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Perturbations of operators similar to contractions
and the commutator equation

by

C. Badea (Lille)

Abstract. Let T and V be two Hilbert space contractions and let X be a linear
bounded operator. It was proved by C. Foiaş and J. P. Williams that in certain cases
the operator block matrix R(X;T, V ) (equation (1.1) below) is similar to a contraction
if and only if the commutator equation X = TZ − ZV has a bounded solution Z. We
characterize here the similarity to contractions of some operator matrices R(X;T, V ) in
terms of growth conditions or of perturbations of R(0;T, V ) = T ⊕ V .

1. Introduction. A bounded linear operator T ∈ B(H), acting on a
Hilbert space H, is said to be polynomially bounded if there exists a constant
M such that the inequality

‖p(T )‖ ≤M‖p‖∞ =: M sup{|p(z)| : |z| = 1}
holds for all polynomials p ∈ C[z]. It is said to be power bounded if the same
inequality holds for all monomials pn(z) = zn.

The von Neumann inequality implies that every operator T similar to
a contraction is polynomially bounded. Recall that T is said to be similar
to a contraction if there exists an invertible operator L ∈ B(H) such that
‖L−1TL‖ ≤ 1.

There are power bounded operators which are not polynomially bounded
(Foguel [F]; see also [Da, Pe, Bo]), as well as polynomially bounded operators
which are not similar to a contraction (Pisier [Pi]; see also [DaPa]). Both
Foguel’s and Pisier’s counterexamples are operators of the following type:

R(X;V ∗, V ) =
[
V ∗ X
0 V

]
∈ B(K ⊕K),

where V ∈ B(K) is a pure isometry (i.e. a unilateral shift), V ∗ is its adjoint
and X is an operator in B(K). In Foguel’s counterexample, K = `2 and
X is a suitable diagonal projection onto a subspace of `2, while in Pisier’s
counterexample, K = `2(H), V is the unilateral shift of infinite multiplicity
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dimH and X is a suitable Hankel operator with suitable operator-valued
entries.

Let T ∈ B(K), V ∈ B(H) and X ∈ B(H,K) be three Hilbert space
operators. In this paper we will consider operators of the form

R(X) = R(X;T, V ) =
[
T X
0 V

]
∈ B(K ⊕H).(1.1)

Suppose that T is a coisometry (i.e. its adjoint T ∗ is an isometry) and V is a
contraction or that T is a contraction and V is an isometry. It was proved by
C. Foiaş and J. P. Williams [FW] (cf. [CCFW, Pa2, Cl]) that in these cases
R(X) is similar to a contraction if and only if the (generalized) commutator
equation

X = TZ − ZV(1.2)

has a bounded solution Z ∈ B(H,K). This implies that R(X) is similar to
a contraction if and only if R(X) is similar to R(0) = T ⊕ V , if and only
if the commutator equation has a bounded solution. This follows from the
matrix identity

[
I −Z
0 I

] [
T 0
0 V

] [
I Z
0 I

]
=
[
T TZ − ZV
0 V

]
.

Here I denotes the identity operator, possibly on different spaces.
Note that, given T and V , the equivalence between the similarity of R(X)

to R(0) and the solvability of the commutator equation (1.2) holds for all
operators T and V if H and K are finite-dimensional (Roth’s theorem [Ro]).
It also holds for some, but not all, pairs (T, V ) in the infinite-dimensional
situation [Ros], [BhRo]. We also note that equation (1.2) is sometimes called
in the literature the Sylvester equation, while the operator Z 7→ TZ − ZV
is concurrently called the Rosenblum operator, an elementary operator, a
generalized commutator or a generalized derivation. We refer to the survey
paper [BhRo] by Bhatia and Rosenthal for more information concerning the
commutator equation (1.2).

The aim of the present paper is to give different characterizations of
operators R(X) similar to contractions. In all cases the Foiaş–Williams the-
orem will be applicable, and so these results can be viewed as criteria for
the solvability of the commutator equation. All characterizations will be
applicable to the case when T is a coisometry and V is an isometry, not
necessarily acting on the same space.

In the first such result (Theorem 2.4), T is supposed to be a right invert-
ible contraction and V an isometry or T a coisometry and V a left invertible
contraction. The result says that in both cases R(X) is similar to a con-
traction if and only if X can be decomposed as the sum of two bounded
operators satisfying growth conditions or product identities.
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A different characterization for operators R(X;T, V ), with T a coisom-
etry and V a weighted unilateral shift of arbitrary multiplicity, is given in
Theorem 5.1. This time the necessary and sufficient condition is that R(X)
is power bounded and it can be written as a zero-product perturbation by a
nilpotent of an operator which is near (in a certain sense) to R(0). Basically
the same characterization holds (Theorem 5.2) if T is a right invertible con-
traction and V is an isometry. These results are related to a previous result
of Apostol [A2] concerning the commutator equation. Note also that other
variations are possible.

Starting with work of K. O. Friedrichs (cf. [DS, Part III, XX.2.2]), several
results of the type “a perturbation of an operator C is similar to C” exist in
the literature. The characterizations described above can be interpreted as
results of the following type: “perturbations of operators near R(0) = T ⊕V
are similar to R(0)”.

