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Hille–Yosida type theorems for local regularized
semigroups and local integrated semigroups

by

Sheng Wang Wang (Nanjing)

Abstract. Motivated by a great deal of interest recently in operators that may not
be densely defined, we deal with regularized semigroups and integrated semigroups that
are either not exponentially bounded or not defined on [0,∞) and generated by closed
operators which may not be densely defined. Some characterizations and related examples
are presented. Our results are extensions of the corresponding results produced by other
authors.

1. Introduction. Let X be a complex Banach space and let A be a
closed linear operator on X. Many physical problems may be modelled as a
first order abstract Cauchy problem:

(ACP, T )
{
u′(t) = Au(t), t ∈ [0, T ),

u(0) = x,

where 0 < T ≤ ∞. The first order abstract Cauchy problem (ACP,∞)
is well-posed if A is densely defined and generates a strongly continuous
semigroup. But the theory of strongly continuous semigroups does not apply
to the case when A is not densely defined. Examples of this situation appear
in population models. When A is densely defined, if it does not generate a
strongly continuous semigroup, then (ACP,∞) is still ill-posed. Examples
are the backwards heat equation, the Schrödinger equation on Lp, p 6= 2,
etc.

To deal with the ill-posed abstract Cauchy problem, two approaches have
been established and achieved great success. Davies and Pang [4] introduced
the concept of exponentially bounded C-semigroups (which is equivalent to
the concept of R-semigroups of exponential growth introduced by Da Prato
[3]). About the same time, Arendt [1] introduced the concept of integrated
semigroups (for the exponentially bounded case, see also [11]).

As regards the theory of strongly continuous semigroups and cosine op-
erator families and their applications, in addition to the monograph [6], the
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interested reader may consult the monographs [5] and [12]; for the theory
of regularized semigroups and integrated semigroups and their applications,
the monograph [8] is of importance.

The purpose of this paper is to present several Hille–Yosida type theo-
rems for local regularized semigroups and local integrated semigroups gen-
erated by closed operators which may not be densely defined, and consider
the local abstract Cauchy problems for two cases of the first order (see also
[8] and [10, Theorem 3.3], where the abstract Cauchy problem was system-
atically studied).

To simplify our statements, we will consider the following abstract
Cauchy problem in Sections 3 and 4:

(ACP, T ]
{
u′(t) = Au(t), t ∈ [0, T ],

u(0) = x,

where 0 < T < ∞ is given. As regards (ACP, T ) with 0 < T ≤ ∞, we will
make a remark at the end of Section 3.

The paper is organized as follows.
In Section 2, we introduce some basic concepts and properties for local

regularized semigroups; the corresponding concepts and properties for the
global case can be found in [8] and [10].

In Section 3, we concentrate on establishing several Hille–Yosida type
theorems for local regularized semigroups. Since we mainly consider the
local case generated by closed operators, a new approach, distinct from
the usual ones, is necessary. In particular, to reach our target, we have
to “split” the quasi-C-resolvent (Definition 3.1) of the generator into two
parts, where Arendt’s vector-valued version of Widder’s theorem for the
Laplace transform is applicable to the first part, and the second part vanishes
eventually (Theorem 3.2). When the generating operator is densely defined,
although the asymptotic C-resolvents introduced in [14] become efficient, in
our approach (Theorem 3.4) we do not have to assume that the range of C
is dense in X, which plays a crucial role in [14].

In Section 4, we deal with local integrated semigroups. Since we are able
to apply the approach of Section 3, the results (Theorem 4.2) produced in
this section are different from the corresponding ones established in [14, §4].

In the last Section 5, we present several examples to illustrate the appli-
cations of the theorems established in Sections 3 and 4.

Throughout, C is the complex plane; X is a complex Banach space;
B(X) is the algebra of all bounded linear operators on X; A is a closed
linear operator on X; C ∈ B(X) is always assumed to be injective. For
a linear operator S, D(S) and Im(S) are the domain and image of S, re-
spectively, while %(S) and σ(S) are the resolvent set and spectrum of S,
respectively.
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2. Basic concepts and properties. We start this section with the
following lemma.

Lemma 2.1 [1, Corollary 1.2]. Let M > 0, ω ≥ 0 and let γ : (0,∞)→ X
be a function. Then the following are equivalent :

(i) γ is infinitely differentiable and

‖(λ− ω)n+1γ(n)(λ)/n!‖ ≤M ∀λ > ω, n ∈ N ∪ {0}.
(ii) There exists a function F : [0,∞)→ X satisfying F (0) = 0 and

lim sup
h↓0

h−1‖F (t+ h)− F (t)‖ ≤Meωt ∀t ≥ 0,
(2.1)

γ(λ) = λ

∞�
0

e−λtF (t) dt ∀λ > ω.

Definition 2.2 [8, 10, 15]. Assume A is closed, C ∈ B(X) is injective
and k ∈ N∪ {0}. A local mild k-times integrated C-existence family for A is
a strongly continuous family {W (t)}t∈[0,T ] ⊆ B(X) of operators such that
for all x ∈ X and t ∈ [0, T ], � t0 W (s)x ds ∈ D(A) and

A

t�
0

W (s)x ds = W (t)x− tk

k!
Cx.

Definition 2.3 [10, 15]. Let A, C be as in Definition 2.2 and k ∈ N.
A strongly continuous family {W (t)}t∈[0,T ] ⊆ B(X) of operators is called a
local k-times integrated C-regularized semigroup if W (0) = 0 and

W (s)W (t)x =
1

(k − 1)!

[ s+t�
s

−
t�
0

]
(s+ t− r)k−1W (r)Cxdr

∀x ∈ X, 0 ≤ s, t, s+ t ≤ T.
A local 0-times integrated C-regularized semigroup is defined to be a local
C-regularized semigroup.

W (·) is said to be nondegenerate if W (t)x = 0, for all t ∈ [0, T ], implies
x = 0. A closed operator A is called a subgenerator of the nondegenerate
local k-times integrated C-regularized semigroup {W (t)}t∈[0,T ] if:

(a) W (t)A ⊆ AW (t) for all t ∈ [0, T ].
(b) {W (t)}t∈[0,T ] is a local mild k-times integrated C-existence family

for A.

