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Fuglede-type decompositions of representations

by

Marek Kosiek (Kraków)

Abstract. It is shown that reducing bands of measures yield decompositions not only
of an operator representation itself, but also of its commutant. This has many consequences
for commuting Hilbert space representations and for commuting operators on Hilbert
spaces. Among other things, it enables one to construct a Lebesgue-type decomposition
of several commuting contractions without assuming any von Neumann-type inequality.

1. Introduction and preliminaries. The method of decompositions
of function algebra representations without using any dilations was devel-
oped by Mlak in the seventies. Among other things, it made possible con-
structions of representations analogous to the Nagy–Foiaş functional calcu-
lus for completely nonunitary contractions. The decompositions with respect
to nontrivial Gleason parts were later extended by Szafraniec to the more
general setting (equivalent to reducing bands of measures). The ideas of
Mlak and Szafraniec have had numerous applications in the theory of oper-
ator representations. In this paper we show how their ideas can be applied to
obtain a decomposition of the commutant useful in some new applications.

The paper is organized as follows: The present section contains prelim-
inaries on bands of measures and operator representations of function al-
gebras. The beginning of Section 2 recalls band decompositions of operator
representations due to Mlak [11] and Szafraniec [16]. The rest of it is de-
voted to band decompositions of the commutant. In Section 3 we consider
band decompositions of mutually commuting representations. The results
obtained are illustrated by an application.

A Lebesgue-type decomposition of N -tuples of commuting contractions
presented in Section 4 is another application of the results proved in Sec-
tion 3. We get it without requiring any kind of von Neumann inequality.
Finally, in Section 5 some absolute continuity and singularity properties of
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commuting contractions are considered. We also obtain a result concern-
ing hyperinvariant subspaces which is connected with the above mentioned
properties.

Let X be a compact Hausdorff space. We denote by C(X) the Banach
algebra of all complex continuous functions on X equipped with the sup-
norm, and by M(X) the set of all complex Borel measures on X. Recall
that M(X) is a Banach space with the total variation norm. If E is a subset
of M(X) then Es will denote the set of all measures on X singular to each
measure in E. A subset M of M(X) is a band (see [7, Sec. 2]) if (Ms)s = M.
It is easy to see that any band is a closed subspace of M(X) which is also
closed with respect to the absolute continuity. Any measure µ ∈M(X) has
a Lebesgue decomposition of the form

µ = µM + µMs
,(1.1)

where µM ∈ M and µMs ∈ Ms. (For details and terminology concerning
bands we refer the reader to [3, Sec. 20], [4, V.17]). In the case when only
one band is considered we will write µs instead of µMs

for the singular part
of µ.

In what follows, assume that A is an arbitrary function algebra on X, i.e.
a uniformly closed subalgebra of C(X) containing constants and separating
the points of X. We say that a measure µ is orthogonal to A (or annihi-
lates A) if

�
u dµ = 0 for u ∈ A. The set of all such measures is denoted

by A⊥.
Let H be a complex Hilbert space with inner product (·, ·) and norm ‖·‖.

We denote by L(H) the algebra of all bounded linear transformations acting
on H, and by I the identity operator on H. A linear mapping T : A→ L(H)
is called a representation of a function algebra A if

T (uv) = T (u)T (v) for u, v ∈ A(1.2)

and there is a positive constant k such that

‖T (u)‖ ≤ k‖u‖, u ∈ A.(1.3)

Without loss of generality we may always assume that T (1) = I.
It is a consequence of standard techniques (see [11]) that for each x, y ∈ H

there exists a complex, Borel, regular measure µx,y on X such that

(T (u)x, y) = � u dµx,y for x, y ∈ H, u ∈ A(1.4)

and
‖µx,y‖ ≤ k‖x‖ · ‖y‖.(1.5)

The measures µx,y are called elementary measures of T .
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2. Decomposition of the commutant. A band M ⊂ M(X) is said
to be reducing with respect to A if for every measure µ ∈ A⊥ we have
µM ∈ A⊥. (When A is fixed we say simply that M is reducing.) Suppose we
are given a representation T : A→ L(H) satisfying (1.3). Let M be a band
in M(X). Let {µx,y}x,y∈H be a collection of its elementary measures. Each
of the measures µx,y has a Lebesgue decomposition (1.1) with respect to M.
By (1.4) we have