The paper is organized as follows. In the next section we study the
commutator equation and Theorem 2.4 is proved. The zero-product pertur-
bations are introduced in Section 3 and the stability of the class of operators
similar to contractions under such perturbations is studied. In Section 4 we
introduce the notion of β-quadratically near operators modulo subspaces,
extending [Ba, Definition 2.5]. This notion is used in the main results of
Section 5.

2. Growth conditions and the commutator equation. The proofs
of the following result, and that of Theorem 2.3 below, are similar to the
proof of [BaPa, Theorem 4.1]. We refer to this paper for more references and
to [BhRo, p. 9] for the significance of the condition (2.1).

2.1. Theorem. Let V ∈ B(H) be an isometry , let T ∈ B(K) be a power
bounded operator and let X ∈ B(H,K). Then the commutator equation

X = TZ − ZV
has a bounded solution Z ∈ B(H,K) satisfying Z(I−V V ∗) = 0 if and only if

sup
n

∥∥∥
n∑

j=0

T jXV ∗j+1
∥∥∥ <∞.(2.1)

Proof. Suppose the equation X = TZ − ZV has a bounded solution
Z ∈ B(H,K) satisfying Z = ZV V ∗. Then

n∑

j=0

T jXV ∗j+1 =
n∑

j=0

T j(TZ − ZV )V ∗j+1

=
n∑

j=0

T j+1ZV ∗j+1 −
n∑

j=0

T jZV V ∗V ∗j
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=
n∑

j=0

T j+1ZV ∗j+1 −
n∑

j=0

T jZV ∗j

= Tn+1ZV ∗n+1 − Z.
Therefore, ‖T n+1‖ ≤M implies

sup
n

∥∥∥
n∑

j=0

T jXV ∗j+1
∥∥∥ ≤ (M + 1)‖Z‖.

Suppose now that (2.1) holds. Let L be a Banach limit [DS, Part I, p. 73],
that is, a bounded linear functional on `∞(C) such that 1 = L(1) = ‖L‖ and
L((xn+1)n≥0) = L((xn)n≥0) for every (xn)n≥0 ∈ `∞(C). Here 1 = (1, 1, . . .).

Consider the linear operator Z : H → K given by

〈Zh, k〉 = −L
(〈 n∑

j=0

T jXV ∗j+1h, k
〉)
.

Then (2.1) shows that Z is well defined and bounded. We have

〈(TZ − ZV )h, k〉 = 〈Zh, T ∗k〉 − 〈ZV h, k〉

= L
(〈 n∑

j=0

T jXV ∗jh, k
〉
−
〈 n∑

j=0

T j+1XV ∗j+1h, k
〉)

= 〈Xh, k〉 − L(〈T n+1XV ∗n+1h, k〉).
On the other hand,

〈Tn+1XV ∗n+1h, k〉 = 〈Tn+1XV ∗n+2V h, k〉

=
〈 n+1∑

j=0

T jXV ∗j+1V h, k
〉
−
〈 n∑

j=0

T jXV ∗j+1V h, k
〉
.

Therefore L(〈T n+1XV ∗n+1h, k〉) = 0 and thus X = TZ−ZV . We also have

〈ZV V ∗h, k〉 = −L
(〈 n∑

j=0

T jXV ∗j+1V V ∗h, k
〉)

= 〈Zh, k〉.

We obtain the following known result (cf. [FW, Wu, CMS, CCFW]).

2.2. Corollary. Let U ∈ B(H) be unitary , let T ∈ B(K) be a power
bounded operator and let X ∈ B(H,K). Then the operator

R(X) = R(X;T,U) =
[
T X
0 U

]
∈ B(K ⊕H)

is similar to R(0) = T ⊕ U if and only if R(X) is power bounded.

Proof. If R(X) is similar to R(0) = T ⊕U , then R(X) is power bounded
since R(0) is.
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Suppose that R(X) is power bounded. We have

Rn =
[
Tn

∑n−1
j=0 T

jXUn−j−1

0 Un

]

and thus
∥∥∥

n∑

j=0

T jXUn−j
∥∥∥ ≤M

for a suitable positive constant M . This yields
∥∥∥

n∑

j=0

T jXU∗j+1
∥∥∥ =

∥∥∥
n∑

j=0

T jXUn−jU∗n−jU∗j+1
∥∥∥

≤
∥∥∥

n∑

j=0

T jXUn−j
∥∥∥ · ‖U∗n+1‖ ≤M.

By Theorem 2.1, there is a bounded operator Z such that X = TZ − ZU .
Therefore R(X) is similar to R(0) = T ⊕ U .

It follows from [Ca] that if U is a coisometry and T is a contraction,
then R(X) is similar to a contraction if and only if R(X) is power bounded.
However, R(X) is not necessarily similar to R(0) as [Wu, Example 2.15]
shows.

The following result is a counterpart of Theorem 2.1 (see also [BaPa, Th.
4.1]). Its proof will be omitted.

2.3. Theorem. Let T ∈ B(K) be a coisometry (i.e. TT ∗ = I), let
V ∈ B(H) be a power bounded operator and let X ∈ B(H,K). Then the
commutator equation

X = TZ − ZV
has a bounded solution Z ∈ B(H,K) with (I − T ∗T )Z = 0 if and only if

sup
n

∥∥∥
n∑

j=0

T ∗j+1XV j
∥∥∥ <∞.(2.2)

The following result is the first characterization of operators R(X) sim-
ilar to contractions.

