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A continuum of totally incomparable hereditarily
indecomposable Banach spaces

by

I. Gasparis (Stillwater, OK, and Herakleion)

Abstract. A family is constructed of cardinality equal to the continuum, whose mem-
bers are totally incomparable hereditarily indecomposable Banach spaces.

1. Introduction. All Banach spaces considered in this paper are real,
infinite-dimensional. By a subspace of a Banach space we shall mean an
infinite-dimensional, closed linear subspace. A Banach space is said to be
hereditarily indecomposable (H.I.) if for every pair Y , Z of subspaces of X
with Y ∩ Z = {0}, the subspace Y + Z is not closed. The famous example
of Gowers and Maurey [15] of a Banach space without unconditional basic
sequence was observed by W. Johnson to be H.I. Since the appearance of
the Gowers–Maurey space the study of H.I. spaces has been one of the most
important research topics in modern Banach space theory. We refer to [23]
and [6] for a detailed survey of results.

Gower’s remarkable dichotomy [14] states that every Banach space either
contains an infinite unconditional sequence, or a subspace which is H.I. It is
proved in [6] that every Banach space not containing an isomorph of `1 has
a subspace which is a quotient of an H.I. space. A recent result of S. Argyros
[3] states that a separable Banach space universal for the class of reflexive
H.I. spaces, is also universal for the class of separable Banach spaces. These
results indicate the large variety of H.I. spaces.

The construction of H.I. spaces is not an easy task. The crucial step
was Schlumprecht’s construction of an arbitrarily distortable Banach space
[27]. Recall that the Banach space (X, ‖ · ‖) is arbitrarily distortable if for
every λ > 1, there exists an equivalent norm | · | on X so that for every
subspace Y of X there exist non-zero vectors x, y in Y such that ‖x‖ =
‖y‖, yet |x|/|y| > λ. Schlumprecht’s space had an immense impact on the
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development of the theory because of its connection to the Gowers–Maurey
construction, as well as to the solution of the distortion problem for `p,
1 < p < ∞ [24]. It is proven in [29] that every H.I. space is arbitrarily
distortable.

The first example of an arbitrarily distortable, asymptotic `1 space was
given in [4]. We recall that a Banach space with a normalized basis (en) is
asymptotic `1 [19] if there exists a constant C > 0 such that for every k ∈ N
there exists N ∈ N such that every sequence (xi)ki=1 of successive normalized
blocks of (en) is C-equivalent to the canonical basis of `k1. It was shown in [4]
that there exist infinite subsets M = (mi), N = (ni) of N so that the mixed
Tsirelson space T (1/mi, Sni)

∞
i=1 is arbitrarily distortable. In the same paper

this example was conditionalized to yield an asymptotic `1 H.I. space.
The main goal of this paper is to find a more conceptual approach to

a certain class of asymptotic `1 H.I. spaces. More precisely we show the
following

Theorem 1.1. There exists a family of cardinality equal to the contin-
uum whose members are totally incomparable, asymptotic `1, reflexive H.I.
spaces.

Recall that the Banach spaces X and Y are totally incomparable if no
subspace of X is isomorphic to a subspace of Y . The proof of Theorem 1.1
is based on ideas from [4]. However, our argument is considerably simpler.

We now describe how this paper is organized. In Section 3 we introduce,
for a given scalar d > 1, infinite subsets N and P of N and a null scalar
sequence a, the (d,N, P,a) distortion property (Definition 3.1) for a certain
class of asymptotic `1 Banach spaces. This property, which roughly speaking
is related to the optimality of the constants of higher order `1-spreading
models of the space, will enable us to give a criterion (Theorem 3.2) for
certain asymptotic `1 Banach spaces to be arbitrarily distortable. We also
show how to obtain totally incomparable arbitrarily distortable spaces.

We apply Theorem 3.2 in Section 4 in order to give an alternative proof
of the fact that certain mixed Tsirelson spaces are arbitrarily distortable
[4], [2], [5]. These spaces can be described as the completion of c00, the
space of all ultimately vanishing real sequences, under the norm given by
‖x‖ = sup{∑∞i=1 µ({i})x(i) : µ ∈ M}, where M is a suitable symmetric
subset of the finitely supported signed measures on N containing the point
mass measures and closed under interval restrictions. The main difficulty in
the study of mixed Tsirelson spaces is that the norming set M is defined
by means of an inductive procedure. We are able to bypass this difficulty by
describing M analytically and proving a decomposition result for its mem-
bers (Lemma 4.6), which greatly simplifies the argument for the distortion
of T (1/mi, Sni)

∞
i=1.
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In Section 5, we choose a subset N ofM which is maximal with respect
to a Maurey–Rosenthal type of condition [20] and show in Theorem 3.5 that
the completion of c00 under the norm induced by N is an H.I. space with
the (d,N, P,a) distortion property. Various choices of N give rise to totally
incomparable H.I. spaces.

In order to prove that a space X is H.I., we employ Theorem 3.6 which
loosely speaking asserts that if for every ε > 0 there exist integers k < n such
that every block subspace Y of X contains a sufficiently large (in the Schreier
sense) block basis z1 < . . . < zp with the property that ‖∑p

i=1 aizi‖ ≥
ε‖∑p

i=1 aiei‖n whenever (ai)
p
i=1 ⊂ R+, while ‖∑p

i=1 aizi‖ ≤ ‖
∑p

i=1 aiei‖Ck
for every sequence (ai)

p
i=1 in R, then X contains no infinite unconditional

sequence. Above, (ei) is the natural unit vector basis of c00 and ‖ · ‖n, ‖ · ‖Ck
denote the nth Schreier and kth conditional Schreier norms respectively.

The precise statements for the results mentioned above are given in Sec-
tion 3. The proof of Theorem 1.1, presented in Section 3, follows from The-
orem 3.5 and Proposition 3.3 combined with two fundamental results of
descriptive set theory, the infinite Ramsey theorem [10], [22] and a theorem
of Kuratowski [17].

Acknowledgments. I wish to thank the referee for correcting an error
in an earlier version of this paper, and for useful comments and suggestions
regarding the material discussed herein.

2. Preliminaries. We shall make use of standard Banach space facts
and terminology as may be found in [18]. If D is any set, we let [D] (resp.
[D]<∞) denote the set of its infinite (resp. finite) subsets. Given M ∈ [N],
the notation M = (mi) indicates that M = {m1 < m2 < . . .}. Let E and F
be finite subsets of N. We write E < F if maxE < minF .

Suppose now that X is a Banach space with a Schauder basis (en). A
sequence (un) of non-zero vectors in X is a block basis of (en) if there exist
successive subsets F1 < F2 < . . . of N and a scalar sequence (an) so that
un =

∑
i∈Fn aiei for every n ∈ N. We adopt the notation u1 < u2 < . . . to

indicate that (un) is a block basis of (en). We let suppun denote the set
{i ∈ Fn : ai 6= 0}. The range r(un) of un is the smallest integer interval
containing suppun. The subspace of X generated by a block basis of (en) is
called a block subspace.

We next review two important hierarchies: the Schreier hierarchy
{Sξ}ξ<ω1 (see [1]) and the repeated averages hierarchy, (ξMn )∞n=1, ξ < ω1,
M ∈ [N] (see [8]). Since we shall only be using the families {Sξ}ξ<ω and
(ξMn )∞n=1, ξ < ω, M ∈ [N], we confine the definitions to the finite ordinal
case.
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The Schreier families. We let S0 = {{n} : n ∈ N}∪{∅}. Suppose Sξ has
been defined, ξ < ω. We set

Sξ+1 =
{ n⋃

i=1

Fi : n ∈ N, n ≤ minF1,

F1 < . . . < Fn, Fi ∈ Sξ (i ≤ n)
}
∪ {∅}.