(T (u)x, y) = � u dµM
x,y + � u dµs

x,y,

where µM
x,y ∈ M and µs

x,y ∈ Ms. It is shown in [11] and [4] that with any
u ∈ A we can associate bounded linear operators TM(u), T s(u) (the last
one denoted by TMs

(u) in the general situation) such that

(TM(u)x, y) = � u dµM
x,y, (T s(u)x, y) = � u dµs

x,y for x, y ∈ H.(2.6)

Moreover (see [11, Thm. 2.1], [16, Thm. 3.2]), we have the following

Proposition 2.1. Let HM = TM(1)H, Hs = T s(1)H. The mappings

TM : A 3 u 7→ TM(u) ∈ L(HM), T s : A 3 u 7→ T s(u) ∈ L(Hs)

are representations with ‖TM(u)‖ ≤ k‖u‖, ‖T s(u)‖ ≤ k‖u‖ for u ∈ A. The
space H splits into the direct sum of subspaces invariant for T :

H = HM + Hs(2.7)

and TM(u) = T (u)|HM
, T s(u) = T (u)|Hs for u ∈ A. In the case of k = 1

the sum (2.7) is orthogonal , TM(1), T s(1) are orthogonal projections, and
the subspaces of the decomposition (2.7) reduce T .

We call TM the absolutely continuous, and T s the singular part of T with
respect to M. The notions of TM(u), T s(u) have double meanings. In (2.6)
they act on H but in Proposition 2.1 they are considered as operators on
the subspaces HM, Hs of H. There is no misunderstanding here. Since TM,
T s are multiplicative, the operators TM(1), T s(1) are projections. Hence
for each u ∈ A the subspaces HM, Hs are invariant for TM(u), T s(u), and
TM(u) is a zero operator on Hs, while T s(u) is a zero operator on HM.

Now we show that the decomposition given by Proposition 2.1 decom-
poses also the commutant of T . We say that W ∈ L(H) commutes with the
representation T if WT (u) = T (u)W for all u ∈ A.

Theorem 2.2. Assume A is a function algebra on X, M ⊂ M(X) is
a reducing band with respect to A, and T : A → L(H) is a representation
satisfying (1.3). If W ∈ L(H) commutes with T , then W also commutes
with its absolutely continuous part TM and singular part TMs

.
The subspaces HM and Hs in the decomposition (2.7) are invariant

for W . Moreover , they are mutually orthogonal and reducing for W when
k = 1 in (1.3).
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Proof. Let u ∈ A and x, y ∈ H. Then

(WT (u)x, y) = (TM(u)x,W ∗y) + (T s(u)x,W ∗y)

= � u dµM
x,W ∗y + � u dµs

x,W ∗y,

(WT (u)x, y) = (T (u)Wx, y) = (TM(u)Wx, y) + (T s(u)Wx, y)

= � u dµM
Wx,y + � u dµs

Wx,y.

Hence the measure

µM
x,W ∗y − µM

Wx,y + µs
x,W ∗y − µs

Wx,y

is orthogonal to A, and consequently so is its absolutely continuous part
µM
x,W ∗y − µM

Wx,y and singular part µs
x,W ∗y − µs

Wx,y, since M is reducing. So

(WTM(u)x, y) = (TM(u)x,W ∗y) = � u dµM
x,W ∗y

= � u dµM
Wx,y = (TM(u)Wx, y),

(WT s(u)x, y) = (T s(u)x,W ∗y) = � u dµs
x,W ∗y

= � u dµs
Wx,y = (T s(u)Wx, y).

Since x, y are arbitrary, we get

WTM(u) = TM(u)W, WT s(u) = T s(u)W for u ∈ A,
which completes the proof.

Consider now the case when we have a second function algebra B on
a compact set Y and its operator representation W : B → L(H) satisfying
the condition

‖W (v)‖ ≤ l‖v‖, v ∈ B,(2.8)

and commuting with T , i.e.

T (u)W (v) = W (v)T (u), u ∈ A, v ∈ B.
By Theorem 2.2 the representation W also commutes with TM. Now define

WM(v) := TM(1)W (v), W s(v) := T s(1)W (v) for v ∈ B.(2.9)

It can be easily seen that WM : B → L(HM) is a linear mapping and

‖WM(v)‖ ≤ ‖TM(1)‖ · ‖W (v)‖ ≤ kl‖v‖ for v ∈ B.
Let now u, v ∈ B. Then



Fuglede-type decompositions 91

WM(uv) = TM(1)W (uv) = TM(1)W (u)W (v)(2.10)

= TM(1)TM(1)W (u)W (v)

= TM(1)W (u)TM(1)W (v) = WM(u)WM(v).

