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Inductive extreme non-Arens regularity
of the Fourier algebra A(G)

by

Zuicuo Hu (Windsor, ON)

Abstract. Let G be a non-discrete locally compact group, A(G) the Fourier alge-
bra of G, VN(G) the von Neumann algebra generated by the left regular representa-

~

tion of G which is identified with A(G)*, and WAP(G) the space of all weakly almost
periodic functionals on A(G). We show that there exists a directed family H of open
subgroups of G such that: (1) for each H € H, A(H) is extremely non-Arens reg-
ular; (2) VN(G) = Ugey VN(H) and VN(G)/WAP(G) = Uyen VN(H)/WAP(H));
(3) A(G) = Ugen A(H) and it is a WAP-strong inductive union in the sense that the
unions in (2) are strongly compatible with it. Furthermore, we prove that the family
{A(H) : H € H} of Fourier algebras has a kind of inductively compatible extreme non-
Arens regularity.

1. Introduction. For a Banach algebra A, there exist two Banach al-
gebra multiplications on A** (known as Arens products) which extend the
multiplication of A (see Arens [1]). When these two multiplications coincide
on A**, the algebra A is said to be Arens reqular. Every C*-algebra is Arens
regular. If A is a commutative Banach algebra, then A is Arens regular if
and only if A** is commutative with respect to either (and hence both) of
the Arens products. Let WAP(A) be the space of all weakly almost periodic
functionals on A, i.e., WAP(A) ={T' € A* : {u-T:u € A and |ju| <1}is
relatively weakly compact in A*}, where (u-T,v) = (T,uv) for v € A. It is
known that A is Arens regular if and only if WAP(A) = A* (see Pym [15],
and also Duncan and Hosseinium [3]). Hence, the quotient Banach space
A*/WAP(A) measures the non-Arens regularity of A in some sense. In par-
ticular, Granirer introduced the concept of “extreme non-Arens regularity”.
A is called eztremely non-Arens regular if A*/WAP(A) contains a closed
linear subspace which has A* as a continuous linear image (see [7]).

2000 Mathematics Subject Classification: 22D25, 43A30, 43A60.

Key words and phrases: locally compact groups, Fourier algebra, weakly almost peri-
odic functionals, Arens regularity.

This research was supported by an NSERC grant.

[247]



248 Z. Hu

Let G be a locally compact group and A(G) the Fourier algebra of G.
Lau proved that if G is amenable then A(G) is Arens regular if and only
if G is finite (see [13, Proposition 3.3]). Generally, Forrest showed that if
A(G) is Arens regular then G must be discrete (he even showed this for
the Figa-Talamanca Herz algebra A,(G); see [6]). It is still open whether
Lau’s result is true for non-amenable groups G or for algebras A,(G) with
p # 2. Recently, Granirer investigated the non-Arens regularity of quotients
of A(G). A special case of his Corollary 7 in [7] implies that A(G) is ex-
tremely non-Arens regular if G is non-discrete and second countable. Let
b(G) be the smallest cardinality of an open basis at the unit e of G, and
d(G) the smallest cardinality of a covering of G' by compact sets. It is proved
that Granirer’s result holds for all non-discrete locally compact groups G
satisfying b(G) > d(G) (see Hu [10, Corollary 4.2 and Remark 4.7]). In par-
ticular, A(G) is extremely non-Arens regular if G is a o-compact non-discrete
locally compact group.

In this paper we will investigate the non-Arens regularity of A(G) when
b(G) < d(G). Let VN(G) be the von Neumann algebra generated by the left
regular representation of G. It is well known that A(G) can be identified

~

with the predual of VN(G), i.e., VN(G) = A(G)*. Let WAP(G) denote the

~

space of all weakly almost periodic functionals on A(G) (i.e., WAP(G) =
WAP(A(G))). We show (Theorem 5.3) that, for any non-discrete locally
compact group G satisfying b(G) < d(G), there exists a directed family H
of open subgroups of G such that:

(1) For each H € H, A(H) is extremely non-Arens regular, i.e., for each
H € H, there exists a closed linear subspace Zp of VN(H)/WAP(H) and a
continuous linear map Iy : Zyg — VN(H) such that IIg(Zy) = VN(H).

(2) VN(G) = Upey VN(H) is an inductive union of von Neumann al-
gebras and VN(G)/WAP(G) = UHeH[VN(H)/WAP(ﬁ)] is an inductive
union of Banach spaces (see Definition 3.1).

(3) A(G) = Upeyp A(H) is an inductive union of Banach algebras and
it is a WAP-strong inductive union (see Definition 3.3) in the sense that
the two inductive unions in (2) are strongly compatible with the inductive
union A(G) = Uyep AH).

In particular, if G is metrizable, then H is a o-compact open subgroup
of G for all H € H, and A(G) is a WAP-strong inductive union of the sep-
arable Fourier algebras {A(H)}gex. Furthermore, we obtain the inductive
extreme non-Arens regularity of A(G) by showing that {||IIy| : H € H}
is bounded and the pairs {Zy,IIg} (H € H) are inductively compatible
(Theorem 5.10).

The analysis of the relation between open subgroups of G and the sup-
port of operators in VN(G) plays a key role in our discussion of the inductive
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extreme non-Arens regularity of A(G). We show that if H is an open sub-
group of a non-discrete locally compact group G, then, for any operator T’
in VN(G), the support of T' can be covered by no more than b(G) cosets of
H in G (Proposition 4.1).

Motivated by the inductive limits of C'*-algebras, in Section 3 we intro-
duce the concept of “inductive union”, which provides a natural mechanism
to relate the Fourier algebra of a locally compact group to the Fourier alge-
bras of its open subgroups.

