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Bounds for quotients in rings of formal power series
with growth constraints

by

Vincent Thilliez (Lille)

Abstract. In rings ΓM of formal power series in several variables whose growth of
coefficients is controlled by a suitable sequence M = (Ml)l≥0 (such as rings of Gevrey
series), we find precise estimates for quotients F/Φ, where F and Φ are series in ΓM such
that F is divisible by Φ in the usual ring of all power series. We give first a simple proof
of the fact that F/Φ belongs also to ΓM , provided ΓM is stable under derivation. By a
further development of the method, we obtain the main result of the paper, stating that
the ideals generated by a given analytic germ in rings of ultradifferentiable germs are
closed provided the generator is homogeneous and has an isolated singularity in Rn. The
result is valid under the aforementioned assumption of stability under derivation, and it
does not involve (non-)quasianalyticity properties.

1. Introduction and statement of results. Let M = (Ml)l≥0 be a
non-decreasing sequence of positive numbers, with M0 = 1. We consider the
set ΓM of those formal power series F =

∑
J∈Nn FJX

J , in n indeterminates
(X1, . . . ,Xn) = X, with complex coefficients, for which there exist positive
constants C1 and C2, depending on F, such that the estimate

(1) |FJ | ≤ C1C
j
2Mj

holds for every integer j and every multi-index J of length j. In what follows,
we shall always make the following essential assumption:

(2) the sequence M is logarithmically convex.

Then the set ΓM becomes a ring for the usual operations on power series. Of
course, the ring of convergent power series is a subring of ΓM ; it coincides
with ΓM if and only if supl≥1(Ml)1/l < ∞. A classical example of a ring
ΓM is obtained by putting Ml = l!α, where α is some positive number; ΓM
is then the ring of Gevrey series of order α well known in the theory of

2000 Mathematics Subject Classification: 32B05, 13F25, 26E10.
Key words and phrases: formal power series, division theorems, analytic and ultradif-

ferentiable function germs.

[49]



50 V. Thilliez

differential equations (either ordinary or partial); see for instance [6], [9],
[14], [15] and the many references therein.

In [2], Chaumat and Chollet have given a necessary and sufficient con-
dition for the ring ΓM to be noetherian: namely, the existence of a positive
constant A such that

(3) Ml+1 ≤ Al+1Ml for every l ∈ N.
We shall say that a sequence M satisfying (2) and (3) is admissible. Condi-
tion (3) actually amounts to saying that ΓM is stable under formal deriva-
tion. The aforementioned work of Chaumat and Chollet relies on a delicate
adaptation of the Weierstrass division theorem in the setting of rings ΓM
(however, a much simpler proof has recently been given by Mouze [7]). An-
other important consequence of these results can be stated as follows:

Theorem 1. Assume that the sequence M is admissible. Let Φ and F
be two elements of the ring ΓM such that F is divisible by Φ in the ring
C[[X]] of all formal power series. Then the quotient F/Φ belongs to ΓM .

In [12] and [13], this property plays an important role in the study of
ideals generated by a real-analytic germ in rings of ultradifferentiable germs
of functions at the origin in Rn. As a starting point of the present article,
we shall give a direct “elementary” proof of Theorem 1. The task is not
superfluous, since our particular method of proof will, in fact, lead us to a
new result on ideals of ultradifferentiable germs.

Let C∞(Rn, 0) denote the ring of C∞ function germs at the origin in
Rn. Being given an admissible sequence M, the Carleman class of germs
CM (Rn, 0) is defined (with the usual confusion between germs and repre-
sentatives) as the set of those elements f of C∞(Rn, 0) for which one can find
a neighborhood U of 0 in Rn and positive constants C3 and C4, depending
on f, such that the estimate

(4) |DJf(x)| ≤ C3C
j
4j!Mj

holds for every point x in U and every multi-index J of length j. The classes
CM (Rn, 0) yield classical scales of regularity between the analytic and the
C∞ ones. The sequence M measures, in some sense, the defect of analyticity
of their elements. To this end, one usually has to deal with various growth
properties of M. Assuming that M is admissible ensures that CM (Rn, 0)
has a few fundamental properties, namely that it is a local algebra, stable
under composition and derivation, with its maximal ideal generated by the
coordinate functions. A much stronger assumption would be the existence
of positive constants A and B such that

Mj+k ≤ Aj+kMjMk for every (j, k) ∈ N2,(5)
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∑

j≥l

Mj

(j + 1)Mj+1
≤ B Ml

Ml+1
for every l ∈ N.(6)

When the sequence M satisfies (2), (5) and (6), it is said to be strongly
regular. For instance, the Gevrey sequences Ml = l!α (α > 0) are strongly
regular. At this point, it is worth being said that the Taylor series at 0
of any element of CM (Rn, 0) is clearly an element of ΓM , and that a CM
version of Borel’s extension theorem (stating conversely that any element
of ΓM is the Taylor series of some CM germ) holds for strongly regular
sequences, but fails as soon as (6) is not satisfied; see [8]. Condition (6) is
usually called strong non-quasianalyticity, by comparison with the classical
non-quasianalyticity condition of Denjoy–Carleman: CM (Rn, 0) is said to be
non-quasianalytic if it contains non-trivial flat germs, which happens if and
only if

∑

j≥0

Mj

(j + 1)Mj+1
<∞.