Similar considerations apply to W s. It is easy to see that WM(1) = TM(1)
and W s(1) = T s(1).

So we have the following:

Theorem 2.3. Let A, T and M be as in Theorem 2.2. Let W be a rep-
resentation of a function algebra B satisfying (2.8) and commuting with T .
Then there exist representations

WM : B → L(HM), W s : B → L(Hs)

commuting with TM and T s, satisfying

‖WM(v)‖ ≤ kl‖v‖, ‖W s(v)‖ ≤ kl‖v‖ for v ∈ B,
and such that

W = WM +W s.(2.11)

If moreover k = 1, then the decomposition (2.11) is orthogonal.

3. Commuting representations. Let us now consider the case of two
commuting representations Ti : Ai → L(H), i = 1, 2, with ‖Ti(u)‖ ≤ ki‖u‖,
where Ai is a function algebra on a compact set Xi with a reducing band
Mi ⊂ M(Xi). For T1, T2 take now the decompositions with respect to the
bands M1,M2 respectively, given by Proposition 2.1, and put

Paa := TM1
1 (1)TM2

2 (1), Pas := TM1
1 (1)T s

2(1),

Psa := T s
1(1)TM2

2 (1), Pss := T s
1(1)T s

2(1).
(3.12)

By Theorem 2.2, for u ∈ A1, v ∈ A2 all the operators TM1
1 (u), T s

1(u),
TM2

2 (v), T s
2(v) commute (considered as operators on the whole space). Hence

the norm of each operator defined in (3.12) is less than or equal to k1k2 and
all of them are projections. Define now

T aa
1 (u) := PaaT1(u), T as

1 (u) := PasT1(u),

T sa
1 (u) := PsaT1(u), T ss

1 (u) := PssT1(u) for u ∈ A1,

T aa
2 (v) := PaaT2(v), T as

2 (v) := PasT2(v),

T sa
2 (v) := PsaT2(v), T ss

2 (v) := PssT2(v) for v ∈ A2.

(3.13)

As in (2.10), we see that the mapping T aa
1 : A1 → Haa := Paa(H) is a

representation and by the definition of Paa we have T aa
1 (u) = TM2

2 (1)TM1
1 (u)

for u ∈ A1, and hence ‖T aa
1 (u)‖ ≤ k1k2‖u‖. The same holds for all other

mappings defined in (3.13).
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Then we have the following

Theorem 3.1. For i = 1, 2 let Ti : Ai → L(H) be a representation of a
function algebra Ai on a compact set Xi with reducing bands Mi ⊂M(Xi).
Assume that T1, T2 commute, i.e. T1(u)T2(v) = T2(v)T1(u) for u ∈ A1,
v ∈ A2, and satisfy the estimates ‖Ti(u)‖ ≤ ki‖u‖ for u ∈ Ai, i = 1, 2.
Then for i = 1, 2 we have the decomposition

Ti = T aa
i + T as

i + T sa
i + T ss

i(3.14)

corresponding to the following decomposition of the space H into closed sub-
spaces invariant for Ti:

H = Haa + Has + Hsa + Hss,(3.15)

where H·· = P··H. Every part of the decomposition (3.14) is a representation
of Ai with values in the appropriate part of (3.15). Moreover ,

‖T ··i (u)‖ ≤ k1k2‖u‖, u ∈ Ai.(3.16)

In the case when k1 = k2 = 1, the decompositions (3.14) and (3.15) are
orthogonal.