2. Preliminaries and notations. Let G be a locally compact group
with unit e and a fixed left Haar measure. The Fourier—Stieltjes algebra
B(G) is the linear span of positive-definite continuous functions on G and is
identified with the Banach dual of the group C*-algebra C*(G) of G. With
the dual norm and the pointwise multiplication, B(G) is a commutative
Banach algebra. Let Co(G) be the space of all continuous functions on G
with compact support. Then the Fourier algebra A(G) is the closed ideal
in B(G) generated by elements in B(G) N Cyo(G). Let VN(G) be the von
Neumann algebra generated by the left regular representation of G. Then
A(G) can be identified with the predual of VN(G) (i.e., VN(G) = A(G)*)
and VN(G) becomes a B(G)-module under the action (u-T',v) = (T, uv) for
u € B(G),v € A(G),and T € VN(G). Also, VN(G) coincides with the space
of all bounded linear operators on L2(G) which satisfy T'(f * g) = T(f) * g
for all f € L?(G) and g € Coo(G). See Eymard [5] for more information on
A(G), B(G), and VN(G).

The space {T' € VN(G) : u — u - T is a weakly compact operator from
A(G) into VN(G)} is called the space of weakly almost periodic functionals
on A(G) and is denoted by WAP(G) It turns out that WAP(G) is a self-
adjoint closed B(G)-submodule of VN(G). When G is a locally compact
abelian group, WAP(@) is identified with the space of weakly almost periodic
functions on the dual group of G. See Dunkl and Ramirez [4] for more details
on WAP(G).

The support of a function fin L?(G) is defined by saying that x ¢supp f if
and only if there exists a neighbourhood V' of x such that {, f(z)v(x)dz=0
for all v € Cyo(G) with suppv C V. The support of an operator 7" in VN(G)
is defined by saying that x ¢ supp T if and only if there exists a neighbour-
hood U of e such that z € supp(Tu) for all u € Cyo(G) with suppu C U. An
equivalent description for supp T is that x € suppT if and only if u -7 =0
implies u(x) = 0 for all u € A(G) (see Eymard [5] and Herz [§]).

Let b(G) be the smallest cardinality of an open basis at e and d(G)
denote the smallest cardinality of a covering of G' by compact sets. It is
known that b(G) = d(G) when @ is abelian with dual group G (see Hewitt
and Ross [12, (24.48)]). Clearly, G is metrizable if and only if b(G) < V.
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3. Inductive unions. Inspired by the inductive limits of C*-algebras,
we introduce the concept of “inductive union”, which is of importance for
our investigation on the non-Arens regularity of the Fourier algebra A(G).

DEFINITION 3.1. Let A be a Banach space (Banach algebra, C*-algebra,
respectively) and let {A; };c1 be a family of Banach spaces (Banach algebras,
C*-algebras, respectively) indexed by a directed set I. We say that A is an
inductive union of {A;}icr (denoted by A = | |,.; A;) if there exists a linear
isometry (isometric isomorphism, *-isomorphism, respectively) 4; : A; — A
for each ¢ € I such that A;(A4;) € A;(A;) for all 4,5 € I with ¢ < j and
A= Ai(As).

Immediately, we can show the existence of maps A;; (¢ < j) compatible
with {Az}zel

COROLLARY 3.2. Let A = | |,c; Ai be an inductive union of the fam-
ily {A;}ier of Banach spaces (Banach algebras, C*-algebras, respectively)
via the linear isometries (isometric isomorphisms, x-isomorphisms, respec-
tively) {A;}ier. Then, for all i, j € I with © < j, there exists a unique lin-
ear isometry (isometric isomorphism, x-isomorphism, respectively) A;j : A;
— Aj such that:

(a) AjA;j = A; for all i,j € T with i < j.

Proof. Let i,j € I and ¢ < j. Note that A;(A;) € A;(A;) and hence
A;(A;) is a closed linear subspace (subalgebra, C*-subalgebra, respectively)
of A;j(A;). Define Ay = (A;)7 4,4,y Ai- Then A;; : A; — A; is a linear
isometry (isometric isomorphism, *-isomorphism, respectively). By the def-
inition of A;;, it can be seen that (a) holds and the map A;; satisfying (a)
is unique.

Suppose that i,j,k € I and i < j < k. By (a), we have A (A;,4;;) =
Ay = Ay = Ay, ie., AjpAyj = Ay, since Ay, is one-to-one. Therefore,
(b) is true. m

When A is an inductive union of {A;};cs, it is interesting to know if
A* is an inductive union of {A};c; and if a quotient space of A* is an
inductive union of the corresponding quotient spaces of A (i € I), etc. For
our purpose, we only consider the following “WAP” strongly compatible
inductive unions of Banach algebras. Recall that, for a Banach algebra A,
WAP(A) denotes the space of all weakly almost periodic functionals on A.

DEFINITION 3.3. Let A be a Banach algebra and let A = | |,_; A; be an
inductive union of the Banach algebras {4;};c; via the isometric isomor-
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phisms {4;};c;r. We say that A is a WAP-strong inductive union of {A;}icr
if the following hold.

(1) A* = | ];c; A7 is an inductive union of the Banach spaces {A] }icr
via some linear isometries {®;};cr such that, for all i € I, A7®; = Id and
Di(u-T) = Ai(u) - D,(T) for u e A; and T € A7.

(2) For alli € I, &;,(WAP(A;)) = WAP(A)N&;(A}) and &; lifts a linear
isometry I : Af/WAP(A;) — A*/WAP(A).