An important property shared by the Schreier families is that they are
hereditary : If F ∈ Sξ and G ⊂ F , then G ∈ Sξ. Another important prop-
erty is that they are spreading : If {p1, . . . , pk} ∈ Sξ, p1 < . . . < pk, and
q1 < . . . < qk are so that pi ≤ qi for all i ≤ k, then {q1, . . . , qk} ∈ Sξ. It is
not hard to verify the following convolution property of Schreier families: if
F1 < . . . < Fn are members of Sα such that {minFi : i ≤ n} belongs to Sβ ,
then

⋃n
i=1 Fi belongs to Sα+β.

The repeated averages hierarchy. We first let (en) denote the unit vector
basis of c00. Given ξ < ω and M ∈ [N], we define by induction a sequence
(ξMn )∞n=1 of finitely supported probability measures on N whose supports are
successive subsets of M .

If ξ = 0, then ξMn = emn for all n ∈ N, where M = (mn).
Assume that (ξMn )∞n=1 has been defined for all M ∈ [N]. Set

[ξ + 1]M1 =
1
m1

m1∑

i=1

ξMi

where m1 = minM . Suppose that [ξ + 1]M1 < . . . < [ξ + 1]Mn have been
defined. Let

Mn = {m ∈M : m > max supp [ξ + 1]Mn } and kn = minMn.

Set

[ξ + 1]Mn+1 =
1
kn

kn∑

i=1

ξMn
i .

It follows that supp ξMn belongs to Sξ, and moreover it is a maximal (under
inclusion) member of Sξ. It can be easily shown, by induction, that if i and
j belong to supp ξMn and i < j, then ξMn ({i}) ≥ ξMn ({j}).

For a probability measure µ in N and ξ < ω, define ‖µ‖ξ = sup{µ(F ) :
F ∈ Sξ}. It is proven in [13], [7] that ‖ξM1 ‖ξ−1 ≤ ξ/minM for every ξ ≥ 1
and M ∈ [N]. It follows that for every P ∈ [N], every ξ ≥ 1 and every ε > 0,
there exists M ∈ [P ] such that ‖ξM1 ‖ξ−1 < ε. This property of the repeated
averages will be very useful in what follows. For a detailed study of these
hierarchies we refer to [1], [8], [26], [12], [7] and [13].

We continue by introducing some more terminology. A finite collection
F of finite subsets of N is said to be rSξ-admissible, ξ < ω, r ∈ N, if there
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exists an enumeration {Ik : k ≤ n} of F such that I1 < . . . < In and the set
{min Ik : k ≤ n} is the union of r members of Sξ. In case {min Ik : k ≤ n}
is a maximal (under inclusion) member of Sξ, F is called maximally Sξ-
admissible. A finite block basis u1 < . . . < un in a Banach space with a
basis is rSξ (resp. maximally Sξ)-admissible if {suppui : i ≤ n} is.

In what follows, X is a Banach space with a basis (en). The support of
every block basis of (en) will always be taken with respect to (en).

Definition 2.1. Let (un) be a normalized block basis of (en), ε > 0 and
1 ≤ ξ < ω. Set pn = min suppun, n ∈ N, and P = (pn).

(1) A generic (ε, ξ) average of (un) is any vector that can be written in
the form

∑∞
n=1 ξ

R
1 (pn)un, where R ∈ [P ] and ‖ξR1 ‖ξ−1 < ε.

(2) An (ε, ξ) average of (un) is any generic (ε, ξ) average of a normalized
block basis of (un).

(3) A normalized (ε, ξ) average of (un) is any vector u of the form u =
v/‖v‖, where v is an (ε, ξ) average of (un). In case ‖v‖ ≥ 1/2, u is a smoothly
normalized (ε, ξ) average of (un).

Notation. Let E∗ be a finite collection of successive intervals of N and
let u be a finite linear combination of (en).

(1) We let I(u,E∗) denote the number of elements of E∗ which intersect
suppu.

(2) Let D be a finite block basis of (en) such that the support of every
member of D intersects at least one member of E∗. We define D(E∗, 1) =
{u ∈ D : I(u,E∗) = 1} and D(E∗, 2) = {u ∈ D : I(u,E∗) ≥ 2}.

Remark 2.2. Let E∗ be an Sp-admissible collection of intervals of N.
Let D be a finite block basis of (en) such that the support of every mem-
ber of D intersects at least one member of E∗. Given J ∈ E∗ denote by
D(J) the collection of those u ∈ D for which J is the only member of E∗

intersecting suppu. Assume that for every J ∈ E∗, D(J) is rSq-admissible.
The spreading property of the Schreier families implies that D(E∗, 2) is
2Sp-admissible. On the other hand, the convolution and spreading proper-
ties of Schreier families imply that D(E∗, 1) is (r + 1)Sp+q-admissible and
thus D is (r + 3)Sp+q-admissible.

Before closing this section, we recall the definitions of the Schreier space,
Xξ, and conditional Schreier space, CXξ, ξ < ω. Xξ is the completion of
c00 under the norm ‖x‖ξ = sup{∑i∈F |x(i)| : F ∈ Sξ}. X0 is isometric to
c0. X1 was introduced by Schreier [28] in order to provide an example of a
weakly null sequence without Cesàro summable subsequence. The general-
ized family {Xξ}ξ<ω1 of Schreier spaces was studied in [1], where it is shown
that the natural Schauder basis (en) of Xξ is 1-unconditional and shrinking.
For a detailed study of the spaces {Xξ}ξ<ω we refer to [13].
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The conditional Schreier spaces {CXξ}ξ<ω were constructed by H. Ro-
senthal (unpublished). CXξ is the completion of c00 under the norm

‖x‖Cξ = sup
{ n∑

k=1

∣∣∣
∑

i∈Jk
x(i)

∣∣∣ : n ∈ N,
(Jk)nk=1 are Sξ-admissible intervals

}
.

The natural basis (en) of CXξ is of course a conditional basis. When ξ = 0,
(en) is equivalent to the summing basis of c0. We also mention the fol-
lowing useful fact: Suppose (ai)ni=1 is a non-increasing finite sequence of
non-negative scalars. Then ‖∑n

i=1(−1)iaieti‖Cξ ≤ ‖
∑n

i=1 aieti‖ξ for every
increasing sequence (ti)ni=1 of integers.

3. Main results. We start this section by recalling that a normal-
ized sequence (xn) in a Banach space is an ε-`ξ1 spreading model, ε > 0,
if ‖∑i∈F aixi‖ ≥ ε

∑
i∈F |ai| for every F ∈ Sξ and all choices of scalars

(ai)i∈F .
A basis (en) for a Banach space X is said to have property ε-`ξ1, 1 ≤ ξ

< ω, ε > 0, if for every normalized Sξ-admissible block basis (ui)ki=1 of (en)
we have ‖∑k

i=1 aiui‖ ≥ ε
∑k

i=1 |ai| for all choices of scalars (ai)ki=1. Clearly,
X is then asymptotic `1.

The spreading property of Sξ implies that if (en) has property ε-`ξ1, then
so do all of its block bases. The spreading property of Sξ also implies that
every normalized block basis of (en) is an ε-`ξ1 spreading model.