We can obtain a more specific decomposition of the type (3.15) if A1 is
the ball algebra A(Bn), where Bn = {(z1, . . . , zn) ∈ Cn :

∑n
i=1 |zi|2 < 1},

and A2 is the bidisc algebra A(D2). Examples of representations of A(Bn)
are provided by spherical contractions. These are the commutative n-tuples
(S1, . . . , Sn) in L(H) such that ‖S1x‖2 + . . . + ‖Snx‖2 ≤ ‖x‖2 for x ∈ H,
or equivalently ∆(1)

S := I − S∗1S1 − . . .− S∗nSn ≥ 0. Assuming the positivity

of a similarly defined ∆
(n)
S , Müller and Vasilescu ([13, Thm. 11]) show that

S1, . . . , Sn dilate to commuting normal operators S̃1, . . . , S̃n on a Hilbert
space K ⊃ H such that the joint left spectrum σl(S̃1, . . . , S̃n) lies in the
unit sphere ∂Bn. It is well known that all types of joint spectra coincide on
normal tuples (cf. Uniqueness Theorem in [15]). Therefore the support of
the joint spectral measure of S̃1, . . . , S̃n lies in ∂Bn and we can extend the
natural action of the polynomials: C[z1, . . . , zn] 3 p 7→ p(S1, . . . , Sn) to a
contractive representation

T1 : A(Bn)→ L(H), T1(zj) = Sj , j = 1, . . . , n.

Assume now that T2 is a contractive bidisc algebra representation
T2 : A(D2) → L(H) given by an arbitrary pair of commuting contractions
R1 = T2(z1), R2 = T2(z2). (Its existence follows from the Ando Dilation
Theorem [1].)

In this context we are interested in the decomposition with respect to the
bands of annihilating measures M1 = A(Bn)⊥, M2 = A(D2)⊥. Note that,
by the Henkin theorem (see [14, Thm. 9.3.1]) together with the Cole–Range
theorem (see [14, Thm. 9.6.1]), M1 is equal to the band generated by all
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the measures representing points in Bn. By [5, VI.1.2], each measure in
M1 is absolutely continuous with respect to some measure representing the
evaluation at the origin for the algebra A(Bn).

On the other hand, the band M2 decomposes into a direct sum of three
mutually singular reducing bands described in [2, Thm. 1]. A successive
application of the above properties and of the preceding theorem gives

Corollary 3.2. Assume T1 : A(Bn)→ L(H) and T2 : A(D2)→ L(H)
are commuting representations obtained in the way just described. Then H

decomposes orthogonally into eight direct summands

H = Ha0 ⊕Ha1 ⊕Ha2 ⊕Ha3 ⊕Hs0 ⊕Hs1 ⊕Hs2 ⊕Hs3

so that each H·,· reduces T1, T2, and :

(1) There exists a collection of elementary measures of T1|Ha· each of
which is absolutely continuous with respect to some measure representing the
evaluation at the origin for the algebra A(Bn).

(2) There exists a unique spectral measure of T1|Hs· on ∂Bn, and it is
singular to A(Bn)⊥.

(3) There exists a collection of elementary measures of T2|H·0 each of
which is absolutely continuous with respect to some measure representing the
evaluation at the origin for the algebra A(D2).

(4) There exists a collection of elementary measures of T2|H·1 (resp.
T2|H·2) each of which is supported on a set of the form E × ∂D (resp. ∂D×
E), where E is a nullset for A(D)⊥, and its projection onto the second
(resp. first) component is absolutely continuous with respect to the Lebesgue
measure on ∂D.

(5) There exists a unique spectral measure of T2|H·3 on ∂D2, and it is
singular to A(D2)⊥.

Consider now the case of N commuting representations Ti : Ai → L(H),
i = 1, . . . , N , with ‖Ti(u)‖ ≤ ki‖x‖, where Ai is a function algebra on a
compact set Xi with a reducing band Mi ⊂ M(Xi). Using similar ideas to
(3.12), we can define a finite family of projections {Pα} on H such that
for every α we have Pα = S1(1) . . . SN (1), where Si is TMi

i or TMs
i

i . Now
defining the parts of each representation Ti as in (3.13) we get

Theorem 3.3. Let Ti : Ai → L(H), i = 1, . . . , N , be a representation
of a function algebra Ai on a compact set Xi with a reducing band Mi ⊂
M(Xi). Assume that T1, . . . , TN commute, i.e. Ti(u)Tj(v) = Tj(v)Ti(u) for
u ∈ Ai, v ∈ Aj for i, j = 1, . . . , N , and satisfy the estimate ‖Ti(u)‖ ≤ ki‖x‖
for u ∈ Ai, i = 1, . . . , N . Then we have the decomposition

H = H1 + . . .+ H2N ,(3.17)
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where each Hα, α = 1, . . . , 2N , is a closed subspace of H invariant for Ti,
i = 1, . . . , N , and Ti restricted to Hα is either TMi

i or TMs
i

i . The decompo-
sition (3.17) contains all possible combinations of absolutely continuous and
singular parts of representations Ti (i = 1, . . . , N) and every such combina-
tion appears in (3.17) only once. Moreover , for every i and α we have the
estimate

‖Ti|Hα(u)‖ ≤ k1 . . . kN‖u‖, u ∈ Ai.(3.18)
In the case when k1 = . . . = kN = 1, the decomposition (3.17) is orthogonal.