We also recall a few basic definitions about topology in Carleman classes:
for any smoothly bounded neighborhood U of 0, define ‖f‖U ,C4 as the small-
est C3 for which (4) holds in U . Let CM,C4(U) be the Banach space given
by those elements f of C∞(U) having finite norm ‖f‖U ,C4 , and denote by
CM (U) the inductive limit of CM,C4(U) as C4 increases.

Now let ϕ be a real-analytic function germ at the origin in Rn, and let
Iϕ,M be the ideal generated by ϕ in CM (Rn, 0). We shall say that Iϕ,M is
closed if any element of CM (Rn, 0) which, for some suitable neighborhood U
of 0, belongs to the closure of the ideal generated by ϕ in CM (U), actually
belongs to Iϕ,M (in other words, it belongs to ϕCM (V) for some neighbor-
hood V of 0, maybe smaller than U). Replacing CM (U) by C∞(U), a similar
definition could be given in C∞(Rn, 0), but not usefully, since it is known, by
famous results of Łojasiewicz and Malgrange ([5], Theorem VI.1.1), that the
ideal generated by ϕ in C∞(U) is always closed for the usual C∞ topology.
On the contrary, Chaumat and Chollet have observed in [3] that the corre-
sponding statement is generally false in the CM setting. It is thus natural to
find for which germs ϕ the ideal Iϕ,M is closed. First results on the subject
appear in [12] and [13], as byproducts of more general division problems. In
particular, the arguments of [13], Theorem 4.2, can be adapted to yield the
following useful proposition, which relates closedness of ideals to a special
sort of division estimates.

Proposition 1. Let ϕ be a germ of real-analytic function at the ori-
gin in Rn and let M be an admissible sequence. A sufficient condition for
closedness of the ideal generated by ϕ in CM (Rn, 0) is that the following
property (P) be satisfied :
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(P) If g is a germ in C∞(Rn, 0) such that ϕg belongs to CM (Rn, 0), then
g belongs in fact to CM (Rn, 0).

If M is strongly regular , property (P) is also necessary for the ideal to be
closed.

For the reader’s convenience, we shall sketch the proof in Section 4. We
just mention now that property (P) will enable us to obtain the main result
of the article, which can be stated as follows.

Theorem 2. Let ϕ be a homogeneous polynomial whose only critical
point in Rn is 0. Then, for any admissible sequence M, the ideal generated
by ϕ in CM (Rn, 0) is closed.

It is important to notice that, besides the homogeneity, the condition
on critical points is essential here: we shall describe, at the end of the
article, an example in R3 showing that the theorem is no longer true if
this assumption is omitted. We also mention that the conclusion of The-
orem 2 was already known in the very special case of a strongly regular
sequence M and a positive-definite homogeneous polynomial ϕ: in this sit-
uation, it can indeed be deduced from Theorem 2.6 in [12] since, for a ho-
mogeneous ϕ, being positive- (or negative-) definite amounts to saying that
the set Xϕ of real zeros of ϕ is reduced to {0}. Notice that the critical
point 0 is then automatically isolated in Rn, by virtue of the Euler identity
ϕ(x) = (degϕ)−1〈∇ϕ(x), x〉. Therefore, in the particular setting of homo-
geneous polynomials, Theorem 2 is much more general than the statement
implied by [12].

Theorem 2 should also be compared with another result. In [13], we
have been able to obtain, in the strongly regular case, a necessary and suf-
ficient condition for closedness of the ideal generated in CM (R2, 0) by a
real-analytic germ ϕ of two variables. It turns out that this condition is
always satisfied by homogeneous germs, even if they have non-isolated real
critical points. Therefore, in the 2-dimensional setting, any homogeneous
polynomial generates a closed ideal in CM (R2, 0). But, as we have already
observed, this is generally false in higher dimensions if the assumption on
critical points is omitted.

Thus, one of the main interests of Theorem 2 lies in the fact that, with-
out any restriction on the dimension, it gives a positive result for a class of
generators ϕ whose real zero set Xϕ is not reduced to a single point as in
[12]. Another important feature of the theorem is that it works under weak
assumptions on M. In particular, it does not involve non-quasianalyticity
properties, contrarily to [12] and [13] whose computations and tools rely
heavily on the strong regularity of M. In fact, for many questions of differ-
ential analysis in CM classes, the strongly regular case is currently (and by
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far) the best understood. We emphasize that Theorem 2 is a first result of
closedness for ideals in a more general situation.

The paper is organized as follows. In Section 2, we describe elementary
lemmas which will enable us to give a simple proof of Theorem 1. Section 3 is
devoted to proving Theorem 1, in a slightly more general form (Theorem 3).
The last section is devoted to Theorem 2. As in [13], the most delicate part
of the proof (Proposition 2) consists in showing first that property (P) holds
when restricted to the zero setXϕ. Nevertheless, the method used here to get
this division estimate is definitely different from the arguments of [13], which
are based on Puiseux’s theorem. In the present paper, the homogeneity and
the isolated singularity of ϕ allow us to proceed in the spirit of Theorem 1,
using bounds on quotients of formal power series. This is the reason why
both results are closely related.