2.4. Theorem (growth condition). (a) Let V ∈ B(H) be an isometry ,
let T ∈ B(K) be a right invertible contraction and let X ∈ B(H,K). Then
the operator

R(X) =
[
T X
0 V

]
∈ B(K ⊕H)

is similar to a contraction if and only if X = A+ F , with A,F ∈ B(H,K)
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satisfying

sup
n

∥∥∥
n∑

j=0

T jAV ∗j+1
∥∥∥ <∞ and FV = 0.

(b) Let T ∈ B(K) be a coisometry , let V ∈ B(H) be a left invertible
contraction and let X ∈ B(H,K). Then the operator

R(X) =
[
T X
0 V

]
∈ B(K ⊕H)

is similar to a contraction if and only if X = A + F with A,F ∈ B(H,K)
satisfying

sup
n

∥∥∥
n∑

j=0

T ∗j+1AV j
∥∥∥ <∞ and TF = 0.

Proof. We give the proof only for the second part. By Foiaş–Williams’
[CCFW] theorem, R(X) is similar to a contraction if and only if the com-
mutator equation X = TZ − ZV has a bounded solution Z ∈ B(H,K).

Suppose the commutator equation has a bounded solution Z ∈ B(H,K).
Set

F = −(I − T ∗T )ZV and A = X − F = TZ − T ∗TZV.
Then X = A + F , TF = 0 and A = TD −DV with D = T ∗TZ satisfying
(I − T ∗T )D = 0. Apply Theorem 2.3.

Suppose now that X has a decomposition X = A + F as required. By
Theorem 2.3 there exists a bounded operator D such that A = TD − DV
and (I − TT ∗)D = 0. Let L be a left inverse for V . Set Z = D − FL. Then

TZ − ZV = TD −DV − TFL+ FLV = A+ F = X.

We also mention the following result.

2.5. Proposition. Let V ∈ B(H) be a unilateral shift (i.e. a pure isom-
etry). Let X ∈ B(H) be an operator such that

sup
n

∥∥∥
n∑

j=0

(V j+1XV j − V ∗jXV ∗j+1)
∥∥∥ <∞.

Then the commutator equation X = V ∗Z − ZV has a bounded solution
Z ∈ B(H).

Proof. Consider Z ∈ B(H) given by

〈Zh, k〉 = L
(〈 n∑

j=0

V j+1XV j − V ∗jXV ∗j+1

2
h, k

〉)
.

Then

〈(V ∗Z − ZV )h, k〉 = 〈Xh, k〉 − 1
2L(〈(V n+1XV n+1 + V ∗n+1XV ∗n+1)h, k〉).
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We have
|〈V n+1XV n+1h, k〉| = |〈XV n+1h, V ∗n+1k〉| ≤ ‖X‖ · ‖h‖ · ‖V ∗n+1k‖

and the last term tends to zero since V ∗n tends strongly to 0 as n tends to
∞. We conclude that Z is a bounded solution of the commutator equation.

3. Zero-product perturbations

3.1. Definition. The operator T ∈ B(H) is said to be a zero-product
perturbation of C ∈ B(H) by E ∈ B(H) if T = C + E and EC = 0.

The following result shows that the class of operators similar to contrac-
tions is stable under zero-product perturbations by operators of spectral
radius smaller than one, in particular by nilpotent operators.

3.2. Theorem. A zero-product perturbation of an operator similar to a
contraction by an operator of spectral radius smaller than 1 is similar to a
contraction.

Proof. Let C ∈ B(H) be an operator similar to a contraction and thus
completely polynomially bounded [Pa1]. This means that there exists a uni-
versal constant K > 0 such that

‖P (C)‖ ≤ K‖P‖∞ = sup
|z|=1
‖P (z)‖Mp(C)(3.1)

for each polynomial P with matrix coefficients in Mp(C) for any p. Recall
that P (C) is identified with an operator acting on the direct sum of p copies
of H in a natural way.

Let E ∈ B(H) be an operator of spectral radius r(E) smaller than 1 such
that EC = 0. Set T = C + E. We have

T 2 = (C + E)2 = C2 + CE + E2

and, by recurrence,
Tn = Cn + Cn−1E + . . .+ CEn−1 +En(3.2)

for every n.
Let p ≥ 1 be fixed. Let

P (z) =
d∑

j=0

Ajz
j

be a polynomial of degree d with p× p matrix coefficients Aj ∈Mp(C).
Define P(0) = P ,

P(1)(z) =
d∑

j=1

Ajz
j−1 =

P (z)− P (0)
z

and, recursively,

P(n)(z) =
Pn−1(z)− Pn−1(0)

z
.
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The representation (3.2) implies

P (T ) = P (C) + P(1)(C)E + P(2)(C)E2 + . . .+ P(d−1)(C)Ed−1.(3.3)

We can estimate the norm

‖P(n)‖∞ = sup
|z|=1
‖P(n)(z)‖Mp(C)

as follows:
‖P(n)‖∞ = ‖znP(n)‖∞ = ‖P −Dn−1 ∗ P‖∞.

Here

Dn(t) =
∑

|j|≤n
eijt =

sin((n+ 1/2)t)
sin(t/2)

is the Dirichlet kernel and the convolution Dn−1 ∗P with the polynomial P
with matrix coefficients has an obvious meaning.

