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Abstract. We investigate the existence and ergodic properties of absolutely contin-
uous invariant measures for a class of piecewise monotone and convex self-maps of the
unit interval. Our assumption entails a type of average convexity which strictly general-
izes the case of individual branches being convex, as investigated by Lasota and Yorke
(1982). Along with existence, we identify tractable conditions for the invariant measure
to be unique and such that the system has exponential decay of correlations on bounded
variation functions and Bernoulli natural extension. In the case when there is more than
one invariant density we identify a dominant component over which the above properties
also hold. Of particular note in our investigation is the lack of smoothness or uniform
expansiveness assumptions on the map or its powers.

1. Introduction and statement of results. We study nonsingular
transformations T from the unit interval I = [0, 1] into I that are piece-
wise monotone and continuous. Specifically, there is a finite partition of I
given by 0 = a0 < a1 < . . . < aN = 1 and such that on each (ai−1, ai)
the restriction Ti = T |(ai−1,ai) is continuous and (strictly) increasing. Since
each Ti is 1-1, they have well defined inverses φi = T−1

i which may be ex-
tended continuously to increasing (and hence a.e. differentiable) functions
ψi : [0, 1] → [ai−1, ai], where ψi(x) = ai−1 if x ≤ infy∈(ai−1,ai) Ti(y); fur-
thermore, ψi(x) = ai if x ≥ supy∈(ai−1,ai) Ti(y). Since we are assuming
m ◦ T−1

i � m for each i = 1, . . . , N , we have

dm ◦ T−1
i

dm
= ψ′i m-a.e.
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Throughout this article m denotes the Lebesgue measure on the Borel sub-
sets B of [0, 1].

We consider the Perron–Frobenius operator P on L1 = L1(I,B,m),
uniquely defined by the identity

�
Pf · g dm =

�
f · g ◦ T dm ∀f ∈ L1, g ∈ L∞.(1.1)

In view of our setup we have the following pointwise representation for P ,
taking g = χ[0,x]: for each x ∈ [0, 1],

x�

0

Pf(t) dm(t) =
∑

i

�

T−1
i [0,x]

f(s) dm(s)

=
∑

i

x�

0

f ◦ ψi(t)
dm ◦ T−1

i

dm
(t) dm(t)

=
x�

0

∑

i

f(ψi(t))ψ′i(t) dm(t)

from which it follows that Pf(x) =
∑N

i=1 ψ
′
i(x)f(ψi(x)) for almost every

x ∈ [0, 1]. Our convexity assumption takes the following form:

(C) Assume that for i = 1, . . . , N there are measurable functions Fi :
[0, 1] → [0,∞) with Fi = ψ′i m-a.e. and such that the family Fi
satisfies both

(C1) for each k = 1, . . . , N the functions F1 + . . .+Fk are decreasing,

and

(C2) F1(0) < 1.

Observe that a branch Ti is convex iff its associated Fi may be cho-
sen decreasing. Our assumption (C) therefore is strictly weaker than the
requirement that each branch be convex.

Under assumption (C) we may again rewrite the pointwise version of
(1.1) as

Pf(x) =
N∑

i=1

Fi(x)f(ψi(x)) ∀f ∈ L1.(1.2)

Remark 1.1. Of course, formula (1.2) requires the following interpreta-
tion. Given f ∈ L1, any version of f used on the right hand side of (1.2)
will produce a version of Pf .

Theorem 1.1. Let T be piecewise monotone and continuous on I as
above, and satisfy the convexity condition (C). Then T admits an absolutely
continuous invariant probability measure ν, whose density g = dν/dm may
be chosen to be a decreasing function on I.
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Remark 1.2. There can exist no general result proving existence of a
finite a.c.i.m. for an arbitrary piecewise C1 expanding interval map. (See [3]
where a counterexample is constructed.) Therefore, most existence results
in this class depend on additional smoothness conditions on the branches.
See, for example, [8], [2] and references cited there.

We note that no uniform continuity assumption on the derivative T ′ is
implied by our convexity condition (C), so our investigation is quite different
from these classical existence results.

In the shift space setting, P. Hulse [4] has identified a condition on
G-functions corresponding to our convexity condition (the terminology is
attractive G-function) and has studied the space of attractive G-measures
associated to a continuous attractive G-function. In this work, continuity
plays a crucial role.

An extensive analysis by Rychlik [11] is closer in spirit to our present
investigation, but the uniform expansiveness assumed there is replaced by
the weaker form in (C2) which only implies that the branch T1 is expanding.