Notations. For any point ζ in Cn and any positive r, let B(ζ, r) denote
the open euclidean ball in Cn, with center ζ and radius r. Let S be the unit
sphere ∂B(0, 1) in Cn. For any multi-index J = (j1, . . . , jn) in Nn, we denote
by the corresponding lowercase letter j the length j1 + . . . + jn of J. For
v = (v1, . . . , vn), we put vJ = vj11 . . . vjnn and we denote by DJ

v , or DJ if
it causes no confusion, the operator ∂j/∂vj11 . . . ∂vjnn . For any holomorphic
polynomial P in Cn, we denote by |P |∞ the supremum of the moduli of
the coefficients of P. Let l be a non-negative integer. With every formal
power series F, we associate its homogeneous part of degree l, that is, the
polynomial F (l) given by

F (l)(z) =
∑

J∈Nn; j=l
FJz

J for every z ∈ Cn.

For any function h smooth in a neighborhood of a point a in Rn, we denote
by T lah the Taylor polynomial of degree l of h at a. Finally, if E is a compact
subset of Cn, we denote by ‖·‖E the supremum norm for bounded functions
on E.

2. Basic tools. Our approach to division estimates in ΓM requires two
polynomial lemmas stated below. The second one involves a bit of pluripo-
tential theory; this is the only point where the section is not fully elementary.

Lemma 1. For any holomorphic polynomial P in Cn, one has

(1/
√
n)degP |P |∞ ≤ ‖P‖S ≤ (2n)degP |P |∞.

Proof. The first inequality can be obtained by applying the Cauchy for-
mula on the polydisc D = {z ∈ Cn : |zi| < 1/

√
n for i = 1, . . . , n}. It is then

enough to see that D is contained in the closed unit ball of Cn and that we
have therefore ‖P‖D ≤ ‖P‖S by the maximum principle. To get the second
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inequality, one can simply use the rough majorization of ‖P‖S by the sum of
the moduli of the coefficients of P and notice that the number of monomials
of degree at most m is majorized by (m+ 1)n, hence by 2nm.

Lemma 2. For any real ε > 0, there exists a positive constant Cn,ε,
depending only on n and ε, such that , for any holomorphic polynomial P in
Cn and any point ζ on S, one has

‖P‖S ≤ (Cn,ε)degP ‖P‖S∩B(ζ,ε).

Proof. The lemma is essentially a particular case of the Bernstein–Walsh
–Siciak inequality, but we shall include some details for the reader’s conve-
nience. Let E be a compact subset of Cn and let φE denote Siciak’s extremal
function, which with each z in Cn associates φE(z) = sup{|Q(z)|1/degQ :
Q ∈ PE}, where PE is the set of all non-constant holomorphic polyno-
mials satisfying ‖P‖E ≤ 1. If E is the closure of some open subset of S,
it is non-pluripolar in Cn (this can be seen in the following way: assume
that there exists a function u plurisubharmonic in Cn such that u ≡ −∞
on E, pick a finite family %1, . . . , %N of unitary transformations such that⋃

1≤i≤N %i(E) = S, and put ũ =
∑

1≤i≤N u ◦ %−1
i . The function ũ would be

plurisubharmonic in Cn and satisfy ũ ≡ −∞ on S, hence a contradiction, by
the maximum principle). Therefore, φE is bounded on compact subsets of
Cn; see e.g. [11], Section 3. Choosing a point ζ0 in S and using the above fact
with E = S∩B(ζ0, ε), one easily gets the desired inequality at the particular
point ζ = ζ0, with Cn,ε = ‖φE‖S. The same result for any other point ζ of S
immediately follows by considering polynomials P ◦ %, where % is a unitary
transformation such that %(ζ0) = ζ. Notice, finally, that another proof of
Lemma 2 can be found in [1], Example 1.1, in a more general perspective.

Finally, we shall use a simple estimate in the ring C[[T ]] of formal power
series in one indeterminate T on C. Let U =

∑
j≥0 ujT

j and V =
∑
j≥0 vjT

j

be two such series, and let W =
∑
j≥0 wjT

j denote their product. Assuming
that U is non-zero, we denote its order by ν, in such a way that we have

u0 = . . . = uν−1 = 0 and uν 6= 0.

We put ∆0(U) = 1 and, for every integer k ≥ 1,

∆k(U) = sup
1≤j≤k

∣∣∣∣
uν+j

uν

∣∣∣∣
1/j

.

Lemma 3. With the above notations, we have w0 = . . . = wν−1 = 0 and ,
for any integer j ≥ 0, we have the equality

(7) vj =
1
uν

( j∑

i=0

λji(U)wν+i

)
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where the coefficients λji(U) satisfy

(8) |λji(U)| ≤ (2∆j−i(U))j−i for 0 ≤ i ≤ j.
Proof. The vanishing of w0, . . . , wν−1 is obvious. In order to get (7) and

(8), we start from the equality vj = u−1
ν (wν+i −

∑j−1
k=0 uν+j−kvk), which

is a trivial consequence of the assumption W = UV and of the definition
of ν. We derive easily the expression (7) for vj , where the λji(U) are given
inductively by

(9) λjj(U) = 1 and λji(U) = −
j−1∑

k=i

uν+j−k
uν

λki(U) for 0 ≤ i ≤ j − 1.