For a Banach space X with a basis (en) having property ε-`ξ1 and δ > 0,
we define

τ((en), δ) = sup{ζ < ω : every normalized block basis of (en)

has a subsequence which is a δ-`ζ1 spreading model}.
Evidently, τ((en), ε) ≥ ξ. The modulus τ((en), δ) is implicitly defined in [26]
and [2].

Definition 3.1. Let X be a Banach space with a basis (ei). Let N =
(ni) and P = (pi) be infinite subsets of N such that ni−1 ≤ pi < ni/2 for
every i ∈ N. Let a = (δi) be a decreasing null sequence of scalars, and let
d > 1. Then X is said to have the (d,N, P,a) distortion property if for every
j ∈ N, (ei) has property δj-`

nj
1 , while τ((ui), dδj) < pj for every normalized

block basis (ui) of (ei).

Theorem 3.2. Let (X, ‖·‖) be a Banach space with a normalized , shrink-
ing , bimonotone basis (ei). Suppose that there exist N , P in [N], a scalar
sequence a = (δi) and d > 1 so that X has the (d,N, P,a) distortion prop-
erty. Then X is arbitrarily distortable.
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Proof. In what follows, the admissibility of every block basis of (ei) will
always be considered with respect to (ei). Given j ∈ N, we set

Aj =
{
δj

k∑

i=1

x∗i : (x∗i )
k
i=1 ⊂ BX∗ is Snj -admissible

}
.

Above, the admissibility of (x∗i )
k
i=1 is measured with respect to (e∗i ), the

sequence of functionals biorthogonal to (ei). Because (ei) has property δj-
`
nj
1 , we deduce that Aj ⊂ BX∗ . Indeed, suppose that δj

∑k
i=1 x

∗
i ∈ Aj and

let x ∈ X with ‖x‖ ≤ 1.
Set Ji = [min suppx∗i ,min suppx∗i+1) for i ≤ k−1, and Jk = r(x∗k). Define

xi = x|Ji, i ≤ k. Since (ei) is bimonotone, ‖∑k
i=1 xi‖ ≤ 1. Furthermore,

(xi)ki=1 is Snj -admissible. Hence, δj
∑k

i=1 ‖xi‖ ≤ 1 and the assertion follows.
We define an equivalent norm ‖ · ‖j on X in the following manner:

‖x‖j = sup{x∗(x) : x∗ ∈ Aj}.
We are going to show that for every normalized block basis (ui) of (ei)
and all j ∈ N there exists a finite linear combination w0 of (ui) such that
‖w0‖ = 1, ‖w0‖j ≥ 1/(8d+ 1) and ‖w0‖j0 ≤ (8d+ 4)δj0 for all j0 < j.

Once this is accomplished, given a normalized block basis (ui) of (ei)
and j0 < j, choose finite linear combinations v0 and w0 of (ui) such that
‖v0‖ = 1, ‖v0‖j0 ≥ 1/(8d+ 1), while ‖w0‖ = 1 and ‖w0‖j0 ≤ (8d+ 4)δj0 . It
follows that

‖v0‖j0
‖w0‖j0

≥ 1
(8d+ 1)(8d+ 4)δj0

.

Since j0 is arbitrary we conclude that X is arbitrarily distortable.
We first show that for every normalized block basis (ui) of (ei) and

j ∈ N, there exists a normalized block basis (wi) of (ui) such that for
every x∗ ∈ BX∗ , the block basis Vx∗ = {wi : i ∈ N, |x∗(wi)| ≥ 8dδj} is
Spj -admissible.

Indeed, since τ((ui), dδj) < pj , there exists a normalized block basis
(vi) of (ui) having no subsequence which is a dδj-`

pj
1 spreading model. Set

Q = (qi) where qi = min supp vi for all i ∈ N. Define

Fj = {G ∈ [Q]<∞ : ∃x∗ ∈ BX∗ , |x∗(vi)| ≥ 8dδj, ∀i ∈ N (qi ∈ G)}.
Of course, Fj is hereditary. We claim that there exists R ∈ [Q] such that
Fj ∩ [R]<∞ ⊂ Spj . If that were not the case, then by the result of [12]
there exists R ∈ [Q] such that Spj ∩ [R]<∞ ⊂ Fj. Suppose R = (qki).
Then given F ∈ Spj there exists x∗ ∈ BX∗ so that |x∗(vki)| ≥ 8dδj for all
i ∈ F . Corollary 3.6 of [7] now yields a subsequence of (vki) which is a dδj-`

pj
1

spreading model, contradicting our assumption on (vi). Therefore, our claim
holds and if we set wi = vki (R = (qki)), then (wi) is a normalized block
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basis of (ui) such that Vx∗ = {wi : i ∈ N, |x∗(wi)| ≥ 8dδj} is Spj -admissible
for all x∗ ∈ BX∗ .

We next choose a generic (δ2
j , nj) average w of (wi). It is clear that for

some y∗j ∈ Aj we have y∗j (w) ≥ δj , and thus ‖w‖j ≥ δj . Since Vx∗ is Spj -
admissible for every x∗ ∈ BX∗ and pj < nj , we see that |x∗(w)| ≤ 8dδj + δ2

j

for all x∗ ∈ BX∗ and therefore ‖w‖ ≤ (8d+ 1)δj. We have thus shown that
δj ≤ ‖w‖ ≤ (8d+ 1)δj and ‖w‖j ≥ δj .

Suppose now that j0 < j and let δj0
∑k

r=1 x
∗
r ∈ Aj0 . Set D = {wi :

|∑k
r=1 x

∗
r(wi)| ≥ 8dδj} and let E∗ denote the collection of the ranges of the

x∗r’s. Since Vx∗ is Spj -admissible for every x∗ ∈ BX∗ , Remark 2.2 implies
that D(E∗, 1) is 2Snj0+pj -admissible. On the other hand D(E∗, 2) is 2Snj0 -
admissible and thus D is 4S2pj -admissible as nj0 ≤ pj . Because 2pj < nj ,
we obtain the estimate

∣∣∣δj0
k∑

r=1

x∗r(w)
∣∣∣ ≤ 8dδjδj0 + 4δ2

j .

Hence, ‖w‖j0 ≤ 8dδjδj0 +4δ2
j . If we set w0 = w/‖w‖, then ‖w0‖j ≥ 1/(8d+1)

since ‖w‖j ≥ δj and ‖w‖ ≤ (8d + 1)δj, while ‖w0‖j0 ≤ (8d + 4)δj0 since
‖w‖j0 ≤ 8dδjδj0 + 4δ2

j , ‖w‖ ≥ δj and j0 < j. This completes the entire
proof.

Proposition 3.3. Let Xr have a shrinking basis (erk)
∞
k=1, r = 1, 2. As-

sume that Xr has the (dr, Nr, Pr,a) distortion property , r = 1, 2, and that
a = (δi) satisfies limi δi+1/δi = 0. Suppose that for every i0 ∈ N there exist
i > j > i0 such that n1

i = n2
j , where Nr = (nrk)

∞
k=1, r = 1, 2. Then X1 and

X2 are totally incomparable.

Proof. Suppose the assertion is false. A standard perturbation argument
yields a normalized block basis (uk) of (e1

k) equivalent to a block basis (wk) of
(e2
k). Let T be an isomorphism from [(uk)] onto [(wk)] such that T (uk) = wk,

for all k ∈ N. We can choose i0 ∈ N such that

δi+1

δi
<

1
d1‖T‖ · ‖T−1‖ for every i ≥ i0.