The L1-norm of the Dirichlet kernel grows like log n [Z, II.(12.1)]. There-
fore there exists a positive constant A such that

‖P(n)‖∞ ≤ A log(n+ 2)‖P‖∞(3.4)

for every n ≥ 0 and every p.
Combining now equations (3.1), (3.3) and (3.4), we obtain

‖P (T )‖∞ ≤ AK
( ∞∑

n=0

log(n+ 2)‖En‖
)
‖P‖∞.

Since r(E) < r < 1, there exists a constant C such that

‖En‖ ≤ Crn

for all n and thus
∞∑

n=0

log(n+ 2)‖En‖ ≤ C
∞∑

n=0

rn log(n+ 2)

is convergent. Therefore T is completely polynomially bounded and thus
similar to a contraction by Paulsen’s [Pa1] criterion.

3.3. Remarks. (a) The series
∑∞

n=0 log(n+2)‖En‖ is convergent if and
only if r(E) < 1. Indeed, the convergence of the series with the logarithm
implies the convergence of

∑∞
n=0 ‖En‖ and thus r(E) < 1.

(b) For C = 0 we obtain the classical theorem of Rota [R] stating that
an operator T with r(T ) < 1 is similar to a contraction.

(c) By applying Theorem 3.2 to T ∗ = C∗ + E∗ we obtain a similar
statement for perturbations satisfying the reversed zero-product condition
CE = 0.

In what follows we will only use the following corollary for zero-product
perturbations by nilpotents of order two.



Perturbations of operators 281

3.4. Corollary. Let C ∈ B(H) be an operator similar to a contraction
and let E ∈ B(H) be a nilpotent operator such that EC = 0. Then T = C+E
is similar to a contraction.

3.5. Remark. The zero-product condition EC = 0 (or CE = 0) is
necessary in Theorem 3.2 and in Corollary 3.4. Indeed, if H is the Euclidean
space C2,

C = I =
[

1 0
0 1

]
and E =

[
0 1
0 0

]
,

then E2 = 0 and EC = CE = E. However,

T = C +E =
[

1 1
0 1

]

is not similar to a contraction. Indeed,

Tn =
[

1 n
0 1

]

is not power bounded.
Moreover, there exists a contraction C and an operator E such that

E2 = 0, EC = CE, T = C + E is a polynomially bounded operator but T
is not similar to a contraction.

For a counterexample, let

T =
[
S∗ Γ
0 S

]
∈ B(`2(H)⊕ `2(H))

be the polynomially bounded operator not similar to a contraction con-
structed by G. Pisier [Pi]. Here S is the unilateral shift of (infinite) multi-
plicity dimH and Γ is a suitable [Pi] operator-valued Hankel operator, thus
satisfying S∗Γ = ΓS. Then T is the sum of the contraction

C =
[
S∗ 0
0 S

]

and the operator

E =
[

0 Γ
0 0

]

satisfying E2 = 0 and EC = CE.

4. Quadratically near operators modulo subspaces. The following
definition was introduced in [Ba, Definition 2.5].

4.1. Definition. Let β : Z+ → R∗+. Two operators T ∈ B(H) and
C ∈ B(H) are said to be β-quadratically near if

s :=
[

sup
N≥0

∥∥∥∥
N∑

n=0

1
β(n)2 (Tn − Cn)(Tn − Cn)∗

∥∥∥∥
]1/2

<∞.
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T and C are simply called quadratically near if this condition holds with
β(n) = 1 for each n. We denote s in the above definition by near(T,C, β).
If β(n) = 1 for each n, we call s = near(T,C) the nearness (or 2-nearness)
between T and C.

The following result gives equivalent definitions.

4.2. Lemma. Let β : Z+ → R∗+. Two operators T and C in B(H) are
β-quadratically near with near(T,C, β) ≤ s
• if and only if

+∞∑

n=0

1
β(n)2‖(T

n − Cn)∗y‖2 ≤ s2‖y‖2,(4.1)

for all y ∈ H,
• if and only if , for every N ∈ Z+ and all x0, . . . , xN ∈ H, we have

∥∥∥∥
N∑

n=0

1
β(n)

(Tn − Cn)xn

∥∥∥∥ ≤ s

√√√√
N∑

n=0

‖xn‖2.(4.2)

Proof. The first equivalence was remarked in [Ba, Lemma 2.6] and fol-
lows from the fact that the numerical radius of A equals ‖A‖ for normal
operators A. The second equivalence follows from the fact that Definition
4.1 and condition (4.2) are both saying that

sup
N
‖RN‖ ≤ s,

where RN is the row operator

RN =
[
0

T − C
β(1)

. . .
TN − CN
β(n)

]

acting on column vectors of `2N (H).

4.3. Remark. If

lim sup
n→∞

‖Tn − Cn‖1/n < 1,

or if
∞∑

n=0

‖Tn − Cn‖2 <∞,

then T and C are quadratically near. Operators satisfying

lim sup
n→∞

‖Tn − Cn‖1/n = 0

are called in [A1] asymptotically equivalent operators.

It follows from the more general result proved in [Ba] that if C is similar
to a contraction and if near(T,C) < ∞, then T is similar to a contraction.
In particular, Rota’s theorem is obtained for C = 0 since every operator of
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spectral radius smaller than 1 is quadratically near the null operator. We
refer to [Ba] for consequences of the conditon near(T,C, β) <∞.

We introduce the following definition.