Now, observe that

(10)
∣∣∣∣
uν+j−k
uν

∣∣∣∣ ≤ (∆j−k(U))j−k ≤ (∆j−i(U))j−k for 0 ≤ i ≤ k ≤ j.

From (9) and (10), it is easy to prove (8) by induction on j.

3. Formal estimates. As announced, we now give some bounds for
quotients in ΓM . Notice that Theorem 1 of Section 1 is just a corollary of
the result below: putting G = F/Φ in the statement and assuming moreover
that M satisfies (3), it is clear that F/Φ belongs to ΓM .

Theorem 3. Suppose the sequence M only satisfies (2). Let Φ and G
be two formal power series in C[[X]]. Put F = ΦG and assume that :

• the series Φ is non-zero and belongs to the ring ΓM ;
• the series F belongs to ΓM .

Then, for any multi-index J,

|GJ | ≤ C1(C sup(1, C2))j+νMj+ν ,

where the constants C1 and C2 are associated with F by (1), the number ν
is the order of Φ and C is a positive constant depending only of Φ.

Proof. By Borel’s classical extension theorem, we can find two functions
Φ̃ and G̃ of class C∞ in Cn such that, for any multi-indices J and K in Nn,

(11)

1
J !K!

DJ
zD

K
z Φ̃(0) =

{
ΦJ if K = 0,
0 otherwise,

1
J !K!

DJ
zD

K
z G̃(0) =

{
GJ if K = 0,
0 otherwise.

Pick a point z on S and consider the product Φ̃(tz)G̃(tz), viewed as a func-
tion of one real variable t. Taking Taylor series at 0 and using (11), we
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obtain, in C[[T ]], the identity

(12)
∑

j≥0

wj(z)T j =
(∑

j≥0

uj(z)T j
)(∑

j≥0

vj(z)T j
)

with uj(z) = Φ(j)(z), vj(z) = G(j)(z) and wj(z) = F (j)(z) for any integer
j ≥ 0 and any z in S. The assumption on F, together with Lemma 1, ensures
that

(13) |wj(z)| ≤ C1(8nC2)jMj for any j ∈ N and z ∈ S,
where C1 and C2 are associated with F by (1). For the same reason, there
exist positive constants C5 and C6, depending only on Φ, such that

(14) |uj(z)| ≤ C5C
j
6Mj for any j ∈ N and z ∈ S.

Denote by Uz the series
∑
j≥0 uj(z)T j . By definition of the order ν of the

series Φ, we have u0(z) = . . . = uν−1(z) = 0 for any z of S, whereas the
homogeneous polynomial uν is not identically zero. Let ζ0 be a point of S
satisfying uν(ζ0) 6= 0. For a sufficiently small ε > 0, there exists a constant
η > 0, depending only on Φ, such that |uν | ≥ η on S ∩B(ζ0, ε). Taking into
account the estimate (14) and the fact that (Mj+ν)1/j increases with j by
virtue of (2), it is then easily seen that there exists a positive constant C7,
depending only on Φ, such that, with the notations of Lemma 3,

∆k(Uz) ≤ C7(Mk+ν)1/k for any k ∈ N and z ∈ S ∩B(ζ0, ε).

Using (8), we thus have

(15) |λji(Uz)| ≤ (2C7)j−iMj−i+ν for 0 ≤ i ≤ j and z ∈ S ∩B(ζ0, ε).

By virtue of (13) and (15), applying Lemma 3 to the product of series (12)
yields the estimate

(16) |vj(z)| ≤ η−1
j∑

i=0

(2C7)j−iMj−i+νC1(8nC2)i+νMi+ν

for any integer j ≥ 0 and any point z of S ∩ B(ζ0, ε). The logarithmic
convexity of M also easily implies Mj−i+νMi+ν ≤ MνMj+ν for 0 ≤ i ≤ j.
Combining this estimate and (16), we obtain, for suitable constants C8 and
C9, depending only on Φ, the majorization

(17) ‖G(j)‖S∩B(ζ0,ε) ≤ C8C1(C9 sup(1, C2))j+νMj+ν for any j ∈ N.
From (17), it is enough to apply Lemma 2 first, then Lemma 1, to complete
the proof of Theorem 3.

Remark. Incidentally, Theorem 3 proves that ΓM is a local ring whose
maximal ideal is given by the set of those elements of ΓM without constant
term. Indeed, if Φ has a non-zero constant term, that is, if ν = 0, Theorem 3
implies that Φ is invertible in ΓM . This result can be seen as an old part of
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the folklore on rings ΓM , under various assumptions on M. In fact, most of
the classical papers deal with functions rather than formal series, but some
of them (see e.g. [10], Theorem 13 and its Corollary) use majorizations which
also apply in the formal case. This actually goes back to the work of Gevrey
(Section I.2 of [4]).

4. Estimates for ultradifferentiable germs. In what follows, we al-
ways work within the assumptions of Theorem 2; in other words the sequence
M satisfies (2) and (3) and we consider some real homogeneous polynomial ϕ
having no other critical point than 0 in Rn. The polynomial ϕ can obviously
be viewed as the restriction to Rn of a holomorphic polynomial on Cn; we
can thus consider the set Zϕ of complex zeros of ϕ in Cn. We denote by Xϕ

the set Zϕ ∩ Rn of its real zeros. We remark that no particular assumption
is made on non-real critical points of ϕ.