Perhaps closest to our present investigation is an older result of Lasota
and Yorke [9] for piecewise convex maps where the main result proved there
should be compared to ours. There, all branches are assumed to be convex,
and the leftmost branch T1 is assumed to satisfy T ′(0) > 1. Further, all
branches satisfy T1(0) = T2(a1) = . . . = TN (aN−1) = 0. The assumption of
nonsingularity is not necessary as the stronger convexity assumption implies
it. Our convexity assumption (C1) is not only weaker than that of Lasota–
Yorke, but is also more natural in the sense that, as we shall see, condition
(C1) is necessary and sufficient for the Perron–Frobenius operator P to
preserve the class of nonnegative, decreasing functions on I (Lemma 2.2). So,
our condition is invariant under taking powers of T . Also, this observation
leads to a very simple proof of a classical variational inequality, after which
the existence of an invariant density can be deduced in the classical manner;
see for example [8]. This is discussed in §2, providing the proof of Theorem
1.1 above.

It is worth noting that if we assume only monotonicity of the branches
of T along with the convexity condition (C) then it appears that most of
our analysis fails to go through. In particular the basic result in Lemma
2.2 concerning invariance of the cone of positive decreasing functions (upon
which everything which follows depends) fails to hold.

In [9], Lasota–Yorke convex maps are shown to have the property that
there is a unique invariant probability density g and that the a.c.i.p.m.
dµ = gdx is exact for T . This is not the case for maps satisfying our weaker
convexity condition. In §4 and §5 we identify a dominant component for a
given decreasing invariant density and prove uniqueness and exactness of this
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dominant component (an interval). Also, in §4 we prove exponential decay
of correlations, the uniform expanding property and the Bernoulli property
when the dominant component is not normalized Lebesgue measure. This
restriction is equivalent to the requirement that T be expanding at the right-
most endpoint of the dominant component, which we call condition (E), for
expanding. We note that exponential decay of correlations and the uniform
expanding property were proved for Lasota–Yorke convex maps in [5].

The remaining question of when there exists a unique a.c.i.m. for T is
discussed in §6. We identify a mixing condition (M) which ensures that there
is exactly one invariant density in BV and the resulting system (T, gdx)
is exact. Again, if the expanding condition (E) is also satisfied, then some
power of T is expanding and T is Bernoulli with respect to its unique a.c.i.m.
Furthermore, Lasota–Yorke convex maps satisfy our condition (M), but (M)
does not imply that some power of T is uniformly expanding, so this final
section identifies a proper extension of the results in [9].

Much of our argument depends on the identification of suitable invariant
cones for the operator P and the construction of norms equivalent to the
bounded-variation norm from these cones. We give a brief discussion of these
matters in §3. The reader looking for more complete background on this
method should consult R. Murray [10] where many of the omitted details
may be found.

The first author is pleased to acknowledge the hospitality of the Labora-
toire de Topologie, Université de Bourgogne during the Fall of 1996 where
first the idea to revisit the Lasota–Yorke maps from a more current point
of view was proposed.

2. Existence of an invariant density. Throughout this section T is
assumed to satisfy the conditions of Theorem 1.1.

Lemma 2.1. Without loss of generality , we may assume that for k =
1, . . . ,N the functions F1+. . .+Fk are decreasing , and upper semicontinuous
on [0, 1].

Proof. Every decreasing function on [0, 1] can be modified on a set of
measure zero to be upper semicontinuous and decreasing. Apply this induc-
tively for k = 1, . . . , N . Changing each of the functions Fi on sets of measure
zero will not change the operator P .

Remark 2.1. The simple result above leads to a kind of uniqueness
in the pointwise representation of the Perron–Frobenius operator. Suppose
Ff(x) =

∑N
i=1 Fi(x)f(ψi(x)) while Gf(x) =

∑N
i=1Gi(x)f(ψi(x)) for all

f ∈ L1 are two Perron–Frobenius operators with weight functions {Fi},
{Gi} both satisfying (C1). Suppose Ff = Gf for all f ∈ L1. If both sets of
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weight functions have upper semicontinuous sums as in the above lemma,
then Fi = Gi on (0, 1] since two upper semicontinuous, decreasing functions
which agree almost everywhere must be identical except possibly at zero.
Now it is a simple matter to change the definition of the Fi at the single
point zero, still maintaining condition (C1) so that Fi = Gi on [0, 1]. We
will have a number of opportunities in the following arguments to make use
of this simple observation.