It is easy to see that (1) and (2) in Definition 3.3 are equivalent to the
following two conditions.

COROLLARY 3.4. Let A =|],.; A; be an inductive union of the Banach
algebras {A;}icr via {A;}icr. Then A is a WAP-strong inductive union of
{A;}ier if and only if the following conditions are satisfied:

(1) A" = |,c; A7 is an inductive union of {Aj}icr via {®;}ier such
that, for all i € I, &; A : A* — A* is a A;(A;)-invariant projection (i.e.,
(@, A1) = @; A7 and & A;(v-T) = v - [@;A7(T)] for all v € Aj(A;) and
T e A*).

(2)" WAP(A) = |;c; WAP(A;) is an inductive union of the Banach
spaces {WAP(A;) }icr via the restrictions {®;|wap(a,) }icr and A*/WAP(A)
= ||/ [A7/WAP(A;)] is an inductive union of the quotient Banach spaces
{AY/WAP(A;)}ier via {I;}ier such that I o = o®; for all i € I, where
0; + AY — AY/WAP(A;) and p : A* — A*/WAP(A) are the canonical
quotient maps.

Analogously to Corollary 3.2, we are able to get maps @;; and I; (i < j)
which are compatible with {®;};c; and {I’;};cs, respectively.

COROLLARY 3.5. Let A = | |;.; A; be a WAP-strong inductive union of
the Banach algebras {A;}icr via the maps {A;}ier with A* = | |;c; A} via
{@i}ier and A* /WAP(A) = | |,c;[A7/WAP(A;)] via {I}ier. Then, for all
i,j € I with i = j, there exist unique linear isometries ®;; : A7 — A} and
L+ A7 JWAP(A;) — A7 /WAP(A;) such that the following hold:

(a) @j@ij =; and FjFij =1T; fOT’ all 1,] € I with i = 7-

(b) gﬁjkdsij = &, and ijpij = 1k Zfl,j,k el and 1@ jj < k.

(C) A:}@Z] = Id and @”(u . T) = A”(’LL) QSU(T) fO?” all Z,] e I with
i 2 j,u € A and T € A}, where Ay : Ay — Aj is the same map as in
Corollary 3.2.

(d) ®i;(WAP(A;)) = WAP(A;) N ®;;(A7) and Lijo; = 0jPij if 4,5 € 1
and i < j (i.e., I; is the map lifted by D;;).

Proof. 1t can be seen that (a) and (b) hold by the same argument as in
the proof of Corollary 3.2. Clearly, the maps @;; and I5; satisfying (a) are
unique.
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Let 4,j € I and i = j. Note that A7®; = Id, A7 = A7;A; (by
Corollary 3.2), and @; = @;9;;. Therefore, APy = Ajj(/ljéj)@ij =
(A5 5)(D945) = Aj®; = 1d, ie., A};®;; = Id. Suppose that u € A; and
T € A7. Then
Pj[@i(u-T)] = Pi(u-T) = Ai(u) - 2i(T)
= A;[Ai;(w)] - 5[@i;(T)] = ;[N (u) - D35 (T)].
):

We conclude that @;;(u-T) = A;j(u)-P;;(T') since the map @; is one-to-one.
Therefore, (c) is true.

Note that ®;(WAP(A4;)) C ®;(WAP(A;)) € WAP(A) and hence we
Finally, by using the facts that I';I5; = I}, I 0, = 0®;, and &; = P;P;;,
we have I([j0i) = Iioi = 0®; = 09;Pi; = I;(0; Pij). It follows that
I'ij 0; = 0j P;j since I is one-to-one. Therefore, (d) holds. m

.

4. Open subgroups, support of 7" in VN(G), and isometric em-
beddings. In this section, GG is a locally compact group and H is an open
subgroup of G. Let VN (G) denote the von Neumann subalgebra of VN(G)
generated by {Ag(z) : = € H}, where \g is the left regular representa-
tion of G. Then VNy(G) = {T € VN(G) : suppT C H} (see Chou [2,
Lemma 4.2]). Let 1y € B(G) be the characteristic function of H. Then
lg -T € VNg(G) for all T € VN(G) and T = 1y - T if T € VNg(G).
Therefore, VN (G) = 1 - VN(G).

It is known that if an element 7" of VN(G) is the left convolution oper-
ator by a bounded complex-valued regular Borel measure p on G, then the
support of T is just the support of the measure p and hence it is a countable
union of compact sets in G by the regularity of u.

Generally, for an arbitrary operator T in VN(G), we are concerned with
the question of how many cosets gH we will need at least to cover the
support of T'. If G is discrete, then every element T" of VN(G) is identified
with a left convolution operator by a function in [?(G) and so the support
of T is a countable subset of G. In the following, we will consider the case
when G is non-discrete.

PROPOSITION 4.1. Let G be a non-discrete locally compact group and let
H be an open subgroup of G. Then, for any T € VN(G), there are at most
b(G) cosets gH (g € G) such that supp T N gH # ().

Proof. Replacing H by a o-compact open subgroup of H, we may assume
that H is a o-compact open subgroup of G.

Let U be a compact neighbourhood system at e such that card(U/) =
b(G). Then U is a directed set under the relation U < V if and only if
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V C U. For each U € U, let hy = (1/|U|)1y and Ty = T(hy) € L*(G),
where |U]| is the left Haar measure of U and 1y denotes the characteristic
function of U. By [12, (20.15)], for all f € L?(G), limy ||hy * f — f|l2 = 0.
If f e Co(G), then T'(hy « f) = T(hy) * f = Ty = f and hence T(f) =
limy (Ty * f) in the || - ||2-norm. Therefore, T' is completely determined by
the net (Ty)vey in L(G) since Coo(G) is || - ||2-norm dense in L?(G). For
each U € U, since Ty € L*(G), there exists a sequence {gi%},, in G such
that supp Ty C U~ , g H.