Now, as explained in the introduction, we have to show that property
(P) holds. Let g be a germ in C∞(Rn, 0) such that ϕg belongs to CM (Rn, 0).
Put f = ϕg. For any point a in a neighborhood of 0, we have the identity
of formal power series

(18) Fa = ΦaGa,

with

Fa =
∑

J∈Nn

1
J !
DJf(a)XJ , Φa =

∑

J∈Nn

1
J !
DJϕ(a)XJ ,

Ga =
∑

J∈Nn

1
J !
DJg(a)XJ .

The assumption on f implies that Fa belongs to ΓM . Besides this, Φa is
just the polynomial ϕ(X + a). Theorem 1 shows therefore that one can find
two positive numbers C(a) and D(a), depending on a, such that, for any
multi-index J,

(19) |DJg(a)| ≤ C(a)D(a)jj!Mj .

However, it is not difficult to see that the estimates found in the proof
of Theorem 3 are by no means sufficient to deduce that C(a) and D(a)
are uniform with respect to a. Thus, starting from (19), we have to show
that one can actually replace them by uniform constants. This will be done
in several steps below. Before this, we sketch, as announced, a proof for
Proposition 1 of Section 1.

Proof of Proposition 1. We show first that property (P) is sufficient for
closedness. Since the CM topology is clearly stronger than the C∞ topology,
every germ f belonging to the CM closure of the ideal ϕCM (U) also belongs
to the C∞ closure of the ideal ϕC∞(U), hence to ϕC∞(U) itself, as explained
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in the introduction. Writing f = ϕg and applying (P), we infer that f
belongs to Iϕ,M , which is therefore closed. Conversely, assume that Iϕ,M
is closed and let g be a C∞ germ such that ϕg belongs to CM (Rn, 0). We
see, using Theorem 1 (as for proving (19) above), that the Taylor series
of g at any point a of a suitable neighborhood U of 0 belongs to ΓM ; in
other words, ϕg belongs formally to the ideal ϕCM (U). If we also assume
that the sequence M is strongly regular, we can then use the CM version of
Whitney’s spectral theorem [2] to derive that ϕg belongs to the closure of
ϕCM (U) in CM (U), hence to Iϕ,M . Therefore, g belongs to CM (Rn, 0) and
property (P) is established.

Before going further, we have to state now a technical lemma, to be used
twice in what follows (namely, in the proofs of Proposition 2 and Theorem 2).

Lemma 4. There exist a neighborhood V of 0 in Rn and two constants
C10 and C11, not depending on a, such that

|DK(f − ϕT lag)(x)| ≤ C10C(a)(C11D(a))lk!Ml|x− a|l+1−k,(20)

|DKT lag(x)| ≤ C10C(a)(C11D(a))lk!Ml,(21)

for any a and x in V, any integer l ≥ 0 and any multi-index K of length
k ≤ l + 1.

Proof. Using the Taylor formula, we notice first that

(22) |DK(f − T laf)(x)| ≤ C12C
l
13k!Ml+1|x− a|l+1−k,

for some suitable C12, C13 depending only on n and on the constants C3, C4

associated with f by (4). On the other hand, if we put m = degϕ, a direct
computation yields

(23) (T laf − ϕT lag)(x) =
l+m∑

p=l+1

l∑

q=0

(Φ(p−q)
a G(q)

a )(x− a).

By the Leibniz formula, for each term on the right-hand side of (23), we
have

(24) DK(Φ(p−q)
a G(q)

a ) =
∑

H+I=K

K!
H!I!

(DHΦ(p−q)
a )(DIG(q)

a ).

Now we estimate each term on the right-hand side of (24). Since ϕ is a
polynomial and Φa = ϕ(X+a), one immediately gets the rough majorization

(25) |DHΦ(p−q)
a (x− a)| ≤ C14|x− a|p−q−h

for any p, q and H, with a suitable constant C14 depending only on ϕ. Now
recall that

(26) G(q)
a (x− a) =

∑

J∈Nn:j=q

1
J !
DJg(a)(x− a)J .
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The derivative DI(x − a)J is zero except when is ≤ js for s = 1, . . . , n. In
this situation, one has explicitly DI(x− a)J = (J !/(J − I)!)(x− a)J−I and
J !/(J − I)! ≤ 2jI! ≤ 2ji!. Hence, in any case,

(27) |DI(x− a)J | ≤ 2ji!|x− a|j−i

for all multi-indices I and J. Using (19), (26), (27) and the simple estimate
j! ≤ njJ !, we derive

(28) |DIG(q)
a (x− a)| ≤ C(a)(C15D(a))qi!Mq|x− a|q−i

for some C15 depending only on n. By (24), (25) and (28), and since h+i = k,
we get

(29) |DK(Φ(p−q)
a G(q)

a )(x− a)| ≤ C14C(a)(C15D(a))qCk16k!Mq|x− a|p−k,
with a constant C16 depending only on n. In (23), one always has p ≥ l+ 1,
hence |x − a|p−k ≤ |x − a|l+1−k since we can assume |x− a| ≤ 1 for any x
and a. Taking also into account the conditions q ≤ l and k ≤ l + 1, we see
that (23) and (29) yield the majorization

(30) |DK(T laf − ϕT lag)(x)| ≤ C17C(a)(C18D(a))lk!Ml|x− a|l+1−k,

for some suitable C17, C18, and maybe after having replaced D(a) by
sup(1,D(a)). Together with (22) and property (3) of the sequence M, this
yields (20). Finally, the proof of (21) goes along the same lines as (28).