4.4. Definition. Let H0 be a subspace of H. Two operators T and C
in B(H) are said to be β-quadratically near modulo H0 if for every N ∈ Z+
and for all x0, . . . , xN ∈ H0 we have

∥∥∥∥
N∑

n=0

1
β(n)

(Tn − Cn)xn

∥∥∥∥ ≤ s

√√√√
N∑

n=0

‖xn‖2.(4.3)

For β(n) ≡ 1, we say that T and C are quadratically near modulo H0.

Quadratically near operators correspond to H0 ≡ H. We will identify H
with the subspace H⊕ {0} ⊕ {0} ⊕ . . . in `2(H).

4.5. Example. Let (ωk)k≥0 be a sequence of strictly positive weights.
Denote by Sω the unilateral weighted shift operator

Sω : `2(H) 3 (x0, x1, . . .)→ (0, ω0x0, ω1x1, . . .) ∈ `2(H)
on `2(H). Define

β(n) = ω0 . . . ωn−1 for n ≥ 1 and β(0) = 1.
Then Sω is β-quadratically near 0 (the null operator) modulo H. If

sup
n≥0

β(n) <∞,

then Sω is quadratically near 0 modulo H.

Proof. Let xn = (xn, 0, 0, . . .) ∈ H, 0 ≤ n ≤ N . Since
N∑

n=0

Snω(xn, 0, 0, . . .) = (x0, β(1)x1, . . . , β(n)xn, . . .),

we have ∥∥∥∥
N∑

n=0

1
β(n)

Snωxn

∥∥∥∥
2

=
N∑

n=0

‖xn‖2

and
∥∥∥

N∑

n=0

Snωxn

∥∥∥
2

=
N∑

n=0

β(n)2‖xn‖2 ≤ [sup
k≥0

β(k)]2
N∑

n=0

‖xn‖2.

Another example in the same vein is the following.

4.6. Example. Let V ∈ B(H) be an isometry. Then V is quadratically
near 0 (the null operator) modulo kerV ∗.

Proof. According to the Wold decomposition, V is the direct sum of a
unitary operator U and a pure isometry S. Since kerV ∗ = {0}⊕kerS∗, and
the unilateral shift S is quadratically near 0 modulo kerS∗ by the preceding
example, U ⊕ S is quadratically near 0 modulo kerV ∗.



284 C. Badea

4.7. Theorem. Let (ωk)k≥0 be a sequence of strictly positive weights
and let β(0) = 1 and

β(n) = ω0 . . . ωn−1 (n ≥ 1).

Suppose that

sup
n,k≥0

β(n+ k)
β(n)

<∞.(4.4)

Consider Sω ∈ B(`2(H)), the unilateral weighted shift with weights ωk. Let
T ∈ B(K) be an operator similar to a contraction and let X ∈ B(`2(H),K).
Suppose the operator

R(X) =
[
T X
0 Sω

]
∈ B(K ⊕ `2(H))

is β-quadratically near R(0) = T ⊕ Sω modulo H. Then R(X) is similar to
a contraction.

Proof. Condition (4.4) means that Sω is power bounded, and thus Sω
is similar to a contraction [Sh]. Without loss of any generality we can as-
sume that T and Sω are two contractions. In order to prove the similarity
of R(X) to a contraction we will construct an equivalent Hilbertian norm
on B(K ⊕ `2(H)) such that R(X), with respect to this norm, is a contrac-
tion. The construction of this new norm is similar to constructions in [Ho]
and [Ba].

Define

Xn =
n−1∑

j=0

T jXSn−j−1
ω .

Since

R(X)n =
[
Tn Xn

0 Snω

]
,

we have, using the β-quadratic nearness condition,
∥∥∥∥

N∑

n=0

1
β(n)

Xnun

∥∥∥∥ ≤ C

√√√√
N∑

n=0

‖un‖2(4.5)

for all un ∈ H.
Every element h = (h0, h1, . . .) ∈ `2(H) can be (uniquely) written as

h =
∞∑

n=0

1
β(n)

Snωhn(4.6)

with hn = (hn, 0, 0 . . .) ∈ H.
Consider decompositions of elements (k, h) of K× `2(H) of the following

type: decompose h = (h0, h1, . . .) as in (4.6); then decompose k ∈ K as



Perturbations of operators 285

follows:

k =
∞∑

n=0

Tnkn +
∞∑

n=0

1
β(n)

Xnhn.(4.7)

Several remarks are in order about this decomposition. Firstly, the above
series

∑∞
n=0(1/β(n))Xnhn converges for all h. Indeed, we have

∥∥∥∥
m+p∑

n=m

1
β(n)

Xnhn

∥∥∥∥
2

≤ C2
m+p∑

n=m

‖hn‖2

and the last sum is bounded by the tail of a convergent series. Secondly,
we suppose that only a finite number of the kn’s are non-zero, that is, we
consider only finite sums in the first part of the decomposition (4.7).

Such decompositions of (k, h) ∈ K × `2(H) always exist. Indeed, given
the unique decomposition of h as in (4.6), there is at least one finite decom-
position of k ∈ K as in (4.7): take for instance

k0 = k −
∞∑

n=0

1
β(n)

Xnhn and kn = 0 for n ≥ 1.(4.8)

We define a new norm |(·, ∗)| on K × `2(H) by setting

|(k, h)|2 = inf
{∥∥∥
∑

n≥0

Tnkn

∥∥∥
2

+ ‖h‖2 +
∞∑

n=0

‖kn‖2
}
,(4.9)

where the infimum is taken over all decompositions of (k, h) described above.
Note that

∑∞
n=0 ‖kn‖2 is also a finite sum.