Fix a compact neighbourhood V of e. Since H is o-compact, HV and
hence Un 19 HV is a countable union of compact sets. Therefore,
U~ 19 HV can be covered by countably many cosets gH . Note that card (i)
= b(G) > Ng. It follows that there exists a subset B of G such that
card(B) < b(G) = cardU) and Uy ey Uneq g0 HV C Ugen 9H.

To complete the proof, we only need to show that suppT" C | 9B gH.

Suppose z € G\ UgeB gH. In the following, we will prove that x &
supp T'(f) for all f € Coo(G) with supp f C V and it follows that = ¢ supp 7.

Let f € Coo(G) and supp f C V. Then T(f) = limyey(Ty * f) in the
|| - [|2-norm. Recall that, for each U € U, suppTy C UU,—, gi*H and hence
supp(Ty * f) C Uy g HV C U gep 9H. Also note that U gen 9H is closed
in G. Therefore, suppT'(f) C UQGB gH and we have = € suppT'(f). m

COROLLARY 4.2. Let G be a metrizable locally compact group and let
H be an open subgroup of G. Then, for any T € VN(G), there exists a
sequence {gy }n in G such that suppT C |J,~, gnH.

REMARK 4.3. Let G be a locally compact group and let H be an open
subgroup of G. If T' € span [A\¢(G)VNg(G)] (the norm closed linear span
generated by the translates of elements in VN (G)), then the support of
T can be covered by countably many cosets gH. However, it is possible
that the support of any operator in VN(G) can be covered by countably
many cosets gH (e.g., when G is metrizable or o-compact) but VN(G) #
span [A¢(G)VNg(G)]. For example, let G be a non-compact metrizable lo-
cally compact group containing a compact open subgroup H. Then VN(H) =
UC(H) (the C*-algebra of uniformly continuous functionals on A(H) intro-
duced by Granirer) and thus span [A\q(G)VNg(G)] = UC(G) (see Hu [11
Proposition 3.5)). Now §pan [A¢(G)VNy(G)] = UC(G) S VN(G) because
G is non-compact.

COROLLARY 4.4. Let G be a metrizable locally compact group. Then, for
any T € VN(QG), there exists a o-compact open subgroup H of G such that
suppT C H.

Proof. Let Gy be a o-compact open subgroup of G. Let T" € VN(G).
By Corollary 4.2, there exists a sequence {g,}, in G such that suppT C
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U2, 92Go. Let H be the open subgroup of G generated by GoUU,—; 9,Go.
Then H is a o-compact open subgroup of G and suppT C H. =

Let r : A(G) — A(H) be the restriction map. According to Eymard [5],
r is a linear contractive surjection and its adjoint 7* is a *-isomorphism of the
von Neumann algebra VN(H) onto the von Neumann subalgebra VN (G)
of VN(G) (see [5, (3.21)], where r*(T') is denoted as T° for T' € VN(H)). It is

known that r*(WAP(H)) = WAP(G)NVNg (G) (see Chou [2, Lemma 4.2]).
Therefore, the x-isomorphism r* lifts a linear map from the quotient Banach
space VN(H)/WAP(H) into the quotient Banach space VN(G)/WAP(G).
Let VN (G)/WAP(G) denote the linear subspace {T + WAP(G) : T €
VNg(G)} of VN(G)/WAP(@). In the following we will show that in fact r*

lifts a linear isometry between VN(H)/WAP(H) and VN (G)/WAP(G).

PROPOSITION 4.5. For T € VN(H), define 7 (T + WAP(H)) = r*(T) +
WAP(G). Thenr* : VN(H)/WAP(H) — VN(G)/WAP(G) is a linear isom-
etry with range VN (G)/WAP(G) and the following diagram commutes:

VN(H) r VN(G)

VN(H)/WAP(H) ——= VN(G)/WAP(G)

where oy and o are the canonical quotient maps.

~ ~

Proof. Since r*(VN(H)) = VNg(G) and r*(WAP(H)) = WAP(G) N
VN (G), by the definition, 7 : VN(H)/WAP(H) — VN(G)/WAP(G)
is well defined, linear, and onto the linear subspace VN (G)/WAP(G) of
VN(G)/WAP(G). According to the definition of 7*, it is clear that the dia-
gram is commutative. To complete the proof, we only need to show that 7*
is an isometry.

Let T € VN(H). Obviously, |[7*(T +WAP(H))|| < ||T +WAP(H)|| since
|7 < ||Ir*|| = 1. Conversely, let W € WAP(G). Then W = W, + Wa, where
Wi = 1y - W and hence Wy € WAP(G) N VNg(G), and Wy = W — Wy €
WAP(G) with supp Wy C G\ H. Thus, Wy = r*(V4) for some V; € WAP(H).
So,

[ (T) + W = [lr*(T) + 7= (V1) + Wa|
> Ly (1) + (V) + W)
= ||r*(T) +r*(V1)|| (since 1gy - Wy =0)
=T+ Wl

> |IT + WAP(H)||.
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Since W € WAP((AJ) is arbitrary, it follows that
I (T) + WAP(G)|| = |IT + WAP(H)|,

i.e., | (T + WAP(H))|| > |T + WAP(H)||. Therefore, 7 is a linear isome-
try. m

REMARK 4.6. Let V be any closed B(G)-submodule of VN(G) and let
Vi = (r*) 7Y [VNVNy(G)]. Then Vy is a closed B(H )-submodule of VN(H )
and r*(Vig) = VN VNg(G). From the proof it can be seen that Proposi-
tion 4.5 holds if WAP(CA}) and WAP(PAI ) are replaced by V and Vj, respec-
tively. In particular, if we take V = AP(G), UC(G), C;(G), and C3(G)
(the space of almost periodic functionals on A(G), the space of uniformly
continuous functionals on A(G), the reduced group C*-algebra of G, and
the C*-algebra generated by {Ag(z) : * € G}, respectively), then we will
get Viy = AP(H), UC(H), C;(H), and C;(H), respectively (cf. [11]).