Remark 2.2. In a similar vein, suppose c ∈ (ai−1, ai) for some i =
1, . . . , N . Define

Tj(x) =





Tj(x) if 1 ≤ j < i,
Ti(x) if j = i and x ∈ [ai−1, c],
Ti(x) if j = i+ 1 and x ∈ [c, ai],
Tj−1(x) if i+ 1 < j ≤ N + 1;

in other words, we split the ith branch into two subbranches at the point c.
Then this new T with N + 1 branches still satisfies the convexity condition
(C) and generates the same operator P , although the pointwise representa-
tion (1.2) will be changed.

Let J = {f : [0, 1]→ [0,∞) | f(x) ≥ f(y) whenever x ≤ y} be the cone
of nonnegative, decreasing functions on I. As a further consequence of the
convexity condition (C1) we have

Lemma 2.2. A necessary and sufficient condition for an operator of the
form

Pf(x) =
N∑

i=1

Fi(x)f(ψi(x)), Fi ≥ 0,

to satisfy P : J → J is that the Fi’s satisfy condition (C1).

Observe that T (0)=0 since if T (0)=a>0 then F1(0)=0 and condition
(C1) implies F1 ≡ 0. But then a1 = � 1

0 F (t) dt = 0, which is a contradiction.

Corollary 2.3. The convexity condition (C) is preserved under powers
of T .

Proof of Lemma 2.2. Let f ∈ J and x ≤ y. Define xi = ψi(x) and
yi = ψi(y) ≥ xi for i = 1, . . . , N . Then

Pf(x)− Pf(y) =
N∑

i=1

[Fi(x)f(xi)− Fi(y)f(yi)](2.1)

≥
N∑

i=1

(Fi(x)− Fi(y))f(xi)

since Fi ≥ 0 and f(xi) ≥ f(yi).
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Define the following N -dimensional vectors:
−→
∆F = 〈Fi(x)− Fi(y)〉 ∈ RN ,
~f = 〈f(xi)〉 ∈ interior of positive cone of RN ,
~bj = 〈1, . . . , 1︸ ︷︷ ︸

j times

, 0, . . . , 0〉, j = 1, . . . , N.

With this notation we rewrite (2.1) simply as

Pf(x)− Pf(y) ≥ −→∆F · ~f.(2.2)
The convexity assumption (C1) implies

−→
∆F ·~bj ≥ 0, j = 1, . . . , N.(2.3)

Furthermore,

~f =
N−1∑

j=1

(f(xj)− f(xj+1))~bj + f(xN)~bN ,(2.4)

with all coefficients in this expression nonnegative since f ∈ J . By (2.3),
(2.4), linearity in (2.2) implies Pf ∈ J .

As for the converse, note that the inequality at (2.1) is sharp on J , that
is, if the Fi fail to satisfy the convexity assumption (C1), then there exists
an f in J with Pf 6∈ J .

If f : [0, 1]→ R we denote the variation of f by VIf and let BV denote
the Banach space of bounded variation functions (with norm ‖f‖BV = VIf+
‖f‖1). As in the classical situation, we seek a variational inequality for P
in order to establish compactness of the sequence of iterates of a function
in BV. We have been unable to prove such an inequality on all of BV, but
following below is the inequality on the subcone J ⊂ BV, and this will turn
out to be sufficient for our purposes.

Lemma 2.4. For each a satisfying F1(0) < a < 1 there exists a constant
b = b(a) <∞ so that for all f ∈ J ,

VIPf ≤ aVIf + b‖f‖1.
Proof. We first note that there exists a weak variational inequality: there

exist positive constants A,B <∞ such that
VIPf ≤ AVIf +B‖f‖1 ∀f ∈ J .

For f ∈ J ,

Pf(0)− Pf(1) =
N∑

i=1

Fi(0)f(ai−1)−
N∑

i=1

Fi(1)f(ai)

≤
( N∑

i=1

Fi(0)
)
f(0)−

( N∑

i=1

Fi(1)
)
f(1) =: Γf(0)− γf(1)
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Note, by condition (C1), Γ ≥ γ, and for f ∈ J , f(1) ≤ ‖f‖1, so we obtain

VIPf ≤ ΓVIf + (Γ − γ)‖f‖1.
This shows we may set A = Γ and B = Γ − γ in our first variational
inequality. It also shows that the lemma is true on the subspace of constant
functions {c1}c≥0, so we may restrict our attention to J − {c1}c≥0.