Our assumptions allow us to choose i > j > i0 such that n1
i = n2

j . Let
(vk) be a normalized block basis of (uk) having no subsequence which is

a d1δi-`
n1
i

1 spreading model. But since (T (vk)) is a block basis of (wk), it
follows that for every F ∈ Sn2

j
and all choices of scalars (ak)k∈F ,

∥∥∥
∑

k∈F
akT (vk)

∥∥∥ ≥ δj
‖T−1‖

∑

k∈F
|ak|.
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Hence, ∥∥∥
∑

k∈F
akvk

∥∥∥ ≥ δj
‖T‖ · ‖T−1‖

∑

k∈F
|ak|

for every F ∈ Sn2
j

and all choices of scalars (ak)k∈F . However, δi/δj ≤
δj+1/δj , and therefore δj/(‖T‖ · ‖T−1‖) > d1δi. Thus, (vk) is a d1δi-`

n1
i

1
spreading model contrary to our assumptions.

Definition 3.4. Let M = (mi) ∈ [N] be such that m1 > 7 and m2
i <

mi+1 for all i ∈ N. Choose L = (li) ∈ [N] such that l1 > 4 and 2li > mi

for all i ∈ N. The infinite subset N = (ni) of N is said to be M -good if
lj(fNj + 1) < nj for all j ∈ N, where (fNj ) is the sequence given by fN1 = 1
while for j ≥ 2,

fNj = max
{∑

i<j

%ini : %i ∈ N ∪ {0} (i < j),
∏

i<j

m%i
i < m3

j

}
.

Note that fNj is well defined because m1 > 1. It is easy to see that for
every P ∈ [N] there exists N ∈ [P ] which is M -good. The main result of
Section 5 is the following

Theorem 3.5. Suppose N = (ni) is M -good. Set N (2) = (n2i), F (2) =
(fN2i + 2) and a = (1/m2i). Then there exists a reflexive H.I. space X(N)
with the (6, N (2), F (2),a) distortion property.

The proof is given in Section 5. We now pass to the

Proof of Theorem 1.1. We first choose N0 ∈ [N] such that every N ∈ [N0]
is M -good. To see that such an N0 exists, set

D = {N ∈ [N] : N is M -good}.
We can easily verify thatD is closed in the topology of pointwise convergence
in [N], and therefore it is a Ramsey set. BecauseD∩[R] 6= ∅ for everyR ∈ [N],
the infinite Ramsey theorem yields N0 ∈ [N] such that [N0] ⊂ D, as claimed.

It is a well known fact that [N0] endowed with the topology of pointwise
convergence is a perfect Polish space. We let [N0]2 = [N0]× [N0] and set

G = {(N,R) ∈ [N0]2 : N = (ni), R = (ri),∀i0 ∈ N, ∃i > j > i0 : n2i = r2j}.
A straightforward application of the Baire category theorem shows that G
is a dense Gδ subset of [N0]× [N0]. We recall here a special case of a result
of Kuratowski [17] and Mycielski [21] (cf. [16], p. 129, Theorem 19.1, or
Proposition 3.6 of [13]) which asserts that for a perfect Polish space K and
a dense Gδ subset G of K ×K, there exists a subset C of K homeomorphic
to the Cantor set and such that C × C \∆ ⊂ G (∆ stands for the diagonal
of K ×K).
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It follows from this result that there exists C ⊂ [N0] homeomorphic
to the Cantor set such that (N1, N2) ∈ G whenever N1, N2 are distinct
elements of C.

We can now apply Theorem 3.5 to obtain a family {X(N) : N ∈ C} of re-
flexive H.I. spaces such that for every N ∈ C, X(N) has the (6, N (2), F (2),a)
distortion property, where N (2), F (2) and a are as in the statement of The-
orem 3.5. Since (N1, N2) ∈ G whenever N1 and N2 are distinct elements of
C, Proposition 3.3 implies that X(N1) and X(N2) are totally incomparable.
The proof of the theorem is now complete.

To construct H.I. spaces we shall make use of the following

Theorem 3.6. Let X be a Banach space with a basis (xi). Let (nj), (kj)
be increasing sequences of positive integers such that kj < nj for all j ∈ N,
and let (δj) be a null sequence of positive scalars. Assume that there exist
absolute positive constants c1, c2, c3 such that for every block subspace Y of
X and every j ∈ N there exists a block basis z1 < . . . < zp of (xi) in Y such
that letting ti = min supp zi, i ≤ p, the following are satisfied :

(1) {ti : i ≤ p} is a maximal Snj set and

∥∥∥
p∑

i=1

aizi

∥∥∥ ≥ c1δj

∥∥∥
p∑

i=1

aieti

∥∥∥
nj

for every sequence (ai)
p
i=1 in R+.

(2) For every sequence (ai)
p
i=1 in R with

∑p
i=1 |ai| ≤ 1,

∥∥∥
p∑

i=1

aizi

∥∥∥ ≤ c2

∥∥∥
p∑

i=1

aieti

∥∥∥
Ckj

+ c3δ
2
j .

Then X has no infinite unconditional sequence. If moreover , given block
subspaces Y , Z of X and j ∈ N, such a block basis (zi)

p
i=1 can be found with

the additional property that zi ∈ Y if i is odd , while zi ∈ Z if i is even, then
X is H.I.

Proof. Let (ui), (vi) be infinite block bases of (xi), and denote by U and
V the block subspaces they generate respectively. Let j ∈ N. Set P = {pi :
i ∈ N} and Q = {qi : i ∈ N}, where pi = min suppui and qi = min supp vi.
According to the comments following the definition of the repeated averages
hierarchy in Section 2, we can find i0 ∈ N so that if L ∈ [P ∪ Q] and
minL ≥ min{pi0 , qi0}, then ‖[nj ]L1 ‖kj < δ2

j . Let Y = [ui : i ≥ i0] and
Z = [vi : i ≥ i0].

Choose z1 < . . . < zp with zi ∈ Y when i is odd, while zi ∈ Z when i is
even, according to the hypothesis. There exists L ∈ [P ∪ Q] with minL ≥
min{pi0 , qi0} such that {ti : i ≤ p} = supp[nj ]L1 . Put ai = [nj ]L1 (ti) for i ≤ p,
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and note that (ai)
p
i=1 is non-increasing. We now have

∥∥∥
p∑

i=1

aizi

∥∥∥ ≥ c1δj

∥∥∥
p∑

i=1

aieti

∥∥∥
nj

= c1δj .

On the other hand,
∥∥∥

p∑

i=1

(−1)iaizi
∥∥∥ ≤ c2

∥∥∥
p∑

i=1

aieti

∥∥∥
kj

+ c3δ
2
j ,

as (ai)
p
i=1 is non-increasing (see the fact mentioned at the end of Section 2).

Hence,
∥∥∥

p∑

i=1

(−1)iaizi
∥∥∥ ≤ (c2 + c3)δ2

j ≤
c2 + c3

c1
δj

∥∥∥
p∑

i=1

aizi

∥∥∥.

Set y =
∑

i odd aizi and z =
∑

i even aizi. We have shown that there exist
non-zero vectors y ∈ U and z ∈ V so that ‖y− z‖ ≤ ((c2 + c3)/c1)δj‖y+ z‖.
Since j was arbitrary, X is H.I. The proof of the “moreover” statement is
now complete. The proof of the first assertion is contained in the preceding
argument if we take U = V .