The basic properties of nondegenerate local k-times integrated C-regula-
rized semigroups, appearing in the following proposition, are similar to the
well known properties of C-regularized semigroups (see [8], [10]).

Throughout, we will only consider the nondegenerate case and omit the
term nondegenerate for simplicity.
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Proposition 2.4. Let k ∈ N and let A be a subgenerator of the local
k-times integrated C-regularized semigroup {W (t)}t∈[0,T ]. Then:

(i) CA ⊆ AC.
(ii) For x ∈ X and t ∈ [0, T ], if W (t)x is differentiable then W (t)x ∈

D(A) and

(2.2) AW (t)x =
d

dt
[W (t)x]− tk−1

(k − 1)!
Cx.

(iii) If x ∈ D(A) then W (t)x is continuously differentiable on [0, T ] and

(2.3) W (t)Ax =
d

dt
[W (t)x]− tk−1

(k − 1)!
Cx.

(iv) All solutions of (ACP, T ] are unique.
(v) {W (t)}t∈[0,T ] is uniquely determined by one of its subgenerators.
(vi) Assume that {W (t)}t∈[0,T ] is Lipschitz continuous and A is densely

defined. Then W (t)x is continuously differentiable in t ∈ [0, T ] for every
x ∈ X. Define W0(t)x := (d/dt)W (t)x for every x ∈ X. Then {W0(t)}t∈[0,T ]

is a local (k− 1)-times C-regularized semigroup having A as a subgenerator.

Proof. (i) follows from W (t)A ⊆ AW (t) and

A

t�
0

W (s)Axds = W (t)Ax− tk

k!
CAx,

A

t�
0

W (s)Axds = A
[
A

t�
0

W (s)x ds
]

= AW (t)x− tk

k!
ACx ∀x ∈ D(A).

(ii) Differentiating both sides of

A

t�
0

W (s)x ds = W (t)x− tk

k!
Cx

in t yields (2.2).
(iii) follows from

t�
0

W (s)Axds = A

t�
0

W (s)x ds = W (t)x− tk

k!
Cx ∀x ∈ D(A).

(iv) is similar to [8, Theorem 3.5].
(v) is similar to [10, Proposition 2.9].
(vi) Let X0 be the set of all x ∈ X so that W (t)x is continuously dif-

ferentiable on [0, T ]. As in [1, p. 340] or [15, Lemma 5.1], we can show that
X0 is a closed subspace of X. Since D(A) ⊂ X0 from (iii), we have X0 = X
when A is densely defined. This gives (vi).
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The following lemma, which plays a crucial role in this paper, states
that a strongly continuous family of bounded operators defined on [0, T ] is
automatically a local k-times integrated semigroup if it satisfies (a) and (b)
of Definition 2.3. The global case can be found in [10, Theorem 3.3], [15,
Theorem 2.4] and [16, Theorem 2.4].

Lemma 2.5. Let A be closed , k ∈ N∪ {0} and let {W (t)}t∈[0,T ] ⊆ B(X)
be a strongly continuous family of operators. Then {W (t)}t∈[0,T ] is a local
k-times integrated C-regularized semigroup having A as a subgenerator if
and only if :

(i) W (t)A ⊆ AW (t) for all t ∈ [0, T ].
(ii) {W (t)}t∈[0,T ] is a local mild k-times integrated C-existence family

for A.

3. Hille–Yosida type theorems for local once integrated C-regu-
larized semigroups. In this section we present several Hille–Yosida type
theorems for local C-regularized semigroups and local once integrated C-
regularized semigroups, and consider the local abstract Cauchy problems.

Definition 3.1. Assume A is closed, C ∈ B(X) is injective and ω ∈ R.
A family {R(λ)}λ∈(ω,∞) is called a quasi-C-resolvent of A if:

(a) R(λ)x is infinitely differentiable in λ > ω for all x ∈ X.
(b) R(λ)A ⊆ AR(λ), R(λ)R(µ) = R(µ)R(λ) for all λ, µ > ω.
(c) R(λ)x ∈ D(A) and

(λ− A)R(λ)x = Cx+ λU(λ)x ∀x ∈ X, λ > ω,

where U(λ)x is infinitely differentiable in λ > ω for all x ∈ X and there
exists M > 0 such that∥∥∥∥

(
d

dλ

)n−1

U(λ)x
∥∥∥∥ ≤MTn−1e−λT ‖x‖

∀x ∈ X, λ > max{ω, n/T}, n ∈ N.
A quasi-C-resolvent of A will be simply written as R(·) in some cases.

Theorem 3.2. Assume A is closed and C ∈ B(X) is injective. Then A
is a subgenerator of a local once integrated C-regularized semigroup
{W (t)}t∈[0,T ] that is Lipschitz continuous if and only if :

(i) There exists a quasi-C-resolvent {R(λ)}λ>0 of A.
(ii) R(λ) is the sum of two B(X)-valued functions L(λ) and V (λ) such

that L(λ)x and V (λ)x are infinitely differentiable in λ > 0 for all x ∈ X
and there exists M > 0 such that

(3.1)
∥∥∥∥

λn

(n− 1)!

(
d

dλ

)n−1

L(λ)x
∥∥∥∥ ≤M‖x‖ ∀x ∈ X, λ > 0, n ∈ N,
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(3.2)
∥∥∥∥
(
d

dλ

)n−1

V (λ)x
∥∥∥∥ ≤MTn−1e−λT ‖x‖ ∀x ∈ X, λ > n/T , n ∈ N.

Here we assume that M is the same constant as in Definition 3.1.

Proof. Necessity. It is evident that the function

F (t) :=
{
W (t), t ∈ [0, T ],

W (T ), t ∈ (T,∞),

is Lipschitz continuous on [0,∞). Thus the function

L(λ)x := λ

∞�
0

e−λsF (s)x ds ∀λ > 0

is infinitely differentiable and satisfies (3.1) by Lemma 2.1. Define

R(λ)x := λ

T�
0

e−λsF (s)x ds ∀x ∈ X, λ > 0,

V (λ) := −e−λTF (T ) ∀λ > 0.