We prove now that |(·, ∗)| is a Hilbertian norm on K× `2(H), equivalent
to the usual `2 norm on K ⊕ `2(H) and that R(X) is a contraction with
respect to this new norm.

1. |(·, ∗)| is a seminorm. Take two elements (k, h), (k′, h′) in K × `2(H)
with their corresponding decompositions as above given by two sequences
(kn, hn) and (k′n, h

′
n) in K×H. By adding eventually zeros, we may assume

that both decompositions have the same (finite) number of k’s. Then (k+k′,
h+ h′) is decomposed using the sequence (k′n + kn, h

′
n + hn), n ≥ 0.

Using the triangle inequality ‖a+ b‖ ≤ ‖a‖+ ‖b‖ for

a =
(∑

n≥0

Tnkn, h, k0, k1, . . .
)

and b =
(∑

n≥0

Tnk′n, h
′, k′0, k

′
1, . . .

)

and taking the infimum over all representations of (k, h) and (k′, h′), we get
the triangle inequality for the new norm.

The proofs of the inequality |λ(k, h)| ≤ |λ| · |(k, h)| and its converse are
left to the reader.



286 C. Badea

2. |(·, ∗)| is an equivalent norm. Let (k, h) ∈ K × `2(H) and consider a
decomposition as above. Then, using (4.7) and (4.5), we obtain

‖k‖2 + ‖h‖2 =

∥∥∥∥
∑

n≥0

Tnkn +
∞∑

n=0

1
β(n)

Xnhn

∥∥∥∥
2

+ ‖h‖2

≤ 2
∥∥∥
∑

n≥0

Tnkn

∥∥∥
2

+ 2

∥∥∥∥
∞∑

n=0

1
β(n)

Xnhn

∥∥∥∥
2

+ ‖h‖2

≤ 2
∥∥∥
∑

n≥0

Tnkn

∥∥∥
2

+ (2C2 + 1)‖h‖2.

Taking the infimum over all representations of (k, h), we see that ‖k‖2+‖h‖2,
which is the norm of (k, h) in K⊕ `2(H), is no greater than a constant times
the new norm |(k, h)|2.

For the reverse inequality, consider the representation of h as in (4.6)
and of k as in (4.8). Then, using (4.5), we have

|(k, h)|2 ≤ 2

∥∥∥∥k −
∞∑

n=0

1
β(n)

Xnhn

∥∥∥∥
2

+ ‖h‖2

≤ 4‖k‖2 + 4

∥∥∥∥
∞∑

n=0

1
β(n)

Xnhn

∥∥∥∥
2

+ ‖h‖2

≤M [‖k‖2 + ‖h‖2]
for a suitable constant M .

3. |(·, ∗)| is Hilbertian. Let (k, h), (k′, h′) ∈ K × `2(H) with their cor-
responding decompositions as above given by (kn, hn), (k′n, h

′
n) ∈ K × H.

Then (k ± k′, h ± h′) are decomposed by (kn ± k′n, hn ± h′n). Let Σ =
|(k + k′, h + h′)|2 + |(k − k′, h − h′)|2. Using the parallelogram law in K
and H we obtain

Σ ≤
∥∥∥
∑

n≥0

Tn(kn + k′n)
∥∥∥

2
+ ‖h+ h′‖2 +

∞∑

n=0

‖kn + k′n‖2

+
∥∥∥
∑

n≥0

Tn(kn − k′n)
∥∥∥

2
+ ‖h− h′‖2 +

∞∑

n=0

‖kn − k′n‖2

= 2
[∥∥∥
∑

n≥0

Tnkn

∥∥∥
2

+ ‖h‖2 +
∞∑

n=0

‖kn‖2
]

+ 2
[∥∥∥
∑

n≥0

Tnk′n
∥∥∥

2
+ ‖h′‖2 +

∞∑

n=0

‖k′n‖2
]
.

Taking the infimum over all representations of (k, h) and (k′, h′), we obtain
the parallelogram (in)equality for |(·, ∗)|. This implies [Am] that the norm
comes from a scalar product.
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4. The operator R(X) with respect to |(·, ∗)|. Let (k, h) ∈ K× `2(H) and
decompose k and h as in (4.6) and (4.7). Then

Sωh = (0, ω0h0, ω1h1, . . .) =
∑

n≥0

1
β(n+ 1)

Sn+1
ω

β(n+ 1)
β(n)

hn

and

Tk +Xh =
∑

n≥0

Tn+1kn +
∞∑

n=0

1
β(n)

TXnhn +
∑

n≥0

1
β(n)

XSnωhn

=
∑

n≥0

Tn+1kn +
∞∑

n=0

1
β(n)

Xn+1hn

=
∑

n≥0

Tn+1kn +
∞∑

n=0

1
β(n+ 1)

Xn+1
β(n+ 1)
β(n)

hn.

Therefore, the second and the first component of

R(X)(k, h) =
[
T X
0 Sω

] [
k
h

]
∈ K ⊕ `2(H)

are decomposed by (0, (β(1)/β(0))h0, (β(2)/β(1))h1, . . .) and, respectively,
(0, k0, k1, . . .). Then

|R(X)(k, h)|2 ≤
∥∥∥
∑

n≥0

Tn+1kn

∥∥∥
2

+ ‖Sωh‖2 +
∞∑

n=0

‖kn‖2

≤
∥∥∥
∑

n≥0

Tnkn

∥∥∥
2

+ ‖h‖2 +
∞∑

n=0

‖kn‖2,

since T and Sω are supposed to be contractions. We deduce that R(X)
is a contraction in the new norm |(·, ∗)|. Therefore R(X) is similar to a
contraction.