4. Mixed Tsirelson spaces. Let M be a set of finitely supported
signed measures on N which satisfies the following:

(1) e∗n ∈ M for all n ∈ N, where e∗n denotes the point mass at n.
(2) M is symmetric, i.e., if µ ∈M then −µ ∈ M,
(3) M is pointwise bounded, that is, µ({n}) ≤ 1 for every µ ∈ M,
(4)M is closed under restriction to initial segments, i.e., if µ ∈M, then

µ|{1, . . . , n} ∈ M.

Then one can define a norm ‖ · ‖M on c00 in the following manner:
∥∥∥
∞∑

i=1

aiei

∥∥∥
M

= sup
{ ∞∑

i=1

aiµ({i}) : µ ∈M
}

for every finitely supported scalar sequence (ai). Of course, (ei) is the natural
basis of c00. Letting XM denote the completion of (c00, ‖ · ‖M), we see that
(en) is a normalized, monotone basis for XM. If µ|J ∈ M for every µ ∈ M
and J ⊂ N, then (en) is 1-unconditional and bimonotone.

The main result of this section is

Theorem 4.1. Suppose N is M -good. There exists a set M of finitely
supported signed measures on N satisfying conditions (1)–(4) above and such
that :

(1) (en) is an 1-unconditional , shrinking , bimonotone basis for XM.
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(2) XM has the (6, N, P,a) distortion property , where P = (fNi +2) and
a = (1/mi).

We first give the construction of M and prove a number of lemmas
necessary for the proof of Theorem 4.1.

Construction of M. Given M = (mi), N = (ni) with N being M -good,
we construct a setM of signed measures on N in the following manner: Let

D = {(t1, . . . , t3n) : n ∈ N, t3i−2 ∈M (i < n), t3n−2 = 0,

t3i−1 ∈ [N]<∞ \ {∅}, t3i ∈ {−1, 1} (i ≤ n)}.
Given F ∈ D<∞, F 6= ∅, we let TF denote the set of all tuples of length
divisible by 3 which are initial segments of elements of F . We can partially
order the elements of TF by initial segment inclusion; thus TF becomes a
finite tree with terminal nodes precisely the members of F . Given α ∈ TF ,
every entry of α which belongs to M is called an M -entry of α. We shall
denote the last three entries of α by mα, Iα and εα respectively. In case
mα = mi for some i ∈ N, we set nα = ni. A rooted tree T = TF (a tree is
rooted if it has a unique root) is said to be appropriate provided the following
properties hold:

(1) If α ∈ T is terminal, then Iα = {pα} for some pα ∈ N.
(2) If α ∈ T is non-terminal, then (Iβ)β∈Dα is Snα-admissible (recall that

if mα = mj for some j ∈ N, then nα = nj) and Iα =
⋃
β∈Dα Iβ. Here Dα

stands for the set of immediate successors of α in T .

We set
G = {T : T is an appropriate tree}.

We make the convention that the empty tree belongs to G.

Notation. Let T ∈ G and α ∈ T .

(1) α− stands for the predecessor of α in T . In case α is the root of T
we put α− = ∅.

(2) |α| is the length of α. Thus, |α| = 3n if α = (t1, . . . , t3n). We define
o(T ) = max{|β| : β ∈ T }, the height of the tree T .

(3) m(α) =
∏
β<αmβ if |α| > 3, while m(α) = 1 if |α| = 3.

(4) n(α) =
∑

β<α nβ if |α| > 3, while n(α) = 0 if |α| = 3.

Given T ∈ G, set

µT =
∑

α∈maxT
m(α)−1ε(α)εαe∗pα ,

where maxT is the set of terminal nodes of T and Iα = {pα} for α ∈ max T .
We have also set ε(α) =

∏
β<α εα for α ∈ T . We make the convention

ε(α) = 1 if |α| = 3. We also set µ∅ = 0. Of course, µT is a finitely supported
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signed measure on N whose support is equal to Iα0 , where α0 is the root
of T . Observe that |µT ({n})| ≤ 1 for all n ∈ N.

We finally set M = {µT : T ∈ G}. Clearly, e∗n ∈ M as {(0, {n}, 1)} ∈ G.
We introduce some more notation in order to investigate properties of the
set M.

Notation. Let T ∈ G and let α0 denote its root.

(1) Given α ∈ T set Tα = {β \ α− : β ∈ T , α ≤ β}. Clearly, Tα ∈ G.
(2) We let w(T ) = 1 if |T | = 1. In case mα0 ∈M , we set w(T ) = mα0 .
(3) Let J ⊂ N. We let T |J denote the tree resulting from T by keeping

only those α ∈ T for which Iα ∩ J 6= ∅ and replacing Iα by Iα ∩ J . It is easy
to see that T |J ∈ G.

(4) We let −T denote the tree resulting from T by changing εα0 to −εα0 .
Clearly, −T ∈ G and moreover µ−T = −µT .

Remark 4.2. Let T ∈ G.

(1) If J ⊂ N, then µT |J = µT |J .
(2) If α ∈ T then m(α)ε(α)µT |Iα = µTα .

Remark 4.3. Suppose Ti ∈ G, i ≤ n. Let αi be the root of Ti. We shall
say that {Ti : i ≤ n} is Sξ-admissible, ξ < ω, if {Iαi : i ≤ n} is. We shall
also write T1 < . . . < Tn if Iα1 < . . . < Iαn . It is not hard to see, using the
second part of the preceding remark, that if T1 < . . . < Tn is Snj -admissible
then (

∑n
i=1 µTi)/mj ∈ M.

It follows by our preceding remarks thatM is pointwise bounded, sym-
metric and closed under restriction to subsets of N. Hence (en) is an 1-
unconditional, bimonotone basis for XM. It is not hard to check that XM
is isometric to T (1/mi, Sni)

∞
i=1. We also see from our preceding remarks

that if (xi)ki=1 is an Snj -admissible block basis of (en) then ‖∑k
i=1 xi‖ ≥

(1/mj)
∑k

i=1 ‖xi‖. Hence, (en) is a normalized basis for XM with property
(1/mj)-`

nj
1 for all j ∈ N. It follows that (en) is boundedly complete. Let

now ν be a w∗-cluster point of M. Using the reflexivity argument of [4]
(cf. also [30]), one finds that for every ε > 0 there exists k ∈ N such that
‖ν|[ei : i ≥ k]‖ < ε. It follows that (en) is shrinking and thus XM is re-
flexive.

Remark 4.4. Suppose (un) is a normalized block basis of (en) and u an
(ε, nj) average of (un). Then 1/mj ≤ ‖u‖ ≤ 1.

Lemma 4.5. Let T ∈ G. Let F be a subset of T consisting of pair-
wise incomparable nodes. Then {Iα : α ∈ F} is Sp-admissible, where p =
max{n(α) : α ∈ F}.

Proof. By induction on o(T ). If o(T ) = 3 the assertion is trivial. Assum-
ing it is true when o(T ) < 3k, k > 1, let T ∈ G have o(T ) = 3k. If |F | = 1
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there is nothing to prove. So assume |F | ≥ 2. Let α0 be the root of T and let
w(T ) = mi for some i ∈ N. We denote by D the set of immediate successors
of α0 in T . Given α ∈ D let Fα = {β ∈ F : α ≤ β}. Because o(Tα) ≤ 3k− 3
we can apply the induction hypothesis to Tα and the set {β \ α− : β ∈ Fα}
to deduce that the collection {Iβ : β ∈ Fα} is Sp1-admissible, where p1 =
max{n(β \ α−) : β ∈ Fα}. Since n(β \ α−) = n(β) − n(α) and n(α) = ni
whenever α ∈ D, we conclude that {Iβ : β ∈ Fα} is Sp−ni-admissible, for
every α ∈ D. But also {Iα : α ∈ D} is Sni-admissible, whence {Iα : α ∈ F}
is Sp-admissible.