5. Inductive extreme non-Arens regularity of A(G). Throughout
this section, we assume that G is a non-discrete locally compact group and
Gy is a o-compact open subgroup of G.

Let T' € VN(G). By Proposition 4.1, there exists a subset B of G such
that card(B) < b(G) and suppT N gGy = O for all ¢ € G\ B. Hence,
supp? C UgEB gGo. Let Hp be the open subgroup of G generated by

Go U UgeB gGo, i.e.,

> —1yn
HB:U{[GOUUQGO}U[GOUUQGO} }
n=1 geB geB

Then we have T' € V Ny, (G) and Hpg can be covered by no more than b(G)
compact sets (since Gg is o-compact and b(G) > Rg). Therefore, d(Hp) <
b(Hg) (= b(G)). According to the result of Hu [10, Corollary 4.2 and Remark
4.7], A(Hp) is extremely non-Arens regular.

To obtain the inductive extreme non-Arens regularity of A(G), we need
to consider the following maps.

DEFINITION 5.1. Let H and J be open subgroups of G and H C J.
The maps Agy : A(H) — A(J), Py : VN(H) — VN(J), and 'y :
VN(H)/WAP(H) — VN(J)/WAP(J) are defined as follows: for u € A(H)
and T € VN(H),

HJ(u) = u
b 5(T) = T’Tq (),
Ty (T + WAP(H)) = 7 ,(T)
=ry;(T)+ WAP(j) (as in Proposition 4.5),
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where u° denotes the trivial extension of u to J (i.e., u®(z) =0ifx € J\ H),
and r7;; is the adjoint of the restriction map gy : A(J) — A(H). Also, we
define ./lH = AHg, ng = @Hg, and FH = FHg.

LEMMA 5.2. Let H and J be open subgroups of G such that H C J. Let
Ay, Py, I'gy, Ag, Py, and I'y be the maps from Definition 5.1.

(a) Agy is an isometric isomorphism from the Banach algebra A(H)
onto the Banach subalgebra Ap(J) of A(J), where Ay(J) = {f € A(J) :
supp f C H}.

(b) @py is a x-isomorphism (and hence an isometry) from the von Neu-
mann algebra VN(H) onto the von Neumann subalgebra VN (J) of VN(J).

~

(¢) I'my is a linear isometry with range VN g (J)/WAP(J).

(d) If K is an open subgroup of G and H C J C K, then AjxApgy =
AHK7 @JK@HJ = ¢HK7 and FJKFHJ = FHK' In partz’cular, the maps AH,
@y, and I'y are compatible with Agy, @gy, and 'y, respectively. That is,
AJAHJ:AH, @J@HJ:QSH, and FJFHJ:FH fOT’ all Hg J.

Proof. (a) and (b) follow from [5, (3.21)]. (c¢) holds by Proposition 4.5.
And it is easy to check (d) by Definition 5.1. m

Summarizing the above discussion, we are ready to give the following
decompositions for the Fourier algebra A(G), the von Neumann algebra

VN(G), and the quotient Banach space VN(G)/WAP(G).

THEOREM 5.3. Let G be a non-discrete locally compact group with b(G) <
d(G) and let Gy be a o-compact open subgroup of G. Let B = {B : B C
G and card(B) < b(G)} and let 'H be the family of open subgroups of G
generated by Go U, cp 9Go (B € B). Then:

(1) H is a directed set under the relation “C”, d(H) < b(H) for all
HeH, G=UgeynH, and card(H) < d(G)*D.

(2) For all H € H, A(H) is extremely non-Arens regular.

(3) A(G) = [Upyen A(H) is an inductive union of the Banach algebras
{A(H)}gen via the isometric isomorphisms {Ag} Hew-

(4) VN(G) = |gen VN(H) is an inductive union of the von Neumann
algebras {VN(H)}gen via the x-isomorphisms {®Pg} men-

(5) VN(G)/WAP(G) = UHGH[VN(H)/WAP(ﬁ)] is an inductive union
of the quotient Banach spaces {VN(H)/WAP(ﬁ)}HGH via the linear isome-
tries {FH}HG'H-

(6) A(G) = Uy A(H) is a WAP-strong inductive union of the algebras
[A(H) b en.

(7) Ay, Py, and I'yy (H,J € H and H C J) are the maps com-
patible with {Ag}mer, {Putuern, and {I'y}uen as in Corollary 3.2 and
Corollary 3.5, respectively.
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In particular, if G is metrizable, then H is a o-compact open subgroup
of G for all H € H and A(G) is a WAP-strong inductive union of the
separable Fourier algebras {A(H)} pen-

Proof. Clearly, H is a directed set under “C”, d(H) < b(H) forall H € H
(see the second paragraph in this section), and G = (Jy ¢y H. Let S be a
complete set of left coset representatives of Gy in G and let £ = {B C S :
card(B) < b(G)}. It can be seen that card(S) = d(G) and hence card(H) <
card(&) < d(G)"&). Therefore, (1) holds.