We state now a key step in the proof of Theorem 2. This proposition
describes division estimates restricted to the real zero set Xϕ. It is thus
comparable to Proposition 2.6 of [13].

Proposition 2. There exist constants C19 and C20 such that , for any
point a of V ∩Xϕ and any multi-index J,

|DJg(a)| ≤ C19C
j
20j!Mj .

In other words, for a ∈ V ∩ Xϕ, the estimate (19) holds with C(a) = C19

and D(a) = C20.

Proof. For any integer l ≥ 0, put fl = f − ϕT l0g and hl = g − T l0g, so
that fl = ϕhl. Instead of (18), we shall use the identity

(31) Fl,a = ΦaHl,a

with

Fl,a =
∑

J∈Nn

1
J !
DJfl(a)XJ and Hl,a =

∑

J∈Nn

1
J !
DJhl(a)XJ .

Proceeding now as in the proof of Theorem 3, we derive from (31) the formal
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identity

(32)
∑

j≥0

wj(l, a, z)T j =
(∑

j≥0

uj(a, z)T j
)(∑

j≥0

vj(l, a, z)T j
)

with uj(a, z) = Φ
(j)
a (z), vj(l, a, z) = H

(j)
l,a (z) and wj(l, a, z) = F

(j)
l,a (z) for

any integer j ≥ 0, any point a of V ∩Xϕ and any point z in S. Denote by
Ua,z the series

∑
j≥0 uj(a, z)T j . The homogeneity of ϕ and the assumption of

isolated real critical point at 0 show that we have, at any point a of Xϕ\{0},
the estimate |∇ϕ(a)| ≥ C21|a|m−1 for m = degϕ and for a constant C21

depending only on ϕ. Consider the point ζa = |∇ϕ(a)|−1∇ϕ(a) on S ∩ Rn.
We then have

(33) |Φ(1)
a (z)| ≥ 1

2
C21|a|m−1 for any a ∈ Xϕ\{0} and z ∈ S∩B(ζa, 1/2).

We also have, using once again the homogeneity of the polynomial ϕ,

(34) ‖Φ(p)
a ‖S ≤ C22|a|m−p for any p ∈ N,

with a constant C22 depending only on ϕ. Thus, for any point a of V ∩
Xϕ \ {0}, the order ν of the series Ua,z equals 1 and, with the notations of
Lemma 3, we have, by virtue of (33) and (34), the inequality

∆k(Ua,z) ≤ C23|a|−1 for any k ∈ N and z ∈ S ∩B(ζa, 1/2)

with a constant C23 depending only on ϕ. Together with (8), this yields the
crucial estimate

|λji(Ua,z)| ≤
(

2C23

|a|

)j−i
for 0 ≤ i ≤ j, a ∈ V ∩Xϕ \ {0}

and z ∈ S ∩B(ζa, 1/2).

Therefore, applying Lemma 3 to the product of series (32) shows that, for
any integer j ≥ 0 and any point a in V ∩Xϕ \ {0},

(35) |vj(l, a, z)| ≤
j∑

i=0

(2C23/|a|)j−i|wi+1(l, a, z)| for z ∈ S ∩B(ζa, 1/2).

Now, using the inequality (20) of Lemma 4 with a replaced by 0 and x
replaced by a, we obtain, for every multi-index K of length k ≤ l + 1,

|DKfl(a)| ≤ C24C
l
25k!Ml|a|l+1−k,

with C24 = C10C(0) and C25 = C11D(0). As a consequence, using the
elementary estimate k! ≤ nkK! and Lemma 1, and putting k = i + 1, we
have

|wi+1(l, a, z)| ≤ C26C
l
27Ml|a|l−i for i ≤ l, a ∈ V ∩Xϕ \ {0} and z ∈ S.
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Combining this estimate with (35) yields finally

(36) ‖H(j)
l,a ‖S∩B(ζa,1/2) ≤ C28C

l
29Ml|a|l−j for j ≤ l and a ∈ V∩Xϕ\{0},

with some suitable constants C28 and C29. Now, applying Lemma 2 first,
then Lemma 1, and recalling that J ! ≤ j!, we see that (36) amounts to

|DJ(g − T l0g)(a)| ≤ C30C
l
31j!Ml|a|l−j

for any multi-index J of length j ≤ l and any a in V ∩ Xϕ \ {0}. The
proposition follows by choosing l = j, since, by virtue of the inequality (21)
of Lemma 4, we also have

|DJT j0 g(a)| ≤ C32C
j
33j!Mj

for some suitable C32 and C33.