Suppose the lemma is false. Then there is a number â, with F1(0) <
â < 1, and sequences 0 6= fn ∈ J , VIfn 6= 0, and An > 0, limnAn = ∞,
satisfying

VIPfn − âVIfn
‖fn‖1

= An.(2.5)

Since the left hand side of (2.5) is invariant under f 7→ cf, c > 0, we may
assume VIfn = 1 for all n. Using the weak variational inequality established
above, we have

A+B‖fn‖1 − â
‖fn‖1

≥ An →∞.(2.6)

The left hand side above is uniformly bounded on sets where ‖fn‖1 ≥ δ > 0,
so we must have ‖fn‖1 → 0. Dropping to a subsequence if necessary, we may
assume fn → 0 for m-a.e. x ∈ I. Choose x0 ∈ (0, a1) satisfying fn(x0)→ 0.
Let δ > 0 be fixed, and pick n0 so that fn0(x0) < δ. Then we have fn0(ai)
< δ, i = 1, . . . , N, fn0(0) < 1 + δ, and we may make the estimate

Pfn0(0)− Pfn0(1) ≤ Pfn0(0) ≤
N∑

i=1

Fi(0)fn0(ai−1)

≤ F1(0)(1 + δ) +
( N∑

i=2

Fi(0)
)
δ

= F1(0) +
( N∑

i=1

Fi(1)
)
δ < â

provided δ was chosen sufficiently small. Thus VIPfn0 < âVIfn0 , which
contradicts the sign in (2.5).

Proof of Theorem 1.1. Applying the previous lemma iteratively to the
constant function 1 we obtain

VIP
s1 ≤ b(1 + a+ a2 + . . .+ as−1) ≤ b(1− a)−1.

Now consider the sequence gn = (1/n)
∑n−1

s=0 P
s1. The following properties

are now evident:

(1) gn ∈ J and ‖gn‖1 = � gn = 1, n ≥ 1.
(2) ‖Pgn − gn‖1 → 0 as n→∞ since sup ‖P s1‖∞ <∞.
(3) The sequence {gn} is relatively compact in L1 by Helly’s Theorem.
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(4) If, in L1 norm, g = limk gnk for some subsequence, then g ≥ 0,
Pg = g, and ‖g‖1 = 1.

Finally, since g may be obtained as the L1 limit of a sequence of decreas-
ing functions, we may, by an elementary argument, find a version of g which
is decreasing.

3. Preliminaries about cones and norms equivalent to ‖ · ‖BV.
Recall that J = {f : [0, 1] → [0,∞) | f is decreasing}. Given a function
f on I = [0, 1], we will simply denote VIf by Vf . We denote by BV0 the
(Banach) subspace of bounded variation functions which integrate to zero.
We reserve ‖ · ‖ for the L1 norm ‖ · ‖1. Of course for a given f ∈ BV, there
exist f1, f2 ∈ J such that f = f1 − f2. In fact the following is also true.

Lemma 3.1. Given f ∈ BV, there exist f 1, f2 ∈ J such that

(1) f = f1 − f2;
(2) Vf = Vf1 + Vf2;
(3) if f = g − h ∈ BV and g, h ∈ J , then Vf 1 ≤ Vg and Vf2 ≤ Vh

and ‖f1‖ + ‖f2‖ ≤ ‖g‖ + ‖h‖. Furthermore, if g 6= f 1 (so h 6= f2), then
‖f1‖+ ‖f2‖ < ‖g‖+ ‖h‖.

Proof. For each x ∈ I, let Tf (x) = Vx
0f . Define f1 and f2 by

f1 = 1
2(Vf + |f(1)|+ f − Tf ) and f2 = 1

2(Vf + |f(1)| − f − Tf ),

so clearly f = f1 − f2. It is easy to check that f 1 and f2 are decreasing.
Since f1(1) = 1

2{|f(1)| + f(1)} ≥ 0, we have f 1 ≥ 0 and similarly f2 ≥ 0.
Thus f1, f2 ∈ J . Also

Vf1 + Vf2 = f1(0)− f1(1) + f2(0)− f2(1)

= 1
2(f(0)− f(1) + Vf) + 1

2(f(1)− f(0) + Vf) = Vf.

Suppose f = g − h with g, h ∈ J . Then

Vg + Vh = Vg + [h(0)− h(1)] = Vg + [g(0)− f(0)− g(1) + f(1)]

= 2Vg − f(0) + f(1).