Then R(λ) = L(λ) +V (λ) and V (λ)x is infinitely differentiable in λ > 0 for
all x ∈ X. Since

(3.3)
∣∣∣∣
(
d

dλ

)n−1

e−λT
∣∣∣∣ = Tn−1e−λT ∀λ > 0,

V (·) satisfies (3.2). Moreover, from the definition of F (·) and R(·), we have
R(λ)A ⊆ AR(λ) for all λ > 0.

We now show that R(·) is a quasi-resolvent of A. (a) and (b) of Definition
3.1 are clearly true with ω = 0. To prove (c), we use integration by parts to
find

(λ− A)R(λ)x = (λ− A)λ
T�
0

e−λsW (s)x ds

= λ2
T�
0

e−λsW (s)x ds− λ
[
A

T�
0

e−λs d
s�
0

W (r)x dr
]

= λ2
T�
0

e−λsW (s)x ds− λe−λT [W (T )x− TCx]

− λ2
T�
0

e−λs[W (s)x− sCx] ds

= (1− e−λT )Cx− λe−λTW (T )x = Cx+ λU(λ)x,

where
U(λ) := −λ−1e−λTC − e−λTW (T ).
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For λ ≥ n/T , we have
∣∣∣∣
(
d

dλ

)n−1

[λ−1e−λT ]
∣∣∣∣ =

∣∣∣∣
n−1∑

k=0

(n− 1)!
k!

λ−(n−k)T ke−λT
∣∣∣∣(3.4)

≤ nλ−1Tn−1e−λT ≤ Tne−λT .
Here we used the fact that the terms in

∑n−1
k=0 are increasing for given

λ ≥ n/T as k increases from 0 to n − 1. Hence the value of
∑n−1
k=0 is no

more than n times the last term. Thus (3.4) is true. From (3.3) and (3.4),
U(·) satisfies the inequality in (c) of Definition 3.1 and R(·) is therefore a
quasi-C-resolvent of A.

Sufficiency. From (3.1) and Lemma 2.1 there exists F : [0,∞)→ B(X)
such that

F (0) = 0, ‖F (s+ h)− F (s)‖ ≤Mh ∀s, h ≥ 0,

L(λ)x = λ

∞�
0

e−λsF (s)x ds ∀λ > 0.

From (ii) of the present theorem and (c) of Definition 3.1, we have

A

[
R(λ)x
λ

]
= A

[∞�
0

e−λsF (s)x ds+ λ−1V (λ)x
]
,

A

[
R(λ)x
λ

]
= R(λ)x− λ−1Cx− U(λ)x

= λ

∞�
0

e−λsF (s)x ds− λ−1Cx− [U(λ)− V (λ)]x,

respectively. Therefore

(3.5) A
[∞�

0

e−λsF (s)x ds+ λ−1V (λ)x
]

= λ

∞�
0

e−λsF (s)x ds− λ−1Cx− [U(λ)− V (λ)]x.

Since A is closed, we can differentiate both sides n−1 times in λ and multiply
the resulting relation by (−1)n−1λn/(n− 1)! to find

(3.6) A
λn

(n− 1)!

[∞�
0

e−λssn−1F (s)x ds

+
n−1∑

k=0

(−1)k
(n− 1)!
k!

λ−(n−k)V (k)(λ)x
]
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= (−1)n−1 λn

(n− 1)!

(
d

dλ

)n−1[
λ

∞�
0

e−λsF (s)x ds
]

+ (−1)n
λn

(n− 1)!
[U (n−1)(λ)− V (n−1)(λ)]x− Cx.

For given t ∈ (0, T ), let v ∈ (0, t] and set λ = n/v, then define

I0,n(v) :=
n−1∑

k=0

(−1)k
1
k!

(
n

v

)k
V (k)

(
n

v

)
,

I1,n(v)x :=
1

(n− 1)!

(
n

v

)n∞�
0

e−(n/v)ssn−1F (s)x ds

=
nn

(n− 1)!

∞�
0

e−nµµn−1F (vµ)x dµ (s := vµ),

I2,n(v)x :=
(−1)n

(n− 1)!

(
n

v

)n(
d

dλ

)n−1[
λ

∞�
0

e−λsF (s)x ds
]
λ=n/v

,

I3,n(v)x :=
(−1)n

(n− 1)!

(
n

v

)n[
U (n−1)

(
n

v

)
− V (n−1)

(
n

v

)]
x

and define Ij,n(0) = 0 for j = 0, 1, 2, 3. From (3.2),

‖I0,n(v)x‖ ≤Me−nT/v
n−1∑

k=0

1
k!

(
nT

v

)k
‖x‖ ≤M nn

(n− 1)!

(
T

v

)n−1

e−nT/v‖x‖,

which, combined with I0,n(0) = 0, approaches zero uniformly for v ∈ [0, t]
as n→∞. Here we note that the terms in

∑n−1
k=0 are also increasing. Hence

(3.7) lim
n→∞

t�
0

I0,n(v) dv = 0.

Given 0 < ε < 1, with the help of the relations

nn

(n− 1)!

∞�
0

e−nµµn−1 dµ = 1,

lim
n→∞

nn

(n− 1)!

1−ε�
0

e−nµµn−1 dµ = 0,

lim
n→∞

nn

(n− 1)!

∞�
1+ε

e−nµµn−1 dµ = 0,

and the method applied in [12, p. 34], we find
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lim
n→∞

[I1,n(v)− F (v)]x

= lim
n→∞

nn

(n− 1)!

∞�
0

e−nµµn−1[F (vµ)− F (v)]x dµ = 0,

uniformly for v ∈ [0, t]. Here we recall that t ∈ (0, T ) and I1,n(0) = F (0) = 0.
Therefore

(3.8) lim
n→0

t�
0

I1,n(v)x dv =
t�
0

F (v)x dv.