4. Commuting contractions. Theorem 3.3 is especially useful to get
a Lebesgue-type decomposition of N -tuples of commuting contractions in
the general situation when we cannot assume any von Neumann inequality.

Any contraction T on a Hilbert space has a unitary dilation, and conse-
quently satisfies the von Neumann inequality ‖p(T )‖ ≤ ‖p‖ where p is any
analytic polynomial and ‖p‖ denotes its supnorm on the unit disc. Moreover
we have the Lebesgue-type decomposition

T = Ta ⊕ Ts,(4.19)

where Ta is the orthogonal sum of a completely nonunitary contraction and
a unitary operator with spectral measure absolutely continuous with respect
to the Lebesgue measure on the unit circle, while Ts is unitary with spectral
measure singular with respect to the Lebesgue measure on the unit circle.

For some N ∈ N, let T = (T1, . . . , TN ) be an N -tuple of commuting
contractions on H. Lebesgue-type decompositions for T are known in the
case when T satisfies the von Neumann inequality (see [6]).

Theorem 3.3 allows us to get results of that type also in the general
case. Every single contraction Tj satisfies the von Neumann inequality, and
consequently it generates a contractive representation of the disc algebra
A(D) in L(H). Since the contractions Tj commute, the representations they
generate also commute, and applying Theorem 3.3, we get

Theorem 4.1. Let T = (T1, . . . , TN ) be an N -tuple of commuting con-
tractions on H, i.e. TiTj = TjTi for i, j = 1, . . . , N . Then we have the
orthogonal decomposition

H =
2N⊕

α=1

Hα,(4.20)

where each Hα is a closed subspace of H reducing Tj , j = 1, . . . , N , and Tj
restricted to Hα is either (Tj)a or (Tj)s. The decomposition (4.20) contains
all possible combinations of absolutely continuous and singular parts of the
operators Tj (j = 1, . . . , N) and every such combination appears in (4.20)
only once.
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5. Absolute continuity and singularity. Recall that a contraction
T on a Hilbert space is said to be absolutely continuous if it is equal to
its absolutely continuous part in the Lebesgue decomposition (4.19). The
representation generated by such a contraction has a collection of elementary
measures absolutely continuous with respect to Lebesgue measure on the
unit circle.

In the case of N -tuples T = (T1, . . . , TN ) of commuting contractions
we can talk about their absolute continuity only if they satisfy the von
Neumann inequality ‖p(T )‖ ≤ k‖p‖ where p is any analytic polynomial of N
variables and k is a positive constant. In such a case the N -tuple generates a
representation of the polydisc algebra A(DN ) in L(H). If the representation
has a collection of elementary measures absolutely continuous with respect
to the band of measures generated by all the representing measures for points
in the open polydisc then we say that the N -tuple is absolutely continuous
(see [9, Sec. 4]).

In the general case, i.e. without any von Neumann inequality, the above
definition cannot be applied. Now we define another property which can
always be considered. We say that a given N -tuple T = (T1, . . . , TN ) of
commuting contractions is singular if T1, . . . , TN are unitary with a common
spectral measure E on (∂D)N singular to all measures annihilating A(DN ).
(Recall that E is said to be a common spectral measure of T1, . . . , TN if
p(T ) =

�
p dE for any polynomial of N variables.) We say that H′ ⊂ H

is a subsingular subspace for T if H′ reduces all T1, . . . , TN and there is a
subtuple Tj1 , . . . , Tjk , 1 ≤ j1 < . . . < jk ≤ N , whose restriction to H′ is
singular (with respect to the polydisc Dk). The N -tuple T = (T1, . . . , TN ) is
said to be totally nonsingular (abbr. t.n.s.) if it has no nonzero subsingular
subspace.