Starting from the estimates on Xϕ which have been obtained in Propo-
sition 2, we now have to get estimates in a whole neighborhood of 0. As in
[13], this can be done with the help of geometric information on the relative
position of Zϕ and Xϕ. Such information is obtained in Lemmas 5 and 6
and Proposition 3 below. We shall use the following classical abbreviation:
if A(x) and B(x) are two positive functions of x on a set X, one writes
A(x) . B(x) (or, equivalently, B(x) & A(x)) if one can find a real number
C, not depending on x, such that A(x) ≤ CB(x) for any x ∈ X. The notation
A(x) ≈ B(x) means A(x) . B(x) and B(x) . A(x) simultaneously.

Lemma 5. There exists a neighborhood W of S ∩Xϕ in Cn such that

d(z,S ∩ Zϕ) ≈ |ϕ(z)|+ |z|2 − 1 for z ∈ W.

Proof. By an obvious compactness argument, it is enough to obtain the
estimate in a suitable neighborhood of a given point a of S ∩ Xϕ. To this
end, we make the standard identification between the point z = (x1 +iy1, . . .
. . . , xn + iyn) of Cn and the point (x1, y1, . . . , xn, yn) of R2n. We denote
by I the corresponding inclusion Rn → R2n and by J the multiplication
by i, that is, J(x1, y1, . . . , xn, yn) = (−y1, x1, . . . ,−yn, xn). Now we consider
u1(z) = Reϕ(z), u2(z) = Imϕ(z) and u3(z) = |z|2−1. Using the fact that a
is real and ϕ has real coefficients, it is then easy to check that the gradients
of u1, u2, u3 (viewed as functions on R2n) are given, at the point a, by

∇u1(a) = I

(
∂ϕ

∂x1
(a), . . . ,

∂ϕ

∂xn
(a)
)
,

∇u2(a) = J(∇u1(a)) and ∇u3(a) = I(2a).

None of these three gradients vanishes, since a belongs to S ∩ Rn, hence
is not a critical point for ϕ. Moreover, ∇uj(a) is orthogonal to ∇uk(a) for
j 6= k: this claim is obvious for (j, k) = (1, 2) and (j, k) = (2, 3), whereas for
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(j, k) = (1, 3), it is a consequence of the fact that

〈∇u1(a),∇u3(a)〉 = 2
n∑

l=1

∂ϕ

∂xl
(a)al = 2(degϕ)ϕ(a) = 0

as ϕ is homogeneous and a belongs to Xϕ. By these properties of u1, u2, u3,
we can, in particular, find C∞ functions u4, . . . , u2n such that (u1, . . . , u2n)
is a local real coordinate system in a neighborhood of a. In this system,
S ∩ Zϕ is the real submanifold given by u1 = u2 = u3 = 0 and therefore
d(z,S ∩ Zϕ) ≈ |u1(z)|+ |u2(z)|+ |u3(z)| ≈ |ϕ(z)|+ |z|2 − 1.

Lemma 6. Maybe after shrinking the neighborhood W of Lemma 5, we
have

d(x,S ∩Xϕ) ≈ |ϕ(x)|+ |x|2 − 1 for x ∈ Rn ∩W.

Proof. Use the same arguments as in Lemma 5, but in a purely real
context, and observe that in Rn, the submanifold S ∩Xϕ is given by u1 =
u3 = 0.

The proposition below expresses the fact that Zϕ and Rn are transverse
in the sense of Łojasiewicz’s regular separation.

Proposition 3. There exists a constant C34, depending only on ϕ, such
that

d(x,Zϕ) ≥ C34d(x,Xϕ) for any x ∈ Rn.
Proof. Let z be a point of Zϕ such that |x − z| = d(x,Zϕ). Two cases

have to be discussed, according to the value of λ = |z|.
First case: λ ≤ |x|/2. Then d(x,Zϕ) ≥ |x|/2 and the inequality of Propo-

sition 3 is trivial since, clearly, d(x,Xϕ) ≤ |x|.
Second case: λ > |x|/2. Then λ−1x belongs to some fixed compact subset

E of Rn. We have d(x,Zϕ) = λ|λ−1x−λ−1z| ≥ λd(λ−1x,S∩Zϕ) since λ−1z
belongs clearly to S ∩ Zϕ. Taking Lemmas 5 and 6 into account, we get
d(λ−1x,S ∩ Zϕ) ≈ |ϕ(λ−1x)| + |λ−1x|2 − 1 ≈ d(λ−1x,S ∩ Xϕ) when λ−1x
belongs to E ∩ W. When λ−1x belongs to E \ W, it is easy to see that
d(λ−1x,S ∩ Zϕ) ≈ 1 ≈ d(λ−1x,S ∩Xϕ). In particular, one always has

d(λ−1x,S ∩ Zϕ) & d(λ−1x,S ∩Xϕ).

Let y be a point of S∩Xϕ such that |λ−1x−y| = d(λ−1x,S∩Xϕ). Gathering
the preceding estimates and noting that λy belongs to Xϕ, we thus obtain
d(x,Zϕ) & λ|λ−1x− y| = |x− λy| ≥ d(x,Xϕ).

We are now ready to conclude.