(2) and (4) are true according to the discussion in the second paragraph
of this section, Lemma 5.2(b), and Definition 3.1.

Note that A(G) N Cyo(G) is norm dense in A(G). So, if f € A(G),
then supp f can be covered by countably many cosets gG¢ (g € G). Hence,
suppT C H for some H € H. Therefore, f € Ay(G) = Au(A(H)) for some
H € 'H. By Lemma 5.2(a) and Definition 3.1, (3) holds.

(5) follows from (4) and Lemma 5.2(c).

Let H € H and let ry : A(G) — A(H) be the restriction map. Then
rauAg =1d and @y = rj;. Thus, A}, @y = A} i = 1d. It is easy to see that
Pp(u-T)=Ag(u) - Pu(T) for allu € A(H) and T' € VN(H ) by the fact that
ryAy =Id and &y = 3. Clearly, & (WAP(H)) = WAP(G)Ndy (VN(H))
and I'y : VN(H)/WAP(H) — VN(G)/WAP(G) is the linear isometry lifted
by @5 : VN(H) — VN(G). Therefore, A(G) = | |ycp A(H) is a WAP-
strong inductive union of {A(H)}men by (4), (5), and Definition 3.3, i.e.,
(6) is true.

(7) holds by Lemma 5.2(d) and the uniqueness of the maps Ag s, P,
and Iy satisfying Corollary 3.2(a) and Corollary 3.5(a), respectively.

Finally, suppose that G is metrizable. Let H € H. Then d(H) < b(H) =
Rg by (2). Therefore, H is o-compact and metrizable and hence A(H) is
separable. m

REMARK 5.4. Let V be any closed B(G)-submodule of VN(G) and
let Vi = @4 [V N VNg(G)]. By Remark 4.6, the spaces WAP(G) and
{WAP(H)}srer in Theorem 5.3(5) can be replaced by V and {Vi}pen,
respectively. Therefore, the inductive union A(G) = | |4 A(H) in Theo-
rem 5.3 is more than WAP-strong.

Let G be a locally compact abelian group with the dual group I'. Then
the Fourier algebra A(G) of G is isometrically isomorphic to the group alge-
bra L1(I") of I" by the Fourier transform (see Eymard [5, (3.6)]). So, VN(G)
is identified with L°°(I"). Under these identifications, the module action of
LY(I") on L*(I) is given by

fro=Ffx¢ (feL'(I) and ¢ € L>=(I),
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where f(x) = f(x=1) (x € I') (see Dunkl and Ramirez [4]). This coincides
with the module action of the Banach algebra L!(I") (taking the convolution
as the multiplication) on L*°(G) = L*(G)*. Also, we have b(G) = d(I") (cf.
[12, (24.48)]) and hence d(G) = b(I") by the Pontryagin duality theorem.
In particular, G is non-discrete if and only if I" is non-compact. Now, for
any open subgroup H of G, let Ny = {y € I' : v(z) = 1 for all x € H}.
Then H = I'/Ny and Ny (% G//?I ) is a compact subgroup of I'. Applying
Theorem 5.3, we obtain the following decomposition for the group algebra
of any non-compact locally compact abelian group.

COROLLARY 5.5. Let G be a non-compact locally compact abelian group
satisfying d(G) < b(G). Then there exists a family {N;}icr of compact
subgroups of G indezxed by a directed set I such that:

(1) Ny 2 N # {e} forall i,j € I with i < j and (,c; Nis = {e}.

(2) b(G/N;) < d(G/N;) for all i € I and card(I) < b(G)U%).

(3) LY(G) = ,e; LY(G/N;) is a WAP-strong inductive union via the
isometric isomorphisms A; : LY(G/N;) — LYG) given by A;(f) = fomn
(f € LY(G/N;)), where n; is the natural homomorphism of G onto G/N;
(tel).

REMARK 5.6. Under the assumptions of Theorem 5.3, we also have the
inductive union L*(G) = | ey L' (H) of Banach algebras via the isomet-
ric isomorphisms {2y }gex, where 2y : L'(H) — L'(G) is defined by
Qu(f) = f° (the trivial extension of f to G). However, usually L>°(G)
cannot be an inductive union of {L°°(H)}gex. For example, suppose that
d(G) = 2% for some a > b(G). Note that card(H) < d(G)*@ = 22
and D(L'(H)) < b(H) = b(G) for all H € H, where D(L'(H)) is the
smallest cardinality of a norm dense subset of L!(H). It follows that
card(Ug ey L=(H)) < 2Y(E) card(H) < 2% = d(G) < 24%) < card(L>(Q)),
ie., card(Jyey L(H)) < card(L>(G)). Therefore, the inductive union
LYG) = Upyen L' (H) is not WAP-strong.

According to Theorem 5.3(2), for each H € H, there exists a closed linear
subspace Zg of VN(H)/ WAP(fI ) and a continuous linear map Iy : Zyg —
VN(H) such that [Ty (Zy) = VN(H). We will consider whether the family
{{Zg, Iy} : H € H} is compatible with the maps @y and I'yy (H,J € H
and H C J). For this purpose, we will need the following two lemmas.

LEMMA 5.7. Let H and J be open subgroups of G with H C J and let
Apy, Pry, and 'y be the maps defined in Definition 5.1. Let Wy = Ay ;.
Then:

(a) Ygry : VN(J) — VN(H) is a continuous linear surjection, || sl|
= 1, and !pHJ@HJ = Id.
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~ ~

(b) Wrr;(WAP(J)) = WAP(H).
Define O : VN(J)/WAP(J)— VN(H)/WAP(H) by O, (T+WAP(.J))

= Wy, (T) + WAP(H) (T € VN(J)). Then:
(¢c) Omy is a continuous linear surjection, ||Ops||=1, and Og 'y y=1d.
(d) If K is an open subgroup of G and H C J C K, then Wy W i =
Uk and Og 0 K = Opk.