To deal with I2,n(v)x, let x∗ ∈ X∗. Since F (·) is Lipschitz continuous on
the interval [0,∞), 〈F (s)x, x∗〉 is differentiable almost everywhere. Define
fx,x∗(s) := (d/ds)〈F (s)x, x∗〉. Using integration by parts, we have

t�
0

〈I2,n(v)x, x∗〉 dv =
nn

(n− 1)!

t�
0

∞�
0

e−(n/v)sv−nsn−1fx,x∗(s) ds dv

=
nn

(n− 1)!

t�
0

∞�
0

e−nµµn−1fx,x∗(vµ) dµ dv (s := vµ).

By an argument similar to one used in the proof of (3.8), we can show that

(3.9) lim
n→∞

t�
0

〈I2,n(v)x, x∗〉 dv =
t�
0

fx,x∗(v) dv = 〈F (t)x, x∗〉.

As regards I3,n(v)x, we have

‖I3,n(v)x‖ ≤ 1
(n− 1)!

(
n

v

)n[∥∥∥∥U (n−1)
(
n

v

)∥∥∥∥+
∥∥∥∥V (n−1)

(
n

v

)∥∥∥∥
]
‖x‖

≤ 2M
T
· nn

(n− 1)!

(
T

v

)n
e−n(T/v)‖x‖ → 0 as n→∞,

uniformly for v ∈ [0, t]. Here we also recall that t ∈ (0, T ) and I3,n(0) = 0.
Therefore

(3.10) lim
n→∞

t�
0

I3,n(v)x dv = 0.

Combining (3.7)–(3.10) shows that, for t ∈ [0, T ),

(3.11) A

t�
0

F (s)x ds = F (t)x− tCx ∀x ∈ X.

Since F (·) is continuous on [0, T ] and A is closed, (3.11) remains true for
t ∈ [0, T ].
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We now show that for every x ∈ D(A), F (t)x ∈ D(A) and AF (t)x =
F (t)Ax. From the hypotheses in (ii) we have

R(λ)Ax
λ

=
∞�
0

e−λsF (s)Axds+ λ−1V (λ)Ax.

Since R(λ)Ax = AR(λ)x, instead of (3.5), we have
∞�
0

e−λsF (s)Axds+ λ−1V (λ)Ax

= λ

∞�
0

e−λsF (s)x ds− λ−1Cx− [U(λ)− V (λ)]x.

Hence, instead of (3.6), we have

λn

(n− 1)!

[∞�
0

e−λsF (s)Axds+
n−1∑

k=0

(−1)k
(n− 1)!
k!

λ−(n−k)V (k)(λ)Ax
]

= (−1)n
λn

(n− 1)!

(
d

dλ

)n−1[
λ

∞�
0

e−λsF (s)x ds
]

+ (−1)n
λn

(n− 1)!
[U (n−1)(λ)− V (n−1)(λ)]x− Cx.

Then

I1,n(v)Ax =
nn

(n− 1)!

∞�
0

e−nµµn−1F (vµ)Axdµ,

and, instead of (3.8), the following holds:

lim
n→∞

t�
0

I1,n(v)Axdv =
t�
0

F (v)Axdv.

This, combined with (3.7), (3.9) and (3.10) where all x’s are assumed to be
in D(A), gives rise to

(3.12)
t�
0

F (s)Axds = F (t)x− Cx ∀x ∈ D(A), t ∈ [0, T ].

From (3.11) and (3.12),

A

t�
0

F (s)x ds =
t�
0

F (s)Axds.

A being closed, we can differentiate both sides in t to find AF (t)x = F (t)Ax.
Set W (t) := F (t). From Lemma 2.5, {W (t)}t∈[0,T ] is a local once integrated
C-regularized semigroup having A as a subgenerator.
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It is worthwhile to mention that, instead of (3.9), we can show that the
following is true in the strong operator topology:

lim
n→∞

t�
0

I2,n(v)x dv = F (t)x ∀x ∈ X.

The details are omitted.
The following definition can be found in [14, Definition 2].

Definition 3.3. Assume A is closed, C ∈ B(X) is injective and ω ∈ R.
A family {L(λ)}λ>ω ⊆ B(X) is called an asymptotic C-resolvent of A if:

(a) L(λ)x is infinitely differentiable in λ > ω for all x ∈ X.
(b) L(λ)A ⊆ AL(λ), L(λ)L(µ) = L(µ)L(λ) for all λ, µ > ω.
(c) L(λ)x ∈ D(A) and

(λ− A)L(λ)x = Cx+ Ũ(λ)x ∀x ∈ X, λ > ω,

where Ũ(λ)x is infinitely differentiable in λ > ω for all x ∈ X and there
exists M > 0 such that
∥∥∥∥
(
d

dλ

)n−1

Ũ(λ)x
∥∥∥∥ ≤MTn−1e−λT ‖x‖

∀x ∈ X, λ > max{ω, n/T}, n ∈ N.
The following theorem deals with the case where A is closed and densely

defined. As indicated in Section 1, in our approach, it is not necessary to
assume that Im(C) is dense in X. This is more general than the Hille–Yosida
type theorem appearing in [14, Theorem 2.1].

Theorem 3.4. Assume that A is closed and densely defined , and C ∈
B(X) is injective. Then A is a subgenerator of a local C-regularized semi-
group {W0(t)}t∈[0,T ] if and only if there exists an asymptotic C-resolvent
{L(λ)}λ>0 of A satisfying (3.1) of Theorem 3.2.

Proof. Necessity. Let {W0(t)}t∈[0,T ] be a local C-regularized semigroup
having A as a subgenerator. Define

(3.13) L(λ)x :=
T�
0

e−λsW0(s)x ds ∀x ∈ X, λ > 0.

By the argument applied in [14, Proposition 2.1], we can show that (3.1) is
true and L(·) is an asymptotic C-resolvent of A.

Sufficiency. Let F : [0,∞)→ B(X) satisfy

(3.14)

F (0) = 0, ‖F (s+ h)− F (s)‖ ≤Mh ∀s, h > 0,

L(λ)x := λ

∞�
0

e−λsF (s)x ds.
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From Definition 3.3,

A

∞�
0

e−λsF (s)x ds = λ

∞�
0

e−λsF (s)x ds− λ−1Cx− λ−1Ũ(λ)x ∀λ > 0.