Proof of Theorem 2. By the Łojasiewicz inequality for analytic functions
[5], we know that there exist positive constants C35 and % such that

(37) |ϕ(z)| ≥ C35d(z, Zϕ)%
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for any z belonging to a neighborhood of 0 in Cn. With the help of (37) and
Proposition 3, the Cauchy formula on the polydisk {z ∈ Cn : |zi − xi| ≤
(1/(2

√
n))d(x,Zϕ), i = 1, . . . , n} yields

(38)
∣∣∣∣DJ

(
1

ϕ(x)

)∣∣∣∣ ≤ C
j+1
36 j!d(x,Xϕ)−(j+%)

for any x sufficiently close to 0 in Rn \Xϕ and any multi-index J of length
j. Now let a denote a point in V ∩ Xϕ, to be specified later. If we take
Proposition 2 into account, inequality (20) of Lemma 4 becomes

(39) |DK(f − ϕT lag)(x)| ≤ C37C
l
38k!Ml|x− a|l+1−k,

for any integer l ≥ 0 and any multi-index K of length k ≤ l + 1, with
constants C37 and C38 not depending on a (one can take explicitly C37 =
C10C19 and C38 = C11C20). For the same reason, inequality (21) of Lemma 4
gives

(40) |DIT lag(x)| ≤ C37C
l
38i!Ml

for any multi-index I. By (38), (39) and the Leibniz formula, we easily obtain

(41) |DI(g − T lag)(x)| ≤ C39C
l
40i!MlS for i ≤ l + 1,

with some suitable constants C39, C40, and with

S = sup
j+k=i

(|x− a|l+1−kd(x,Xϕ)−j−%).

Choose l = i+[%] and pick the point a in such a way that |x−a| = d(x,Xϕ)
(clearly, a belongs to V∩Xϕ when x stays in a sufficiently small neighborhood
of 0). It is now readily seen that we have S ≤ 1. Besides this, applying [%]
times property (3) of the sequence M, we obtain Mi+[%] ≤ Ci+1

41 Mi for some
C41 depending only on M and on the constant [%]. Thus, adding (40) and
(41) yields finally

|DIg(x)| ≤ C42C
i
43i!Mi

for any multi-index I, hence the desired result.

Remark. The basic idea in the proof of Proposition 2 and Theorem 2
above is to estimate the derivatives of g = f/ϕ by writing g = (1/ϕ)(f −
ϕP ) + P, where P has good bounds and the rate of vanishing of f − ϕP at
some point a cancels the explosion of 1/ϕ. Here, P is a Taylor polynomial
of g at a, whose degree has to change with the order of the derivative we
want to estimate. This scheme of proof can be technically simplified when
M is strongly regular. Indeed, in this particular case, we benefit from the
CM version of Borel’s theorem. Thus, there is a CM function g̃ such that
g− g̃, and consequently f −ϕg̃, is flat at a. In this situation, Lemma 4 is no
more needed, and the other proofs are slightly simpler. Details are left to the
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reader. Notice that similar arguments are used in the proof of Theorem 2.1
in [13].

Inspired by techniques of [12], the following example ends the article by
showing that it is not possible to remove the assumption of isolated critical
point in the statement of Theorem 2.

Example. For α > 0, denote by ψα the function defined on R by ψα(t) =
exp(−t−1/α) for t > 0 and ψα(t) = 0 for t ≤ 0. It is well known that this
function has CM regularity with Ml = l!α. Now pick two real numbers α
and β with 0 < β < α and put, for any x = (x1, x2, x3) in R3,

ϕ(x) = x2
1x3 + x3

2 and g(x) =
ψα(x2)ψβ(x3)
x2

1x3 + x3
2

.

Clearly, the critical locus of the homogeneous polynomial ϕ in R3 is the axis
{0}×{0}×R; the zero set Zϕ “draws a cusp” on the sphere S. In view of the
definition of ψα and ψβ , the function g is well defined at each point of R3; it
is identically zero outside the open set Ω = {x : x2 > 0, x3 > 0}. Moreover,
it is easy to see, by the flatness of ψα and ψβ , that g is C∞. Finally, we have
(ϕg)(x) = ψα(x2)ψβ(x3), which shows that ϕg belongs to CM (R3, 0) with
Ml = l!α. On the other hand, for x ∈ Ω and |x1| < (x3x

−3
2 )−1/2, we have

g(x) =
1
x3

2
· ψα(x2)ψβ(x3)

1 + x2
1x3x

−3
2

=
∞∑

j=0

(−1)jψα(x2)ψβ(x3)
xj3

x3j+3
2

x2j
1 .

In particular, we deduce, for any integer j ≥ 0, any x2 > 0 and x3 > 0, the
equality

∂2jg

∂x2j
1

(0, x2, x3) = (−1)j(2j)!ψα(x2)ψβ(x3)
xj3

x3j+3
2

.

One thus has
∂2jg

∂x2j
1

(0, j−α, j−β) = (−1)j(2j)!e−2jj(3α−β)j+3α.

Using the Stirling formula, it is then easy to obtain
∣∣∣∣
∂2jg

∂x2j
1

(0, j−α, j−β)
∣∣∣∣ ≥ cj+1(2j)!1+dα = cj+1(2j)!Md

2j ,

with

d =
3
2
− β

2α
,

and with some suitable constant c > 0. Hence g does not belong to any
class strictly smaller than CMd(R3, 0). Since we have d > 1, this shows that
property (P) fails. Moreover M is strongly regular. Therefore, by virtue of
the converse part of Proposition 1, the ideal Iϕ,M is not closed.



Bounds in rings of formal power series 65

References
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