To simplify our notation, we set fj = fNj . We make the following obser-
vation: Let T ∈ G and α ∈ T . Assume that m(α) < m3

j and all M -entries
of α− are smaller than mj . Then n(α) ≤ fj . Our next lemma will be crucial
for the proof of the main result.

Lemma 4.6 (Decomposition Lemma). Let T0 ∈ G. Let j ∈ N be such
that w(T0) < mj. Then there exist an Sfj -admissible subset G0 of G and a
scalar sequence (λT )T ∈G0 in [−1, 1] so that :

(1) µT0 =
∑
T ∈G0

λT µT .
(2) For each T ∈ G0, either w(T ) = 1 (thus µT = ±e∗T (p) for some

T (p) ∈ N), or w(T ) ≥ mj, or |λT | ≤ 1/m2
j .

Proof. Let B denote the set of all branches of T0 (a branch is a maximal
well ordered subset of T0). If w(T0) = 1 the assertion is trivial. So assume
that w(T0) = mi0 for some i0 < j. Given b ∈ B set

α1(b) = max{β ∈ b : m(β) < m2
j and if mi ∈ β− then i < j}.

Note that α1(b) is well defined and (mi0 , I, ε) < α1(b) since i0 < j ((mi0, I, ε)
being the root of T0).

Let us say that b ∈ B is of type 1 if α1(b) is terminal in T0. If b is not of
type 1 then it is of type 2 (resp. 3) if the last M -entry of α1(b) is greater than
or equal to (resp. smaller than) mj. We then denote by α2(b) the immediate
successor of α1(b) in b.

We let A1 = {α1(b) : b ∈ B of type 1}, A2 = {α1(b) : b ∈ B of type 2}
and A3 = {α2(b) : b ∈ B of type 3}. Observe that:

(1) If α ∈ A3 then all M -entries of α− are smaller than mj, m(α−) < m2
j ,

yet m2
j ≤ m(α) < m3

j .
(2) If α ∈ A2, then α is non-terminal, allM -entries in α− are smaller than

mj , the last M -entry of α is greater than or equal to mj and m(α) < m2
j .

(3) If α ∈ A1 then α is terminal, all M -entries in α− are smaller than
mj and m(α) < m2

j .
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It is not hard to check now that A =
⋃3
t=1At consists of pairwise incom-

parable nodes of T0 and hence {Iα : α ∈ A} consists of successive subsets
of N. Moreover, I =

⋃{Iα : α ∈ A}. Because m(α) < m3
j and all M -entries

of α− are smaller than mj whenever α ∈ A, we obtain n(α) ≤ fj for all
α ∈ A. Lemma 4.5 now shows that {Iα : α ∈ A} is Sfj -admissible. Finally,
we let G0 = {(T0)α : α ∈ A}. Since m(α)ε(α)µT0|Iα = µ(T0)α for all α ∈ T ,
we set λ(T0)α = 1/(m(α)ε(α)) for α ∈ A. We can easily verify that the
desired properties hold.

In what follows, we shall be using a variety of block bases of (en). The
support of each of them will always be taken with respect to (en).

Lemma 4.7. Let (un) be a normalized block basis of (en). Let j ∈ N,
j ≥ 2 and let u be a generic (ε, fj+1) average of (un) with ε < 1/(2mj). Let
i < j and let T1 < . . . < Tt in G be Sni-admissible. Then

∑t
k=1 µTk(u) ≤ 2.

In particular , µT (u) ≤ 2/w(T ) if w(T ) < mj.

Proof. Observe that (1/mj)
∑t

k=1 µTk ∈ M and hence
∑t

k=1 µTk(un)
≤ mj for all n ∈ N. Let P = (pn), where pn = min suppun. Set ξ =
fj + 1 and suppose that u =

∑∞
n=1 ξ

R
1 (pn)un for some R ∈ [P ]. Let E∗

denote the collection of the ranges of the µTk ’s, and D the collection of
those un’s whose support intersects at least one member of E∗. Put Ir =
{n ∈ N : un ∈ D(E∗, r)}, r = 1, 2 (see the notation introduced in Section 2).
BecauseD(E∗, 2) is 2Sni-admissible (see Remark 2.2) and ni ≤ fj , we obtain∑t

k=1 µTk(
∑

n∈I2 ξ
R
1 (pn)un) ≤ mj2ε. On the other hand we clearly have∑t

k=1 µTk(
∑

n∈I1 ξ
R
1 (pn)un) ≤ 1. Thus,

∑t
k=1 µTk(u) ≤ 2.

Lemma 4.8. Let (un) be a normalized block basis of (en). Let ε > 0 and
j ∈ N. Then there exists a smoothly normalized (Definition 2.1) (ε, fj + 1)
average of (un).

Proof. Let P = (pn), where pn = min suppun for n ∈ N. We can assume
without loss of generality that ‖ξR1 ‖ξ−1 < ε for every R ∈ [P ], where ξ =
fj + 1. We are going to show that there exists a normalized block basis of
(un) admitting a generic (ε, ξ) average of norm at least 1/2. Suppose this
were false. Then it is easy to construct, for every 1 ≤ r ≤ lj , a block basis
(uri ) of (ui) so that letting pri = min suppuri and Pr = (pri ) the following are
satisfied:

(1) (uri ) is a block basis of (ur−1
i ) (u0

i = ui).

(2) uri =
∑∞

n=1 ξ
Pr−1
i (pr−1

n )ur−1
n /‖ur−1

n ‖ for all i ∈ N (p0
n = pn).

(3) ‖uri ‖ < 1/2 for all i ∈ N.
(4) For every i ∈ N, if uri =

∑
n∈F ri anun with an > 0 for n ∈ F ri , then∑

n∈F ri an ≥ 2r−1 and (un)n∈F ri is Sξr-admissible.
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The construction is easily done by induction. Taking r = lj we see from
(3) that ‖ulji ‖ < 1/2. On the other hand, (4) implies that ‖ulji ‖ ≥ 2lj−1/mj

as ξlj < nj . Thus, mj > 2lj , contradicting the choice of lj .

Our next lemma implies that XM has the (6, N, F,a) distortion property
where F = (fi + 2) and a = (1/mi).

Lemma 4.9. Let (uj) be a normalized block basis of (ej). Suppose that
(yj) is a block basis of (uj) so that yj is a smoothly normalized (εj, fj + 1)
average of (uj) with εj < 1/(2mj) (Definition 2.1). Given j0 ∈ N and
J0 ∈ [N], there exists J ∈ [J0] such that j0 < minJ and for every T ∈ G,
DT = {yj : j ∈ J, |µT (yj)| ≥ 5/mj0} is Sfj0+1-admissible.

Proof. Note first that Lemma 4.8 guarantees the existence of the block
basis (yj). Let P = (pj)j∈J0 , where pj = min supp yj . By passing to a sub-
sequence of (yj)j∈J0 if necessary, we can assume that the union of any four
Sfj0 subsets of P belongs to Sfj0+1. Choose J = (ji) ∈ [J0] such that
j0 < j1 and ‖yji‖`1 < mji+1/mji for every i ≥ 2 (if v =

∑n
i=1 aiei, then

‖v‖`1 =
∑n

i=1 |ai|).
Let T0 ∈ G. Suppose first that w(T0) ≥ mj0 . We show that in this case

|DT0| ≤ 1. Indeed, suppose first that w(T0) < mj1 . Lemma 4.7 shows that
|µT0(yj)| ≤ 4/mj0 for all j ∈ J , whence DT0 = ∅.