Repeating the argument of Theorem 3.2 we find that � t0 F (s)x ds ∈ D(A)
and

A

t�
0

F (s)x ds = F (t)x− tCx ∀x ∈ X, t ∈ [0, T ],

and that F (t)A ⊆ AF (t). Set W (t) := F (t) for t ∈ [0, T ]. Then {W (t)}t∈[0,T ]
is a local once integrated C-regularized semigroup having A as a subgen-
erator. Since A is densely defined, from Proposition 2.4(vi), W0(t)x :=
(d/dt)W (t)x is a local C-regularized semigroup having A as a subgener-
ator.

Remarks 3.5. (i) We now show that the asymptotic C-resolvent ap-
pearing in (3.13) is consistent with that in (3.14). In fact, integrate the
right-hand side of (3.13) by parts to find

L(λ)x = λ

T�
0

e−λt
t�
0

W0(s)x ds dt+ e−λT
T�
0

W0(s)x ds.

If we define

F (t)x :=

{ � t0 W0(s)x ds, t ∈ [0, T ],

� T0 W0(s)x ds, t ∈ (T,∞),

then

L(λ)x = λ

∞�
0

e−λtF (t)x dt,

which is given in (3.14).
(ii) It is also clear that in Theorem 3.2, if A is densely defined, the

operator L(λ) defined there coincides with that in Theorem 3.4, hence L(λ),
in both Theorems 3.2 and 3.4, is different from R(λ) in Theorem 3.2, that
is, a quasi-C-resolvent is different from an asymptotic C-resolvent.

(iii) As regards the local once integrated C-regularized semigroups de-
fined on [0, T ), instead of Theorem 3.2, we have

Theorem 3.6. A is a subgenerator of a local once integrated C-regula-
rized semigroup {W (t)}t∈[0,T ) that is locally Lipschitz continuous if and only
if :

(i) For every τ ∈ (0, T ) there exists a quasi-C-resolvent {Rτ (λ)}λ>0

of A.
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(ii) Rτ (λ) is the sum of two B(X)-valued functions Lτ (λ) and Vτ (λ)
such that Lτ (λ)x and Vτ (λ)x are infinitely differentiable in λ > 0 for all
x ∈ X and there exists Mτ > 0 such that Lτ (λ) and Vτ (λ) satisfy (3.1) and
(3.2) with M replaced by Mτ and T in (3.2) replaced by τ , respectively.

Proof. Necessity. Instead of the operator-valued functions defined in the
proof of Theorem 3.2, we now define, for given τ ∈ (0, T ),

Fτ (t) :=
{
W (t), t ∈ [0, τ ],
W (τ), t ∈ (τ,∞),

and, for all λ > 0,

Lτ (λ)x := λ

∞�
0

e−λsFτ (s)x ds, Vτ (λ) := − e−λτFτ (τ),

Rτ (λ)x := λ

τ�
0

Fτ (s)x ds, Uτ (λ) := − 1
λ
e−λτC − e−λτW (τ).

Using the proof of the necessity of Theorem 3.2 we can show that (i) and
(ii) of the present theorem are true.

Sufficiency. For given τ ∈ (0, T ), from Lemma 2.1 there exists Fτ :
[0,∞)→ B(X) such that

Fτ (0) = 0, ‖Fτ (s+ h)− Fτ (s)‖ ≤Mτh ∀s, h > 0.

Using the proof of the sufficiency of Theorem 3.2, we can show that
{Fτ (t)}t∈[0,τ ] is a local once integrated C-regularized semigroup having A
as a subgenerator by Lemma 2.5.

From Proposition 2.4(v), for 0 < τ < τ ′ < T , we have Fτ (t) = Fτ ′(t)
whenever 0 ≤ t ≤ min{τ, τ ′}, that is, Fτ (t) is independent of τ whenever
t ∈ [0, τ ]. This enables us to define

W (t) := Fτ (t) ∀t ∈ [0, T ),

where τ is chosen so that t ≤ τ < T . Then {W (t)}t∈[0,T ) is a local once
integrated C-regularized semigroup having A as a subgenerator.

In the following we deal with the local abstract Cauchy problems (ACP, T ]
and (ACP, T ) with 0 < T <∞ and 0 < T ≤ ∞, respectively.

Definition 3.7 [5]. A solution of (ACP, T ] is defined to be a function
u(·, x) ∈ C1([0, T ],X) satisfying (ACP, T ].

A mild solution of (ACP, T ] is a function u(·, x) ∈ C([0, T ],X) such that
v(t, x) := � t0 u(s, x) ds ∈ D(A) and
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v′(t, x) = Av(t, x) + x ∀t ∈ [0, T ].

The definitions of solutions and mild solutions of (ACP, T ) are similar.

Theorem 3.8. Assume A is closed , C ∈ B(X) is injective and CA ⊆
AC. Then the following are equivalent :

(i) A is a subgenerator of a local C-regularized semigroup on [0, T ]
(resp. on [0, T )).

(ii) (ACP, T ] (resp. (ACP, T )) has a unique mild solution for all x ∈
Im(C).

(iii) All solutions of (ACP, T ] (resp. (ACP, T )) are unique and there is
a local mild C-existence family {W (t)}t∈[0,T ] (resp. {W (t)}t∈[0,T )) for A.

(iv) There exists a local mild C-existence family {W (t)}t∈[0,T ] (resp.
{W (t)}t∈[0,T )) for A such that W (t)A ⊆ AW (t) for all t ∈ [0, T ] (resp.
t ∈ [0, T )).

If , in addition, %(A) is nonempty , then (i)–(iv) are equivalent to

(v) (ACP, T ] (resp. (ACP, T )) has a unique solution for all x ∈ C(D(A)).

The proof of this theorem is almost the same as those of [8, Theorem
4.15] and [10, Theorem 3.3].

4. Local integrated semigroups. In this section we deal with local
integrated semigroups.

Definition 4.1 [14]. Let k ∈ N ∪ {0}, 0 < T < ∞. A strongly contin-
uous family {S(t)}t∈[0,T ] ⊆ B(X) of operators is a local k-times integrated
semigroup if it is a local k-times integrated I-regularized semigroup (see
Definition 2.3).