In the case when T satisfies the von Neumann inequality with constant
one, i.e. ‖p(T )‖ ≤ ‖p‖ for all analytic polynomials p of N variables, the
property of being totally nonsingular is, by Theorem 1 of [6], equivalent
to the absolute continuity (total nonsingularity is called in [6] property F ).
On the other hand, the absolute continuity is, by the Main Theorem of [7],
equivalent to the following Apostol condition:

(5.21) lim
n→∞

sup |〈p(T1, . . . , TN )Tnj x, y〉| = 0 for x, y ∈ H, j = 1, . . . , N,

where the supremum is taken over all complex analytic polynomials p of N
variables with ‖p‖ ≤ 1.

In the general case (i.e. without the von Neumann inequality) we can
show the following

Theorem 5.1. Any N -tuple of commuting contractions which satisfies
the Apostol condition (5.21) is totally nonsingular.
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Proof. The proof is just a part of the proof of the Main Theorem of [7],
but we give it here for the sake of completeness.

We argue by contradiction. Assume that, on the contrary, there is a
subtuple T ′ = (Tj1 , . . . , Tjm) of T (1 ≤ m ≤ N) with a closed subspace H′

of H reducing T ′ to unitary operators with a common spectral measure E
on (∂D)m singular to the set of all measures annihilating A(Dm) (we denote
this set by A(Dm)⊥). We should show that H′ = {0}.

Assume H′ 6= {0}. To simplify the notation, we write 1, . . . ,m instead
of j1, . . . , jm. Consider

〈f(T ′)Tnmx, x〉 = � f(z1, . . . , zm)znm d〈E(z1, . . . , zm)x, x〉,
for any f ∈ A(Dm) and x ∈ H′. Take ε > 0 and n ∈ N. Denote by S the band
of all measures singular to A(Dm)⊥. By the definition of S, A(Dm) is weak-
star dense in the dual S∗ of S, since no measure in S annihilates A(Dm).
Moreover, since the band S is reducing, the unit ball of A(Dm) is weak-star
dense in the unit ball of S∗ (see Lemma 2.2 of [7]). Consequently, since
the function z−nm can be considered as an element of S∗, and the measure
znm〈E(·)x, x〉 is in S, we can find a polynomial q of norm 1 such that∣∣∣ � q(z)znm d〈E(z)x, x〉 − � z−nm znm d〈E(z)x, x〉

∣∣∣ < ε.

Thus, since
�

(∂D)m

z−nm znm d〈E(z)x, x〉 = 1,

we have

sup
‖p‖≤1

|〈p(T )Tnmx, x〉| ≥ |〈q(T ′)Tnmx, x〉| =
∣∣∣ � q(z)znm d〈E(z)x, x〉

∣∣∣ > 1− ε.

Since n was arbitrary, the condition (5.21) is not satisfied, which finishes
the proof.

A subspace K ⊂ H is said to be hyperreducing for a collection of bounded
linear operators on H if it is reducing for its commutant. We say that a given
N -tuple of commuting contractions is proper if none of its components is
multiplication by a constant. From Theorem 4.1 we can deduce the following
result:

Theorem 5.2. If a proper N -tuple of commuting contractions on H has
a nonzero subsingular subspace then it also has a nontrivial hyperreducing
subspace.

Proof. Let T be a given proper N -tuple, K its subsingular subspace and
T ′ a subtuple of T which is singular on K. The subtuple T ′ has a common
spectral measure F on some m-dimensional torus (∂D)m such that F is
singular to A(Dm)⊥. Since T ′ is proper, F is not concentrated at one point.
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Consequently, by the regularity of F , there are two disjoint compact subsets
E1, E2 of (∂D)m on which F is nonzero. By the singularity of F , the sets
E1, E2 can be chosen so that they are peak interpolation sets for A(Dm).
Hence for i = 1, 2, the band of measures which are supported on Ei is
reducing for A(Dm). So, by Theorem 2.2, there exists a nontrivial closed
subspace of H which is reducing for the commutant of T ′ and consequently
also for the commutant of T .

Note that if the subspace K in the proof above is proper and it is the
maximal subspace on which the subtuple T ′ is singular then, by Theorem 2.2,
it is also hyperreducing. From Theorem 5.2 we can deduce the following
corollary for N -tuples without nontrivial invariant subspaces, if such an
object exists:

Corollary 5.3. Any proper N -tuple of commuting contractions with-
out common nontrivial invariant subspaces is totally nonsingular.
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