If w(T0) ≥ mj1 choose s ≥ 2 so that mjs−1 ≤ w(T0) < mjs . Observe that
if 1 ≤ i < s− 1 then

|µT0(yji)| ≤
1

w(T0)
· ‖yji‖`1 <

1
w(T0)

· mjs−1

mji

<
1
mj0

.

When i ≥ s, Lemma 4.7 yields |µT0(yji)| ≤ 4/w(T0) < 4/mj0 . Hence DT0 ⊂
{yjs−1} and so our claim holds.

The final case to consider is that of w(T0) < mj0 . Clearly, DT0 = ∅
if w(T0) = 1. We employ the decomposition Lemma 4.6 to find an Sfj0 -
admissible subset G0 of G and scalars (λT )T ∈G0 satisfying the conclusion of
Lemma 4.6. Let E∗ denote the collection of the ranges of the µT ’s (T ∈ G0).
Our previous work combined with Remark 2.2 implies that DT0(E∗, 1) is
2Sfj0 -admissible. But also DT0(E∗, 2) is 2Sfj0 -admissible (again by Remark
2.2) since G0 is Sfj0 -admissible. It follows that DT0 is Sfj0+1-admissible.

Proof of Theorem 4.1. Let (un) be a normalized block basis of (en).
Let j0 ∈ N and choose a block basis (yj)j∈J of (un) satisfying the con-
clusion of Lemma 4.9. Set ξ = fj0 + 2. We claim that if (zn) is a subse-
quence of (yj)j∈J which is a δ-`ξ1 spreading model, then δ ≤ 5/mj0 . In-
deed, let pn = min supp zn and P = (pn). According to Corollary 3.4 of
[2] (cf. also Corollary 3.3 of [12]), there exists Q = (qn) ∈ [P ] such that if
F ∈ Sξ ∩ [Q]<∞, then there exists G ∈ Sξ with F \ {minF} = (pn)n∈G.
Suppose that qn = pkn for all n ∈ N. It follows that if (qn)n∈H ∈ Sξ, then
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(kn)n∈H\{minH} ∈ Sξ. We deduce that if (zkn)n∈H is Sξ-admissible, then
(kn)n∈H\{minH} ∈ Sξ and thus ‖∑n∈H anzkn‖ ≥ δ(1 − ε) − ε for every
choice of non-negative scalars (an)n∈H such that an < ε for all n ∈ H and∑

n∈H an = 1.
Let now u =

∑
n∈H anzkn be a generic (ε, ξ) average of (zkn). Then

(zkn)n∈H is Sξ-admissible and thus our previous discussion yields ‖u‖ ≥
δ(1− ε)− ε. On the other hand, Lemma 4.9 implies that ‖u‖ ≤ 5/mj0 + ε,
since fj0 +1 < ξ. Our estimates now yield δ ≤ 5/mj0 , as ε > 0 was arbitrary.
We conclude that τ((un), 6/mj0) < fj0 + 2, as desired.

Terminology. Let j0 and (yj)j∈J be chosen as in the proof of Lemma
4.9. Every normalized (ε, nj0) average u of (uj)∞j=1 of the form u = v/‖v‖,
where v is a generic (ε, nj0) average of (yj)j∈J , will be called a normalized
(ε, nj0) average of (uj)∞j=1 resulting from Lemma 4.9. Note that Lemmas
4.8 and 4.9 guarantee the existence of such averages for every block basis
(uj)∞j=1.

Corollary 4.10. Let j0 and (yj)j∈J be chosen as in the proof of Lemma
4.9. Then for every T0 ∈ G with w(T0) 6= mj0 , the block basis QT0 =
{yj : j ∈ J, |µT0(yj)| ≥ 5/(mj0me)} is Sfj0+1-admissible, where me =
min{mj0 , w(T0)}.

Proof. We may assume that w(T0) > 1 or else the assertion is trivial.
Suppose first that w(T0) > mj0 . Because m2

i < mi+1, the argument in the
proof of Lemma 4.9 shows that |QT0 | ≤ 1.

When w(T0) < mj0 , we apply the decomposition Lemma 4.6 to find an
Sfj0 -admissible subset G0 of G and scalars (λT )T ∈G0 satisfying the conclusion
of Lemma 4.6. Note that if T ∈ G0 then |λT | ≤ 1/w(T0). Let E∗ denote the
collection of the ranges of the µT ’s (T ∈ G0). Let yj ∈ QT0(E∗, 1). Then
there exists a unique Tj ∈ G0 such that |λTjµTj (yj)| ≥ 5/(mj0w(T0)). Since
w(T0) < mj0 , we must have w(Tj) ≥ mj0 and thus |µTj (yj)| ≥ 5/mj0 . Hence,
yj ∈ DTj (see the notation in Lemma 4.9). Because |DTj | ≤ 1, by the proof
of Lemma 4.9, we get DTj = {yj}.

We now define a map φ:QT0(E∗, 1)→ {T ∈ G0 : w(T ) ≥ mj0} by setting
φ(yj) = Tj . Then φ is injective as DTj = {yj}. It follows that QT0(E∗, 1)
is 2Sfj0 -admissible since G0 is Sfj0 -admissible. But also QT0(E∗, 2) is 2Sfj0 -
admissible and hence QT0 is Sfj0+1-admissible.

Corollary 4.11. Let u be a normalized (ε, nj0) average of (uj)∞j=1 re-
sulting from Lemma 4.9 with ε ≤ 1/(12m2

j0
). Let G0 be an Sni-admissible

subset of G, for some i < j0, such that mj0 6∈ {w(T ) : T ∈ G0}. Then
|∑T ∈G0

µT (u)| ≤ 7/me, where me = min{w(T ) : w(T ) > 1, T ∈ G0} ∪
{mj0}.
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Proof. Set ξ = nj0 . Let pj = min supp yj for j ∈ J and P = {pj : j ∈ J}.
There exists R ∈ [P ] so that u = v/‖v‖, where v =

∑
j∈J ξ

R
1 (pj)yj and

‖ξR1 ‖nj0−1 < ε. Note that ‖v‖ ≥ 1/mj0 .
Suppose first that w(T ) > 1 for all T ∈ G0. Let Q = {yj : j ∈ J,

|∑T ∈G0
µT (yj)| ≥ 5/(mj0me)}. Let E∗ denote the collection of the ranges

of the µT ’s (T ∈ G0). Applying Corollary 4.10 and taking into account Re-
mark 2.2, we find that Q(E∗, 1) is 2Sfj0+1+ni-admissible. But also Q(E∗, 2)
is 2Sni-admissible. Since ni < fj0 we deduce that Q is 3S2fj0+1-admissible.
The assertion now follows from Lemma 4.7 and the fact that 2fj0 + 1
< nj0 .

Next suppose that w(T ) = 1 for all T ∈ G0. It is easy to see, using Lemma
4.7, that in this case one obtains the estimate |∑T ∈G0

µT (u)| ≤ 1/mj0 . The
result now follows by combining the previously discussed cases.

5. Hereditarily indecomposable spaces. This section is devoted to
the proof of Theorem 3.5. Recall that X is H.I. if and only if, for every pair
of subspaces Y , Z of X and every ε > 0, there exist non-zero vectors y ∈ Y
and z ∈ Z so that ‖y − z‖ ≤ ε‖y + z‖.