In particular, Vf1 + Vf2 = 2Vf1 − f(0) + f(1) = 2Vf1 − Vg + Vh. This
implies that Vf1 ≤ Vg, since Vf1 + Vf2 = Vf ≤ Vg + Vh. Similarly, we
have Vf2 ≤ Vh.

To see ‖f1‖+ ‖f2‖ ≤ ‖g‖+ ‖h‖, notice that for each x ∈ I,

0 ≤ Vf − Tf (x) = V1
0f −Vx

0f ≤ V1
xf ≤ V1

xg + V1
xh(3.1)

= g(x)− g(1) + h(x)− h(1)

and hence

Vf − ‖Tf‖ = ‖Vf − Tf‖ ≤ ‖g‖+ ‖h‖ − g(1)− h(1).
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Since |f(1)| ≤ g(1) + h(1), it follows that

(3.2) ‖f1‖+ ‖f2‖
=

1
2

[ �
(Vf + |f(1)|+ f − Tf ) +

�
(Vf + |f(1)| − f − Tf )

]

= Vf + |f(1)| − ‖Tf‖ ≤ ‖g‖+ ‖h‖.
Finally suppose ‖f1‖+ ‖f2‖ = ‖g‖+ ‖h‖. It follows from (3.1) and (3.2)

that |f(1)| = g(1) + h(1), which implies that for each x ∈ I,

f1(x) + f2(x) = Vf + |f(1)| − Tf (x) = g(x) + h(x)− g(1)− h(1) + |f(1)|
= g(x) + h(x),

i.e., f1 + f2 = g + h. Since f1 − f2 = g − h, we have g = f1 and h = f2.

Definition 3.1. For a given f ∈ BV, with f 1, f2 defined as above, we
will call f = f1 − f2 the variational decomposition of f .

Notice that J is an R+-module, i.e., if f, g ∈ J , then f + g ∈ J and
cf ∈ J for any c ∈ R+. We now introduce a class of submodules (or cones)
of J .

Definition 3.2. For a given K > 0, define CK by

CK = {f ∈ BV | f ∈ J and Vf ≤ K‖f‖}.
From each CK , K > 0, we may construct a vector space ΓK of functions on
I via

ΓK = {f ∈ BV | there exist f 1, f2 ∈ CK
such that f = f1 − f2 and ‖f1‖ = ‖f2‖}.

On ΓK define ‖ · ‖ΓK as follows:

‖f‖ΓK = inf{‖f1‖ | f = f1 − f2, where f1, f2 ∈ CK and ‖f1‖ = ‖f2‖}.
We collect some basic facts about these objects.

Lemma 3.2. For each K > 0, the following hold :

(1) ΓK with ‖ · ‖ΓK is a normed vector space. (In fact it is a Banach
space.)

(2) f ∈ ΓK if and only if f ∈ BV0.
(3) If f = f1 − f2 is the variational decomposition of f ∈ BV0, then

there exists c ≥ 0 such that f1 + c, f2 + c ∈ CK and ‖f‖ΓK = ‖f1 + c‖.
(4) For a given f ∈ BV0,

min{1,K}‖f‖ΓK ≤ ‖f‖BV ≤ 2(K + 1)‖f‖ΓK .
In particular , all the norms ‖ · ‖ΓK are equivalent , and equivalent to ‖ · ‖BV
on BV0.
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Proof. (1) It is an elementary check that ΓK is a vector space and that
‖ · ‖ΓK is a norm on it. Completeness follows from (2) and (4) below.

(2) If f ∈ ΓK , then by definition there exist f 1, f2 ∈ CK such that
f = f1 − f2 and ‖f1‖ = ‖f2‖. Since � f = ‖f1‖ − ‖f2‖ = 0, it follows that
f ∈ BV0.

Conversely, suppose f ∈ BV0 and f = f1 − f2 is the variational decom-
position of f . Since 0 = � f = ‖f1‖ − ‖f2‖, we have ‖f1‖ = ‖f2‖. Let

α =
1
K

max{Vf1,Vf2} − ‖f1‖.

If α < 0, then Vf1 ≤ K‖f1‖ and Vf2 ≤ K‖f1‖ = K‖f2‖, so f1, f2 ∈ CK .
Thus f ∈ ΓK . If α ≥ 0, then it is easy to check that f 1 + α, f2 + α ∈ CK .
Since f = (f1+α)−(f2+α) and ‖f1+α‖ = ‖f2+α‖, it follows that f ∈ ΓK .