Proof. (a) This follows from [5, (3.21)].

(b) Note that Wx ®p; = Id and g (WAP(H)) C WAP(J) (see [2,
Lemma 4.2]). So, WAP(ﬁ) C lI/HJ(WAP(j)). On the other hand, for v €
A(H) and T € VN(J), we have u - ¥y j(T) = Yy j(Ags(u) - T). Therefore,
Wy ;(WAP(J)) C WAP(H) and hence Wy, (WAP(J)) = WAP(H).

(c) By (a) and (b), ©p; is well-defined, linear, continuous, and onto.
And Oy Iy ; = Id since ¥y ;@ ; = Id. Note that 'y s is an isometry. So
we have ||©gs|| > 1. On the other hand, by the definition of @ ; and by
the fact that || || = 1, we get ||©n || < 1. Therefore, [|Ops| = 1.

(d) Since Ay Agy = Agk, by taking the adjoint, we have ¥y ;W i =
WHK and hence @H]@JK = @HK n

REMARK 5.8. Comparing to the diagram in Proposition 4.5, we now
have the following commutative diagram:

VN(J) it VN(H)

lQJ lQH
VN(J)/WAP(J) ~24 VN(H) /WAP(H)
where o and py are the canonical quotient maps.
LEMMA 5.9. Let G,Gq, and H be as in Theorem 5.3. Let u be the initial

ordinal with |u| = b(Go) (= b(G)) and X = {a : a < u}. Then there exists
a continuous linear surjection wy : VN(H)/WAP(H) — 1°(X) for each
H € H such that the family {||lwrl| : H € H} is bounded by a constant
which depends only on b(QG).

Furthermore, if H,J € H and H C J, then wg®gj = wy and we have
the following commutative diagram:

VN(H)/WAP(H) L VN(.J)/WAP(J])
[°(X)

Proof. Let m : VN(Gy) — [°°(X) be the map constructed in Hu [9,
Theorem 5.1]. According to [9, Theorem 5.1] and its proof, 7 is a continuous
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linear surjection, ||| = 1, and W(WAP(@O)) C ¢(X), where ¢(X) = {f €
[>°(X) : lim, f(«) exists}. Note that {*°(X)/c(X) contains an isomorphic
copy of 1°(X) (see [9, Lemma 3.2]) and [°°(X) is an injective Banach space
(see [14]). So, there exists a continuous linear surjection 7 : 1*°(X)/c(X) —
1°°(X). Define w : VN(Go)/WAP(Gy) — 1°°(X) by w(T + WAP(Gy)) =
T(m(T) 4+ ¢(X)) (T € VN(Gyp)). Then w is well defined, linear, continuous,
onto [*°(X), and ||w|| < ||7||.

For H € H, let wg = wOg,u, where Og,u : VN(H)/WAP(ET) —
VN(GO)/WAP(CAJU) is the surjection as defined in Lemma 5.7. Then wp is
continuous, linear, onto [*°(X), and |wg| = |wOc.u| < ||w| < 7] It
turns out that the family {|lwg|| : H € H} is bounded by the constant |||
which depends only on card(X) = b(G).

Suppose H,J€H and HCJ. Then Og,uOnj = Og,s (Lemma 5.7(d)).
Thus, w@GOH@HJ == w@GOJ, i.e., wHQHJ = Wyj. But @HJFHJ = Id
(Lemma 5.7(c)). It follows that wy = w;I'm; and hence the diagram com-
mutes. m

Now we have the following inductive compatibility of the pairs { Z g, [1y }
(H € 'H) with the maps @5 and I'y .

THEOREM 5.10. The following hold under the assumptions of Theo-
rem 5.3:

(1) For each H € H, there exists a closed linear subspace Zy of the
quotient VN(H)/WAP(H) and a continuous linear map I : Zyr — VN(H)
such that g (Zg) = VN(H).

(2) There exists a constant M > 0 (which depends only on b(G)) such
that || g|| < M for all H € H.

(3) Let K € H and let Hx = {H C 'H : H C K}. Then, for each
H € Hk, a pair {Zy, gy} as in (1) can be chosen such that the family
{{Zu, Iy} : H € Hi} is compatible with the maps Ppy and I'yy (H,J €
Hy and H C J). That is, if H,J € Hxg and H C J, then I'y;(Zy) C Z;
and the following diagram commutes when 'y is restricted to Zy:

Zy —H VN(H)
FHJ ¢H.]
Z; S VN(J)

Proof. (1) This follows from Theorem 5.3(2).

(2) Let HeH. Then d(H) < b(H) (Theorem 5.3(1)) and hence D(A(H))
= b(H) = b(G) = card(X), where D(A(H)) is the smallest cardinality of
a norm dense subset of A(H) and X is the same set as in Lemma 5.9. Let
{uq : @ € X} be a norm dense subset of the unit ball in A(H) and let
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tg : VN(H) — [°°(X) be defined by tg(T)(a) = (T,uq) (T' € VN(H)
and a € X). Then ty is a lincar isometry. Let wy : VN(H)/WAP(H) —
[>°(X) be the surjection as constructed in Lemma 5.9. We take Zy =
wi' [tr (VN(H))] (€ VN(H)/WAP(H)) and Iy = t' (w|z,). Then Zy
is a closed linear subspace of VN(H)/WAP(H), Iy : Zy — VN(H) is a
continuous linear map, and Iy (Zy) = VN(H).

