using the above results and arguments similar to those in Section 2,
we can prove the following theorem on the almost periodicity of C-cosine
functions.

Theorem 4.2. (a) A C-cosine function C(t) is almost periodic if and
only if C(t) is bounded and R(C) ⊂ Yb := span{x ∈ D(A|Y ) : Ax = −r2x
for some r ∈ R}, the closure taken in Y , where Y is as in Lemma 4.1.

(b) S(t) is almost periodic if and only if S(t) is bounded , 0 6∈ Pσ(A) and
R(C) ⊂ Yb.

We can also derive [21, Theorem 4.1] from Theorem 4.2, as in the proof
of Corollary 2.2.

Finally, we characterize the periodicity of C-cosine functions.

Theorem 4.3. A C-cosine function C(t) is periodic with period p if and
only if C(t) is bounded , σC(A) ⊂ {−4π2k2/p2 : k ∈ N} and R(C) ⊂ Yb.
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