Let M = (mi) ∈ [N] and let N = (ni) ∈ [N] be M -good. Let M be
the set of measures constructed in the previous section by using the sets
M and N . We shall choose N ⊂ M so that the resulting space XN is a
reflexive H.I. space satisfying the conclusion of Theorem 3.5. We can find
an injection

σ: {(T1 < . . . < Tn) : n ∈ N, Ti ∈ G (i ≤ n)} → {m2j : j ∈ N}
so that σ(T1, . . . , Tn) > w(Ti) for all i ≤ n.

Definition 5.1. (1) An Sn2j+1-admissible sequence T1 < . . . < Tn in G is
said to be Sn2j+1-dependent , j ≥ 0, if w(T1) = m2j1 for some j1 > (2j + 1)/2,
and σ(T1, . . . , Ti−1) = w(Ti) for all 2 ≤ i ≤ n.

(2) Let T1 < . . . < Tn in G, j ≥ 0 and G0 ⊂ G. We shall say that
T1 < . . . < Tn admits an Sn2j+1-dependent extension in G0 if there exist
l ∈ N, k ∈ N ∪ {0} and an Sn2j+1-dependent sequence R1 < . . . < Rn+k in
G0 so that Rk+i|[l,∞) = Ti for all i ≤ n.

(3) A subset G0 of G is said to be self-dependent if the following condition
is satisfied for every T ∈ G0: Let α ∈ T be such that mα = m2j+1 for some
j ≥ 0. Let Dα denote the set of immediate successors of α in T . Then
{Tβ : β ∈ Dα} admits an Sn2j+1-dependent extension in G0.

Definition 5.2. We let D denote the union of all non-empty, self-depen-
dent, symmetric subsets of G closed under restriction to intervals. Recall that
G0 ⊂ G is symmetric if −T ∈ G0 whenever T ∈ G0. Moreover, G0 is closed
under interval restrictions if T |J ∈ G0 whenever T ∈ G0 and J is an interval.
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Of course D is a maximal, under inclusion, subset of G with respect to
the aforementioned properties. Set N = {µT : T ∈ D}. We will show that
XN is H.I.

Remark 5.3. The maximality of D implies the following:

(1) e∗n ∈ N for all n ∈ N.
(2) If T ∈ D, then Tα ∈ D for all α ∈ T and so the decomposition

Lemma 4.6 holds for D.
(3) If T1 < . . . < Tk in D is Sn2i-admissible and i ∈ N, then (µT1 + . . .

+ µTk)/m2i ∈ N .
(4) If T1 < . . . < Tk in D is Sn2i+1-dependent and i ∈ N, then (µT1 + . . .

+ µTk)/m2i+1 ∈ N .
(5) Because of (3), all the results obtained in the previous section about

(ε, ξ) averages in XM, where ξ is either nj or fj + 1 for some j ∈ N, still
hold in XN provided j is even.

Note that XN is reflexive by the same argument that showed XM was
reflexive. Thus (ei) is a shrinking basis for XN .

Proof of Theorem 3.5. It follows from Theorem 4.1 and our preceding
remarks that XN has the (6, N (2), F (2),a) distortion property. We show
that XN is H.I. This is accomplished through Theorem 3.6. Let (un) and
(vn) be normalized block bases of (en) and let j ∈ N. Set P = (pn) and
Q = (qn), where pn = min suppun and qn = min supp vn for all n ∈ N. We
can assume that the union of any seven Sf2j+1 subsets of P ∪Q belongs to
Sf2j+1+1. Successive applications of Corollary 4.11 yield a normalized block
basis g1 < . . . < gp of (en), T1 < . . . < Tp in D, and integers j1 < . . . < jp
with 2j + 1 < j1, satisfying the following:

(1) gi is a normalized (1/(12m2
2ji), n2ji) average of (un) (resp. (vn)) re-

sulting from Lemma 4.9 when i is odd (resp. even).
(2) w(Ti) = m2ji , suppµTi ⊂ r(gi) and µTi(gi) > 1/2 for all i ≤ p (here

we used the fact that m1 > 7).
(3) σ(T1, . . . , Ti−1) = w(Ti) for all 2 ≤ i ≤ p.
(4) {gi : i ≤ p} is maximally Sn2j+1-admissible.

Put θi = µTi(gi)
−1, zi = θigi, and note that 1 ≤ θi < 2, i ≤ p. We show that

(zi)
p
i=1 satisfies conditions (1) and (2) of Theorem 3.6, with δj = 1/m2j+1,

“nj”= n2j+1 and kj = f2j+1 + 1. Condition (1) is immediate since T1 <
. . . < Tp is Sn2j+1-dependent. Condition (2) is achieved by establishing the
following

Claim. Given T ∈ D, there exist intervals J1 < . . . < Js in {1, . . . , p}
so that :
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(1) {zminJt : t ≤ s} is Sf2j+1+1-admissible.
(2) µT |{zi : i ∈ Jt} is constant for all t ≤ s.
(3) |µT (zi)| < 14/m2

2j+1 for all i 6∈ ⋃s
t=1 Jt.

To prove the claim suppose first that w(T ) > m2j+1. Corollary 4.11
shows that |µT (zi)| ≥ 14/m2

2j+1 for at most one i ≤ p, and thus the claim
holds in this case.

Next assume that w(T ) = m2j+1. Without loss of generality, there exist
an Sn2j+1-dependent sequence R1 < . . . < Rl in D and an interval J so that
µT = (1/m2j+1)

∑l
k=1 µRk |J . Let i0 be the largest i for which w(Ti) is an

element of {w(Rk) : k ≤ l}, and let i0 = 0 if no such i exists. The injectivity
of σ and Corollary 4.11 imply that if i0 ∈ {0, 1}, or if w(Ti0) = w(R1), then
|µT (zi)| < 14/m2

2j+1 for all i 6= i0.
If i0 > 1 and w(Ti0) 6= w(R1), then the injectivity of σ yields w(Ti0) =

w(Ri0) and Ti = Ri for i < i0. It now follows by Corollary 4.11 that
|µT (zi)| < 14/m2

2j+1 for all i > i0. We also observe that there exists i1 < i0
such that µT (zi) = 0 if i < i1, while µT (zi) = 1/m2j+1 if i1 < i < i0 − 1.
Concluding, there exist four intervals J1 < J2 < J3 < J4 in {1, . . . , p}, some
possibly empty, such that µT |{zi : i ∈ Jt} is constant for every t ≤ 4, while
|µT (zi)| < 14/m2

2j+1 for each i 6∈ ⋃4
t=1 Jt.

Finally, assume w(T ) < m2j+1. If w(T ) = 1, the claim trivially holds
since in that case |µT (zi)| < 14/m2

2j+1 for every i ≤ p. So suppose that
w(T ) > 1. Choose G0 ⊂ D Sf2j+1-admissible and scalars (λR)R∈G0 accord-
ing to the decomposition Lemma 4.6. By splitting the zi’s into two sets,
those whose support intersects at least two ranges of µR’s, and those whose
support intersects at most one, we deduce from our previous work and Re-
mark 2.2 that there exist intervals J1 < . . . < Js in {1, . . . , p} so that
{zminJt : t ≤ s} is 7Sf2j+1-admissible, µT |{zi : i ∈ Jt} is constant for all
t ≤ s, and |µT (zi)| < 14/m2

2j+1 for all i 6∈ ⋃s
t=1 Jt. Thus the claim holds

and the proof is complete.
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