It is clear that |[I[Iy|| < |wg]|. By Lemma 5.9, the family {|[IIy| : H €
H} is bounded by a constant which depends only on b(G).

(3) Let K € H. Let tx, Zk, and IIx be as constructed in (2). Let
H € Hg and t; = tgPuk. Then t/; : VN(H) — [*°(X) is also a linear
isometry since @y x is an isometry. Now we take Zg = wy' [ty (VN(H))] (C
VN(H)/WAP(H)) and Iy = (t};) " (wh|z,). Then Hy : Zy — VN(H) is
also a continuous linear surjection and we still have || IIg|| < ||wg]|-

Suppose that H,J € Hig and H C J. Since @gxg = PyjxPHy, we
have @HK(VN(H)) = @JK[@HJ(VN(H))] - @JK(VN(J)) and hence
tkPur (VN(H)) C tgP;x(VN(J])), ie., ty(VN(H)) C t/,(VN(J)). Note
that wyI'yy = wy (Lemma 5.9). Therefore, we have

Tslwy' (8 (VN(H)))] € wy' (8 (VN(H))) € wy ' [t (VN())],

e, I'yy(Zy) C Z;. Finally, the construction of {Zy, Iy} and {Z;,II;}
makes the diagram commutative. m

REMARK 5.11. Let K € ‘H and {Zk, IIx} be the same as constructed
in Theorem 5.10(2). If H,J € Hg with H C J and {Zy,IIx}, {Z;5,11;}
are chosen as in the proof of Theorem 5.10(3), then we only have Zy C
O s(Z;), where Oy : VN(J)/WAP(J) — VN(H)/WAP(H) is the surjec-
tion as defined in Lemma 5.7. So, generally, we cannot simultaneously have
the following commutative diagram when O ; is restricted to Z;:

Zy 1 VN(H)

TQHJ TWHJ

Z; 2 VN(J)
However, for H € Hy, if we let Qi = Opx(Zx) (C VN(H)/WAP(H)) and
let X'p: Qu — VN(H) be defined by

Zul0nk(T + WAP(K))] = Uy I (T + WAP(K)) (T + WAP(K) € Zx),

then it can be seen that Qp is a linear subspace of VN(H)/WAP(H), Xy
Qu — VN(H) is well defined, linear, onto VN(H ), and || X || < ||7]|, where
T 1°(X)/c(X) — [°°(X) is the surjection as appeared in the proof of
Lemma 5.9. Let Yy denote the norm closure of Qp in VN(H)/ WAP(.FAI ) and
extend X'y continuously to Yy. Then Xy : Yy — VN(H) is a continuous
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linear surjection. Now, if H,J € Hix and H C J, then Og;(Qs) C Qpu
and hence O ;(Y;) C Yy. Also, we have XyOp ;[0 (T + WAP(IA())] =
Uy X051 + WAP(IA())} for O k(T + WAP(IA()) € @ and thus the
following diagram commutes when @y is restricted to Y;:

Yir —2~ VN(H)
Omy Yug
Yy —=L= VN(J)

But, in this case, we do not have I'y ;(Yy) C Y, and hence we cannot have
Yilyslyy = PuyXu, ie., we do not have the commutative diagram in
Theorem 5.10 when {Zy, Iy} and {Z;, I ;} are replaced by {Yy, X'r} and
{Y;, X}, respectively.

It is not clear whether in Theorem 5.10 we could choose a family
{{Zy,IIy} : H € H} compatible with all of the maps @y, and I'yy
(H,J € Hand H C J). If so, then we would be able to obtain a continuous
linear surjection IT : |Jy ey L' (Zn) — VN(G) and hence we would be able
to conclude that A(G) is extremely non-Arens regular. For this reason, we
give the following version of extreme non-Arens regularity.

DEFINITION 5.12. Let A be a Banach algebra. A is called inductively ez-
tremely non-Arens reqular if there exists a family { A; };c1 of Banach algebras
such that:

(1) For each i € I, A; is extremely non-Arens regular.

(2) A=|];c; Ai is a WAP-strong inductive union of {A;};cr with A* =
Llics A7 via {®;}icr and A*/WAP(A) = | |, [A7 /WAP(A;)] via {1 }icr.

(3) Let k € I and let I, = {i € I : i < k}. Then, for each i € Ij, there
exists a closed linear subspace Z; of A¥/WAP(A;) and a continuous linear
surjection IT; : Z; — A} such that {||II;|| : ¢ € I} } is bounded (by a constant
independent of k) and {{Z;, II;} : i € I} is compatible. That is, if 7, j € Iy,
and 1 = j, then F”(ZZ) - Zj and Qsl]ﬂl = H]‘Fij Zis where Qsij and Fij are
the same maps as in Corollary 3.5.

Combining Theorem 5.3 and Theorem 5.10 with [10, Corollary 4.2 and
Remark 4.7], we are able to deduce the non-Arens regularity of A(G) as
follows.

COROLLARY 5.13. Let G be a non-discrete locally compact group. Then:

(1) A(GQ) is extremely non-Arens regular if b(G) > d(G).
(2) A(G) is inductively extremely non-Arens regular if b(G) < d(G).
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As an immediate consequence of Corollary 5.13, we have the following
result on the non-Arens regularity of the group algebra L!(G) of any non-
compact locally compact abelian group G.

COROLLARY 5.14. Let G be a non-compact locally compact abelian group.
Then:

(1) LY(G) is extremely non-Arens reqular if b(G) < d(G).
(2) LY(G) is inductively extremely non-Arens reqular if b(G) > d(G).
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