(3) Let f ∈ BV0 and f = f1− f2 be the variational decomposition of f .
Let α be given as above and c = max{α, 0}. It follows from the proof of
(2) that f1 + c, f2 + c ∈ CK . If α < 0, i.e., c = 0, then it is clear that
‖f‖ΓK = ‖f1‖ = ‖f1 + c‖ (see Lemma 3.1). Now suppose c = α ≥ 0.
If f = g − h and g, h ∈ CK ⊂ J , then it follows from Lemma 3.1 that
Vf1 ≤ Vg and Vf2 ≤ Vh. Thus

‖f1 + c‖ = ‖f1‖+ c =
1
K

max{Vf1,Vf2} ≤ 1
K

max{Vg,Vh}

≤ 1
K

max{K‖g‖,K‖h‖} = ‖g‖.

Since f1 + c, f2 + c ∈ CK , it follows that ‖f‖ΓK = ‖f1 + c‖. Note that there
is at most one value of c which can satisfy the previous identity.

(4) Let f = f1 − f2 be the variational decomposition of f and let c be
as in (3) so that ‖f‖ΓK = ‖f1 + c‖. Assume that c = α ≥ 0 and make the
estimate

‖f1 + c‖ = ‖f1‖+ c =
1
K

max{Vf1,Vf2} ≤ 1
K

Vf ≤ 1
K
‖f‖BV.

On the other hand, if c = 0 and α < 0 we proceed as follows. Notice that
either f1(1) = 0 or f2(1) = 0 for otherwise we could subtract a small
multiple of the identity from both, contradicting Lemma 3.1(3). Assuming
the first case (the other is identical) we estimate

‖f1 + c‖ = ‖f1‖ ≤ ‖f‖∞ ≤ Vf1 ≤ Vf ≤ ‖f‖BV.

This proves the first inequality in (4). For the other inequality, by the proof
of (3) with c defined as above

‖f‖BV = Vf + ‖f‖ = V(f1 + c) + V(f2 + c) + ‖f‖
≤ K‖f1 + c‖+K‖f2 + c‖+ ‖f1‖+ ‖f2‖
≤ 2(K + 1)‖f1 + c‖ = 2(K + 1)‖f‖ΓK .
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Remark 3.1. We remark that the above construction follows closely the
setup in [10], although our choice of the basic cones CK is different, leading
to some changes in the proofs and to some of the constants in the estimates.

Using Lemma 2.4, choose a and b < ∞ so that F1(0) < a < 1 and
VPf ≤ aVf + b‖f‖ for any f ∈ J . It inductively follows that for any given
f ∈ J and for each m ≥ 1,

VPmf ≤ amVf +
b(1− am)

1− a ‖f‖.(3.3)

Lemma 3.3. For a given K ≥ b/(1 − a), P preserves CK , i.e., P maps
CK into CK .

Proof. Let K ≥ b/(1− a). If f ∈ CK , then

VPf ≤ aVf + b‖f‖ ≤ aK‖f‖+ (1− a)K‖f‖ = K‖f‖ = K‖Pf‖,
which shows Pf ∈ CK .

Remark 3.2. Let S1 denote the unit sphere in L1. Each subset CK∩S1 is
a convex and compact subset of L1. By Lemma 3.3 and the Markov property
for P , for all sufficiently large K each of these subsets is preserved by P . By
the Schauder–Tikhonov Theorem, P will have a fixed point in CK ∩S1. This
gives another proof of the existence of a decreasing invariant probability
density, as was already derived at the end of §2.

4. Ergodic properties of an invariant measure: case I. The tech-
niques developed in the previous section will now be used to study the
question of ergodic properties. Throughout this section T is assumed to sat-
isfy the conditions of Theorem 1.1. For each k = 1, . . . , N , let Fk denote
Fk =

∑k
i=1 Fi. From Lemma 2.1, without loss of generality, we may assume

that for each k = 1, . . . , N , Fk is upper semicontinuous. Also, for a given
closed interval [c, d] ⊆ [0, 1] (c < d), we define T [c, d] to be

T [c, d] = T (c, d) =
N⋃

j=1

Tj([aj−1, aj ] ∩ (c, d)).

Consequently, T [c, d] is a finite union of nontrivial closed intervals. Under
this notation, the following holds.

Lemma 4.1. For each k = 0, 1, . . . , T k[0, a1] is a closed interval contain-
ing [0, a1]. Moreover , T k[0, a1] ⊆ T k+1[0, a1] so that we have an increasing
sequence of closed intervals.