The generator A of a nondegenerate {S(t)}t∈[0,T ] is defined by

D(A) :=
{
x ∈ X

∣∣∣∣ there exists y ∈ X such that
t�
0

S(s)y ds = S(t)x− tk

k!
x ∀t ∈ [0, T ]

}
,

Ax := y.

It is easily seen that y, if it exists, is uniquely determined by x in view
of the nondegeneracy of {S(t)}t∈[0,T ].

In the following we will only deal with nondegenerate local k-times in-
tegrated semigroups. From Definition 2.3, a local integrated semigroup may
also have subgenerators. But from [2, Proposition 3.1(d)], all subgenerators
are identical. Therefore in the theory of local integrated semigroups, only
generators have to be considered.
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From [2, Theorems 2.1, 2.2 and Proposition 2.3], there exists k ∈ N∪{0}
such that A generates a local k-times integrated semigroup if and only if:

(i) %(A) is nonempty and E(α, β) ⊆ %(A) for some α, β > 0, where

E(α, β) := {λ ∈ C | Reλ ≥ β, |Imλ| ≤ eαReλ}.

(ii) there exist l ∈ N and M > 0 such that

(4.1) ‖(λ− A)−1‖ ≤M(1 + |λ|)l ∀λ ∈ E(α, β).

When A generates a local k-times integrated semigroup, l in (ii) may be
chosen equal to k. Conversely, if (i) and (ii) are true, k should be greater
than l+1. Moreover, when A generates a local k-times integrated semigroup,
the domains of solutions of the local abstract Cauchy problem are different
from the domains of solutions when (i) and (ii) are true. Therefore [2, The-
orems 2.1, 2.2 and Proposition 2.3] are far from an equivalence. Thus it is
still necessary to establish a Hille–Yosida type theorem for local integrated
semigroups. Such a theorem was given in [14, Theorem 4.7] under the as-
sumption that the generators were densely defined. In the following, we will
present another Hille–Yosida type theorem without assuming the generators
to be densely defined. We can also see that, by using Lemma 2.5, the proof
of the equivalence of (i) and (iii) of the following theorem is straightforward.

Theorem 4.2. Assume that A is closed and k ∈ N ∪ {0}. Then the
following are equivalent :

(i) A is the generator of a local (k + 1)-times integrated semigroup
{S(t)}t∈[0,T ] that is Lipschitz continuous.

(ii) %(A) is nonempty and A generates a local R(λ0, A)k+1-regularized
semigroup {W (t)}t∈[0,T ] that is Lipschitz continuous, where λ0 ∈ %(A).

(iii) There exist α, β > 0 such that E(α, β) ⊆ %(A) and for λ > β,
R(λ,A)/λk is the sum of two B(X)-valued functions L(λ) and V (λ) such
that for all x ∈ X, L(λ)x and V (λ)x are infinitely differentiable in λ > β.
Moreover , there exists M > 0 such that

(4.2)
∥∥∥∥

λn

(n− 1)!

(
d

dλ

)n−1

L(λ)x
∥∥∥∥ ≤M‖x‖ ∀x ∈ X, λ > β, n ∈ N.

For every t0 ∈ (0, T ), there exists Mt0 > 0 such that

(4.3)
∥∥∥∥
(
d

dλ

)n−1

V (λ)x
∥∥∥∥ ≤Mt0t

n−1
0 e−λt0‖x‖

∀x ∈ X, λ > max{β, n/t0}, n ∈ N.
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When (i)–(iii) are true, we have

W (t)x =
(
d

dt

)k+1

S(t)(λ0 − A)k+1x,

S(t)x = (λ0 − A)k+1
t�
0

(t− s)k
k!

W (s)x ds ∀t ∈ [0, T ], x ∈ X.

Proof. (i)⇒(ii). From [2, Theorem 2.1], %(A) is nonempty. Fix λ ∈ %(A).
As in [8, Theorem 18.3], we define

(4.4) W (t)x :=
(
d

dt

)k+1

S(t)R(λ0, A)k+1x ∀x ∈ X, t ∈ [0, T ].

By using (4.4) and

d

dt
S(t)R(λ0, A)k+1x = S(t)AR(λ0, A)k+1x+

tk

k!
R(λ0, A)k+1x ∀x ∈ X,

an induction argument shows that

W (t)x = S(t)Ak+1R(λ0, A)k+1x+
k∑

j=0

tj

j!
AjR(λ0, A)k+1x.

This implies that {W (t)}t∈[0,T ] is Lipschitz continuous and W (t)A⊆AW (t).
From

A

t�
0

W (s)x ds = A

t�
0

S(s)Ak+1R(λ0, A)k+1x ds+
k+1∑

j=1

tj

j!
AjR(λ0, A)k+1x

= S(t)Ak+1R(λ0, A)k+1x− tk

(k + 1)!
Ak+1R(λ0, A)k+1x

+
k+1∑

j=1

tj

j!
AjR(λ0, A)k+1x

= W (t)x−R(λ0, A)k+1 x

and Lemma 2.5, {W (t)}t∈[0,T ] is a local R(λ0, A)k+1-regularized semigroup.
From (λ0 −A)k+1AR(λ0, A)k+1 = A and [10, Proposition 2.9], we conclude
that A is the generator of {W (t)}t∈[0,T ].

(ii)⇒(i). Define (see [8, Theorem 18.3])

S(t)x := (λ0 − A)k+1
t�
0

(t− s)k
k!

W (s)x ds.

Integrate the right-hand side by parts to find
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(4.5) S(t)x = (λ0 −A)k+1
t�
0

(t− s)k−1

(k − 1)!

[ s�
0

W (r)x dr
]
ds

∀x ∈ X, t ∈ [0, T ].

Hence

A

t�
0

S(s)x ds = (λ0 − A)k+1
t�
0

(t− s)k
k!

[W (s)x−R(λ0, A)k+1x] ds

= S(t)x− tk+1

(k + 1)!
x.

Lemma 2.5 implies that {S(t)}t∈[0,T ] is a local (k + 1)-times integrated
semigroup generated by A.