5. Perturbations of R(0)

5.1. Theorem (perturbation of R(0)). Let (ωk)k≥0 be a sequence of
strictly positive weights and set β(0) = 1 and β(n) = ω0 . . . ωn−1 for n ≥ 1.
Consider Sω ∈ B(`2(H)), the unilateral weighted shift with weights ωk. Let
T ∈ B(K) be a coisometry and let X ∈ B(`2(H),K). Then

R(X) =
[
T X
0 Sω

]
∈ B(K ⊕ `2(H))

is similar to a contraction if and only if R(X) is power bounded and it is
the zero-product perturbation by a nilpotent (of order two) of an operator
R(A) which is β-quadratically near R(0) = T ⊕ Sω modulo H.

Proof. Suppose that R(X) is similar to a contraction. Then R(X) and
Sω are power bounded. Since T is a coisometry, the Foiaş–Williams’ [CCFW]



288 C. Badea

theorem implies that the commutator equation X = TZ − ZSω has a
bounded solution Z ∈ B(H,K). Let L denote the operator

L : `2(H) 3 (y0, y1, . . .) 7→
(

1
ω0
y1,

1
ω1
y2, . . .

)
∈ `2(H),

which is a left inverse of Sω. Set

F = TZ(I − SωL) and A = X − F = TZSωL− ZSω.
Then FSω = 0 and A = TD −DSω with D = ZSωL. We have

R(X) =
[
T A
0 Sω

]
+
[

0 F
0 0

]
=: R(A) +E.

The second operator is nilpotent of order two and also

ER(A) =
[

0 F
0 0

] [
T A
0 Sω

]
= 0.

Thus R(X) is a zero-product perturbation by a nilpotent of order 2 of

R(A) =
[
T A
0 Sω

]
.

We show now that R(A) is β-quadratically near to R(0) = T ⊕Sω mod-
ulo H. Recall that A = TD −DV with D = ZSωL. Consider a sequence of
elements xn = (xn, 0, 0 . . .) in H. Then Dxn = DSωLxn = 0. Define

An =
n−1∑

j=0

T jASn−j−1
ω .

The powers of R(A) are given by

R(A)n =
[
Tn An
0 Snω

]
.

We obtain
∥∥∥∥

N∑

n=1

R(A)n −R(0)n

β(n)
xn

∥∥∥∥ =
∥∥∥∥

N∑

n=1

1
β(n)

Anxn

∥∥∥∥

=

∥∥∥∥
N∑

n=1

1
β(n)

n−1∑

j=0

T j(TD −DSω)Sn−j−1
ω xn

∥∥∥∥

=

∥∥∥∥
N∑

n=1

1
β(n)

(TnD −DSnω)xn

∥∥∥∥

=

∥∥∥∥−D
N∑

n=1

1
β(n)

Snωxn

∥∥∥∥

≤ ‖D‖
( N∑

n=1

‖xn‖2
)1/2

.
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In the last line we have used Example 4.5. Thus R(A) is β-quadratically
near R(0) modulo H.

For the converse implication, suppose that R(X) = R(A) + E can be
decomposed as in the theorem. We obtain X = A+ F with FSω = 0. Note
that the power boundedness of R(X) implies that of Sω. By Theorem 4.7,
the operator

R(A) =
[
T A
0 Sω

]
∈ B(K ⊕H)

is similar to a contraction. By Corollary 3.4, the zero-product perturbation
R(A) + E is also similar to a contraction.

5.2. Theorem (perturbation of R(0) again). Let V ∈ B(H) be an isom-
etry , let T ∈ B(K) be a right invertible contraction and let X ∈ B(H,K).
Then the operator

R(X) =
[
T X
0 V

]
∈ B(K ⊕H)

is similar to a contraction if and only if R(X) is power bounded and it is
the zero-product perturbation by a nilpotent of an operator R(A) which is
quadratically near R(0) = T ⊕ V modulo kerV ∗.

Proof. Suppose that R(X) is similar to a contraction. Since V is an
isometry, the commutator equation X = TZ −ZV has [CCFW] a bounded
solution Z ∈ B(H,K). Set

F = TZ(I − V V ∗) and A = X − F = TZV V ∗ − ZV.
Then FV = 0 and A = TD − DV with D = ZV V ∗. The proof that the
decomposition

R(X) =
[
T A
0 V

]
+
[

0 F
0 0

]

satisfies all the requirements is similar to that given above.
For the converse implication, suppose that R(X) = R(A) + E can be

decomposed as in the theorem. In particular E2 = 0 and X = A + F with
FV = 0. By Corollary 3.4 it is sufficient to show that

R(A) =
[
T A
0 V

]
∈ B(K ⊕H)

is similar to a contraction.
Now R(A) = R(X) − E and ER(X) = 0 since FV = 0. This implies

that R(A)n = R(X)n − R(X)n−1E and thus R(A) is power bounded since
R(X) is.