Proof. The first statement is obviously true for k = 0. Suppose T k[0, a1]
= [0, bk]. Choose l ≥ 1 such that al−1 < bk ≤ al. Then

T k+1[0, a1] = T1[0, a1] ∪ . . . ∪ Tl−1[al−2, al−1] ∪ Tl[al−1, bk],
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where each of these sets is a closed interval. If the union is not connected,
then there exists an interval (c, d) with d < sup{T (x) | x ∈ [0, bk]} and
Fl ≡ 0 on (c, d) since the Fi = 0 almost everywhere on this interval for
1 ≤ i ≤ l and the sum Fl is upper semicontinuous. But also, there exists a
point y > d such that Fl(y) > 0, which contradicts our convexity condition
(C1). So T k+1[0, a1] is an interval. Now note that since T1 is convex and
F1(0) < 1 we have [0, a1] ⊆ T1[0, a1], so T k+1[0, a1] ⊇ [0, a1]. Finally, since
[0, a1] ⊆ T [0, a1], it follows that for all k, T k[0, a1] ⊆ T k+1[0, a1].

Let β ∈ (0, 1] be determined by
⋃∞
k=0 T

k[0, a1] = [0, β]. Then, by Lemma
4.1, a1 < β ≤ 1 and T [0, β] = [0, β]. By Remark 2.2, without loss of gen-
erality, we may assume that β = aN∗ for some N∗ ∈ {2, . . . , N}. Then
FN∗(x) = 0 on (β, 1] and for any c ∈ (0, β), T [0, c] * [0, c], which leads to
the following (see Figure 4.1).

1

T

0  =  a

T

β =1

a

a

β =

a a

T

N

N

N =  1

N

1

*

*0

Fig. 4.1

Lemma 4.2. For each c ∈ (0, β), T [c, β] * [c, β].

Proof. Suppose 0 < c < β and T [c, β] ⊆ [c, β]. Again, in view of Remark
2.2, without loss of generality, we may assume that c = as for some s, 1 ≤
s < N∗. It follows that

∑N∗
i=s+1 Fi(x) = 0 on [0, c), i.e., (FN∗ − Fs)(x) = 0

on [0, c). Also

c =
1�

0

Pχ[0,c](t) dt =
1�

0

Fs(t) dt ≥
c�

0

Fs(t) dt ≥ cFs(c),

which means Fs(c) ≤ 1. Since Fs(x) = FN∗(x) on [0, c), this implies that
limx→c− FN∗(x) ≤ 1, and so FN∗(c) ≤ 1. Thus

β�

c

FN∗(t) dt ≤ (β − c)FN∗(c) ≤ β − c.
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Meanwhile,

β − c =
1�

0

Pχ[c,β](t) dt =
1�

0

(FN∗ − Fs)(t) dt

=
β�

c

(FN∗ −Fs)(t) dt ≤
β�

c

FN∗(t) dt.

Therefore � βc FN∗(t) dt = β − c and � βc Fs(t) dt = 0. Then T [0, c] ⊆ [0, c],
which is a contradiction.

Lemma 4.3. There exists an integer r ≥ 1 such that
⋃r
k=0 T

k[0, a1] =
[0, β].

Proof. Let d = max{Ti(ai) | 1 ≤ i ≤ N∗ − 1} (≤ β). Then d > aN∗−1.
For, otherwise,

⋃∞
k=0 T

k[0, a1] ⊆ [0, aN∗−1] ( [0, β], which is a contradiction.
We claim d = β, in which case it is easy to see that there exists r ≥ 1 such
that

⋃r
k=0 T

k[0, a1] = [0, β]. To prove the claim, first suppose TN∗(d) > d.
Then T [d, β] ⊆ [d, β] and so by Lemma 4.2, d = β. If TN∗(d) ≤ d, then
T [0, d] ⊆ [0, d], which implies d = β.

Lemma 4.4. Let g ∈ J be an invariant density for T and A = � β0 g dm.
Define gβ : [0, 1]→ R+ by

gβ(x) =
{
g(x)/A if 0 ≤ x ≤ β,
0 if β < x ≤ 1.

Then gβ ∈ J is an invariant density of T , i.e., Pgβ = gβ.