By translating A, we may assume that λ0 = 0. (4.5) implies that

S(t)x = (−1)k+1Ak+1
t�
0

(t− s)k
k!

W (s)x ds

= (−1)k+1W (t)x−
k∑

j=0

tj

j!
A−(k+1−j)x.

Hence {S(t)}t∈[0,T ] is Lipschitz continuous.
(i)⇒(iii). Similarly to Theorem 3.2, define

F (t) :=
{
S(t), t ∈ [0, T ],

S(T ), t ∈ (T,∞);

L(λ)x := λ

∞�
0

e−λsF (s)x ds ∀λ > 0.

Then L(·) satisfies (4.2) and L(λ)x = λ � T0 e−λsS(s)x ds+ e−λTS(T )x.
A direct calculation shows that

(4.6) (λ− A)
[
λ

T�
0

e−λsS(s)x ds
]

=
[

1
λk
− e−λT q(λ)− λe−λTS(T )

]
x ∀λ > 0, x ∈ X,

where q(λ) =
∑k
j=0 T

j/(j!λk−j). Let α′ > α, β′ > β and ω0 > 0, η0 > 0 be
sufficiently large, and let Γ = Γ1 ∪ Γ2 be a contour with

Γ1 = {ζ = ξ + iη | ξ = α′ log |η|+ β′, |η| ≥ |η0|},
Γ2 = {ζ = ω0 + iη | |η| ≤ η0}

oriented from the lower to upper half plane (see the proof of [13, Main
Theorem] for details). Now assume λ > ω0 and t0 ∈ (0, T ). From (4.6) we
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may write

R(λ,A)x
λk

= λ

T�
0

e−λsS(s)x ds+ e−λT q(λ)R(λ,A)x+ λe−λTR(λ,A)S(T )x

= L(λ)x− e−λTS(T )x

+
e−λt0

2πi

�
Γ

(λ− z)−1e−z(T−t0)q(z)R(z,A)x dz

+
e−λt0

2πi

�
Γ

z(λ− z)−1e−z(T−t0)R(z,A)S(τ)x dz

= L(λ)x+ V (λ)x ∀x ∈ X.

where V (λ)x is the sum of the last three terms. From the inequality 0 <
t0 < T and (4.1), those two integrals in V (λ) define bounded linear operators
on X. Applying (3.3) to e−λT and eλt0 , we conclude that V (λ) satisfies (4.3).
Here we applied the following relation to the first term in V (λ):

Tn−1e−λT ≤ tn−1
0 e−λt0 ∀λ > max{β, n/t0}.

(iii)⇒(i). From Lemma 2.1 there exists F : [0,∞)→ B(X) such that

F (0) = 0, lim
h→0

1
h
‖F (s+ h)− F (s)‖ ≤Meβs ∀s ≥ 0,

L(λ)x = λ

∞�
0

e−λsF (s)x ds ∀λ > β.

The relation R(λ,A)/λk = L(λ) + V (λ), together with the last equality,
gives rise to

A

[
R(λ,A)
λk+1 x

]
= A

[∞�
0

e−λsF (s)x ds+ λ−1V (λ)x
]
,

A

[
R(λ,A)
λk+1 x

]
=
R(λ,A)
λk

x− 1
λk+1 x

= λ

∞�
0

e−λsF (s)x ds+ V (λ)x− 1
λk+1 x.

Therefore

A
[∞�

0

e−λsF (s)x ds+ λ−1V (λ)x
]

= λ

∞�
0

e−λsF (s)x ds+ V (λ)x− 1
λk+1 x.

A being closed, we can differentiate both sides n−1 times in λ and multiply
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the resulting relation by (−1)n−1λn/(n− 1)! to find

(4.7) A
λn

(n− 1)!

[∞�
0

e−λssn−1F (s)x ds

+
n−1∑

j=0

(−1)j
(n− 1)!

j!
λ−(n−j)V (j)(λ)x

]

= (−1)n−1 λn

(n− 1)!

(
d

dλ

)n−1 [
λ

∞�
0

e−λsF (s)x ds
]

+ (−1)n−1 λn

(n− 1)!
V (n−1)(λ)x− (n+ k − 1)!

k!(n− 1)!
λ−kx.

For given t ∈ (0, T ), let v ∈ (0, t] and set λ = n/v. Then integrate the last
term in v and take the limit to find

lim
n→∞

[
(n+ k − 1)!
k!(n− 1)!nk

t�
0

vk dv

]
x =

tk+1

(k + 1)!
x.

Applying the same argument used in Theorem 3.2 to deal with all other
terms in (4.7), we conclude that

A

t�
0

F (s)x ds = F (t)x− tk+1

(k + 1)!
x ∀x ∈ X, t ∈ [0, T ].

The fact that F (λ)A ⊆ AF (λ) can be proved by the same method used
in Theorem 3.2. Set S(t) := F (t). From Lemma 2.5, {S(t)}t∈[0,T ] is the
(k + 1)-times integrated semigroup generated by A.

Remarks 4.3. (i) If T =∞ then Theorem 4.2 offers two equivalent con-
ditions for a closed operator A (not necessarily densely defined) generating
a global (k+1)-times integrated semigroup which may not be exponentially
bounded. Such an example can be found in [8] (see [8, Example 18.2] for
details), therefore even if T = ∞, V (λ) may not vanish automatically. In
fact, if we set t0 → ∞ in (4.3), it is very hard to conclude whether or not
the factor Mt0t

n−1
0 e−λt0 approaches zero.

(ii) If V (λ) in Theorem 4.2 vanishes then the integrated semigroup
generated by A will be exponentially bounded and the equivalence (i)⇔(iii)
reduces to Arendt’s theorem (see [1]).

(iii) As regards the local integrated semigroups defined on [0, T ), we also
have a remark similar to Theorem 3.6. In order to save space, the details
are omitted.

The following theorem states the relationship between the local Cauchy
problem (ACP, T ] (resp. (ACP, T )) and the closed operator A generating
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a local k-times integrated semigroup. Its proof is the same as that of [8,
Theorem 18.3].