Writing the Wold decomposition for V , we get the orthogonal sum H =
Hs ⊕ Hu in which Hs and Hu reduce V . Denote by U the part of V on
Hu (U is unitary) and by S the part of V on Hs which is a pure isometry
(a unilateral shift).
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With respect to the decomposition K ⊕ H = K ⊕ Hs ⊕ Hu, the matrix
of R(A) is given by

R(A) =



T As Au
0 S 0
0 0 U


 .

Recall that U is unitary and R(A) is power bounded. By Corollary 2.2, R(A)
is similar to C ⊕ U , where

C =
[
T Xs

0 S

]
∈ B(K ⊕Hs).

Now R(A) quadratically near R(0) modulo kerV ∗ implies that C is quadrat-
ically near T ⊕ S modulo kerS∗ and thus C is similar to a contraction by
Theorem 4.7.

5.3. Remark. Another proof of Theorem 5.2 can be obtained by using
a result due to C. Apostol [A2]. With our terminology, Apostol proved that
if T and X are arbitrary and V is a unilateral shift, then the commutator
equation X = TZ−ZV has a bounded solution Z satisfying Z(I−V V ∗) = 0
if and only if R(X) is quadratically near R(0) modulo kerV ∗. Apostol’s
result, together with Theorem 2.1, shows that if V is a unilateral shift and
T is power bounded, then R(X) is quadratically near R(0) modulo kerV ∗

if and only if the growth condition (2.1) holds. It seems that Apostol’s
proof does not generalize to weighted shifts and this explains our proofs of
Theorems 4.7 and 5.1.

The conclusion of Theorem 5.2 can be strengthened if the isometry V is
supposed to be a unilateral shift. Indeed, combining the result of C. Foiaş
and J. P. Williams [FW], the result of Apostol [A2], and our previous results
we obtain the following characterization.

5.4. Theorem (nearness plus admissible perturbations). Let V ∈ B(H)
be a pure isometry (a unilateral shift), let T ∈ B(K) be a right invertible
contraction and let X ∈ B(H,K). Then the operator

R(X) =
[
T X
0 V

]
∈ B(K ⊕H)

is similar to a contraction if and only if R(X) is the zero-product per-
turbation by a nilpotent of an operator R(A) which is quadratically near
R(0) = T ⊕ V modulo kerV ∗.

The difference between this characterization and Theorem 5.2 is that the
condition of power boundedness is now missing.

6. Concluding remarks. Sometimes the nearness conditions suffice
in the characterization given by Theorem 5.4. We will show that this hap-



Perturbations of operators 291

pens for the class of operators studied by Pisier [Pi] and Davidson–Paulsen
[DaPa].

Let Λ be a function from H into B(H) satisfying the CAR, canonical
anticommutation relations: for all u, v ∈ H,

Λ(u)Λ(v)+Λ(v)Λ(u) = 0 and Λ(u)Λ(v)∗+Λ(v)∗Λ(u) = (u, v)I.(6.1)

The range of Λ is isometric to Hilbert space. Let {en}n≥0 be an orthonormal
basis for H, and let Cn = Λ(en) for n ≥ 0. For an arbitrary sequence
α = (α0, α1, . . .) in `2, let

Γα = [αi+jCi+j]

be a CAR-valued Hankel operator. Let

R(Γα) = R(S∗, S;Γα) =
[
S∗ Γα
0 S

]
∈ B(`2(H)⊕ `2(H))

be the corresponding CAR-valued Foguel–Hankel operator [Pi, DaPa]. Here
S ∈ B(`2(H)) denotes the unilateral forward shift of multiplicity dimH.

For a fixed sequence α = (α0, α1, . . .) ∈ `2, let

A(α) = sup
k≥0

(k + 1)2
∑

i≥k
|αi|2 and B(α) =

∑

k≥0

(k + 1)2|αk|2.

The operator R(Γα) is [Pi, DaPa] polynomially bounded if and only if A(α)
is finite. On the other hand, R(Γα) is [Pi, DaPa, Ri] similar to a contraction
if and only if B(α) is finite (see also [Ba, BaPa]).

6.1. Theorem. Let α = (α0, α1, . . .) ∈ `2. The operator R(Γα) is sim-
ilar to a contraction if and only if it is quadratically near R(0) = S∗ ⊕ S
modulo H.

Proof. By Theorem 4.7, the nearness condition implies similarity to a
contraction. For the converse implication, note that S∗Γα = ΓαS. This im-
plies that

R(Γα)n =
[
S∗n Γn
0 Sn

]
,

where

Γn =
n−1∑

j=0

S∗jΓαSn−j−1 = nΓαS
n−1.

We have
N∑

n=1

[R(Γα)n −R(0)n](hn, 0, 0, . . .) =
N∑

n=1

nΓαS
n−1(hn, 0, 0, . . .)

= [(j + 1)αi+jCi+j ]i,j≥0



h1
...
hN



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If R(Γα) is similar to a contraction, then B(α) is finite [DaPa], and thus
[Ri, Proposition 1] the norm of the matrix [(j+ 1)αi+jCi+j ]i,j≥0 is bounded
by B(α)1/2. We obtain

∥∥∥
N∑

n=1

[R(Γα)n −R(0)n]xn
∥∥∥ ≤ B(α)1/2

√√√√
N∑

n=1

‖xn‖2

for all xn ∈ H. Therefore, R(Γα) is quadratically near R(0) = S∗ ⊕ S
modulo H.
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Département de Mathématiques
UMR 8524 au CNRS
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