Theorem 4.4. Assume A is closed and k ∈ N∪{0}. Then the following
are equivalent :

(i) A generates a local k-times integrated semigroup on [0, T ] (resp. on
[0, T )).

(ii) (ACP, T ] (resp. (ACP, T )) has a unique mild solution for all x ∈
D(Ak).

(iii) %(A) is nonempty and (ACP, T ] (resp. (ACP, T )) has a unique so-
lution for all x ∈ D(Ak+1).

(iv) %(A) is nonempty and A generates a local (λ0 − A)−k-regularized
semigroup {W (t)}t∈[0,T ] (resp. {W (t)}t∈[0,T )), where λ0 ∈ %(A).

5. Examples. We now present several examples.

Example 5.1 [2]. (a) Let Σ be a σ-finite measure space and let 1 ≤
p ≤ ∞. Assume M : Σ → C is measurable. Define the operator A on Lp(Σ)
by

(5.1) (Ax)(τ) := M(τ)x(τ), D(A) := {x | x,Mx ∈ Lp(Σ)} ∀τ ∈ Ω.
Assume the spectrum of A, which is the essential image of M , is disjoint
from E(α, β) for some α, β > 0. Then for λ ∈ σ(A) with Reλ > β we have
|Imλ| ≥ eαReλ. This implies that, for given real λ0 > β and every t ∈ [0, α],

sup{|λ0 − λ|−1eReλt | λ ∈ σ(A)} <∞.
Therefore

[W (t)x](τ) := (λ0 −M(τ))−1eM(τ)tx(τ) ∀t ∈ [0, α]

defines a local (λ0 − A)−1-regularized semigroup {W (t)}t∈[0,α] generated
by A. Thus A generates a (λ0−A)−k-regularized semigroup {Wk(t)}t∈[0,kα]
(see [17, Theorem 2.6] for details), or equivalently, A generates a local k-
times integrated semigroup {Sk(t)}t∈[0,kα] and (ACP, kα] has a unique so-
lution for all x ∈ D(Ak) by Theorem 4.4.

Our proof of Example 5.1(a) is more straightforward than that of [2,
Example 4.4(a)].

(b) If Ω = [0,∞), equipped with the Lebesgue measure, and M(τ) :=
τ + ieτ , then A, defined in (5.1), is not densely defined when p =∞.

Example 5.2. (a) [14]. Let 0 ≤ p ≤ ∞ and let 0 < T <∞. Define

an :=
n

T
+ i

{(
en

n

)2

−
(
n

T

)2}1/2

∀n ∈ N,

Ax := {anξn}, where x = {ξn} ∈ lp and {anξn} ∈ lp.
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It is easy to see that every λ ≥ 0 is in %(A). In particular, 0 ∈ %(A). Define

W (t) := (−A)−1etA ∀t ∈ [0, T ).

For every given t ∈ [0, T ), from

‖W (t)‖ = max{nent/T/en} <∞,
{W (t)}t∈[0,T ) is a local (−A)-regularized semigroup generated by A. From
[17, Theorem 2.6], it follows that A generates a local (−A)k-regularized
semigroup {Wk(t)}t∈[0,kT ), or equivalently, by Theorem 4.4, A generates a
local k-times integrated semigroup {Sk(t)}t∈[0,kT ).

(b) Define

bn :=
n

T
+ i

[
e2n −

(
n

T

)2]1/2

∀n ∈ N,

Bx := {bnξn}, where x = {ξn} ∈ lp.
As in (a), 0 ∈ %(B). Define

W̃ (t) := (−B)−1etB (t ∈ [0, T ]).

For every t ∈ [0, T ], from

(5.2) ‖W̃ (t)‖ = max{ent/T/en} <∞,
{W̃ (t)}t∈[0,T ] is a local (−B)-regularized semigroup generated by B. If

t > T , then (5.2) implies that ‖W̃ (t)‖ =∞ and hence W̃ (t) is undefined.
Similarly, B generates a (−B)k-regularized semigroup and a k-times in-

tegrated semigroup by [17, Theorem 2.6] and Theorem 4.4, respectively.
Our proof of Example 5.2 is much easier than that of the example in [14,

p. 76].

In the following we present two differential operators generating local
regularized semigroups (see [8, 10]).

Example 5.3. (a) Let 1 ≤ p < ∞, X be one of the spaces Lp(Rn),
BUC(Rn) and C0(Rn), or any space where translation is strongly con-
tinuous and uniformly bounded. We write Dj := i∂/∂xj (j = 1, . . . , n),
D := (D1, . . . ,Dn) and Dα := (D1)α1 . . . (Dn)αn , where αj ∈ N ∪ {0} for
j = 1, . . . , n.

Let M := (pi,j)mi,j=1 be an m×m matrix of polynomials and let

N := max
i,j
{degree of pi,j}.

Define the operator M(D) := (pi,j(D)) on Xm with D(M(D)) := D(∆l)m

where l := 1 + 1
2

(
N + n

2

)
. From [8, Theorems 13.9 and 14.1], M(D) is

closable. Set

(5.3) A := −M(D).
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Then there exists an injective C ∈ B(X) with dense range such that −A is
a subgenerator of a C-regularized semigroup {W (t)}t∈[0,∞).

Given T > 0, define C̃ := W (T ) and W̃k(t) := W (kT − t). Then it is
easy to show that A is a subgenerator of the local C̃k-regularized semigroup
{W̃k(t)}t∈[0,kT ].

(b) The matrix M of polynomials in (a) is Petrovskĭı correct if there
exists ω ∈ R such that

σ(M(s)) ⊆ {z ∈ C | Re z ≤ ω} ∀s ∈ Rn.
Again from the above references, ifM is Petrovskĭı correct then there exists
r ≥ 0 such that −A in (5.3) is a subgenerator of an exponentially bounded
(1 + ∆)−r-regularized semigroup. Given T > 0, as in (a) of this example,
A is a subgenerator of a local regularized semigroup defined on [0, kT ) for
every k ∈ N. Simple special cases of (b) are the wave equation (see [10,
Example 4.11]) and the equation describing sound propagation in a viscous
gas (see [10, Example 4.12]).
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