Proof. Let g1 = gχ[0,β] and g2 = g − g1. Then g1 + g2 = Pg1 + Pg2.
Since T [0, β] ⊆ [0, β], we have g1 ≥ Pg1. From the fact that ‖Pg1‖ = ‖g1‖,
it follows that Pg1 = g1. Thus gβ = g1/‖g1‖1 ∈ J is an invariant density
of T .

Remark 4.1. For the rest of this and the following section, we will study
the ergodic properties of (T, gβdm). In effect we will study Tβ = T |[0,β], an
N∗-branched convex map on [0, β]. The Perron–Frobenius operator Pβ on
L1(β) = L1([0, β]) is defined according to (1.2) using Tβ . The connection
between the two operators is

Pβ = P |L1(β).

This is easily seen from the representation (1.2). Similarly, we will adopt the
notation BV(β), BV0(β), J (β) and CK(β), K > 0, to denote the function
spaces and cones on the restricted domain [0, β]. For example it easily follows
from Lemma 3.3 that for a given K ≥ b/(1 − a), Pβ preserves CK(β), i.e.,
Pβ maps CK(β) into CK(β).
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Recall that the condition (C2) implies only that Tβ is uniformly expand-
ing on [0, a1], however, it need not be the case that Tβ (or even some power
of it) must be uniformly expanding on [0, β]. Surprisingly, if in addition, Tβ
is assumed to be expanding at β, then we will prove that some power of Tβ
is uniformly expanding. This motivates the terminology in the following:

We say Tβ satisfies the expanding condition (E) if

(E) FN∗(β
−) < 1.

We say (T, µ) has exponential decay of correlations if there exist C <∞
and λ < 1 such that for any h ∈ L1(µ), f ∈ BV(µ), and for each k ≥ 1,

∣∣∣
�
(h ◦ T k)f dµ−

�
h dµ

�
f dµ

∣∣∣ ≤ Cλk‖h‖1‖f‖BV.

We first show the following.

Theorem 4.5. Suppose Tβ satisfies the conditions in Theorem 1.1 and
the expanding condition (E). Let gβ be an invariant density of Tβ as defined
in Lemma 4.4. Then (Tβ, gβdm) is exact. Moreover it has exponential decay
of correlations.

The proof of Theorem 4.5 results from a series of lemmas which will be
proved later. Similar methods may be found in the work of Bowen [1].

To simplify notation, and in view of the above correspondences, we will
generally refrain from including the subscript β in T and P with the un-
derlying assumption in this and the next section that the domain has been
restricted to [0, β].

Lemma 4.6. Let r ≥ 1 be given as in Lemma 4.3. Let K > 0 be given
and choose s ≥ 0 so that ψs1(a1) < 1/K. Then:

(1) For each x ≤ a1, there is λ0 = λ0(x) > 0 such that for any f ∈ CK ,
(P sf)(x) ≥ λ0‖f‖.

(2) For each x < β, there is δ0 = δ0(x) > 0 such that for any f ∈ CK ,
(P r+sf)(x) ≥ δ0‖f‖.

Lemma 4.7. Let K > b/(1 − a). Then there exist l = l(K) ≥ 1 and
h ∈ J (β) such that � h > 0 and for any f ∈ CK(β), P lf − ‖f‖h ∈ J (β).

Lemma 4.8. Let K > b/(1 − a). Then there exist n = n(K) ≥ 1 and
ĥ ∈ J (β) such that � ĥ > 0 and for any f ∈ CK(β), Pnf − ‖f‖ĥ ∈ CK(β).

Proposition 4.9. Let K > b/(1 − a). Then there exist n = n(K) ≥ 1
and δ = δ(K) > 0 such that for any given f ∈ BV0(β), for each k ≥ 1,

‖P knf‖ΓK ≤ (1− δ)k‖f‖ΓK .
Proof of Theorem 4.5. Fix K > b/(1 − a). It follows from Proposition

4.9 that there exist n = n(K) ≥ 1 and δ = δ(K) > 0 such that for any given
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f ∈ BV0(β), for each k ≥ 1,

‖P knf‖ΓK ≤ (1− δ)k‖f‖ΓK .
Since the right hand side converges to 0 as k → ∞, the left hand side
converges to 0 as k →∞ and so by Lemma 3.2(4) in ‖ · ‖BV, which implies

‖P knf‖ → 0 as k →∞.
Since P is a contraction in ‖ · ‖,

‖Pmf‖ → 0 as m→∞.
This will be enough for the exactness of the a.c.i.m. (see, for example,
[7] where the term asymptotic stability is used). In fact, let φ ∈ BV(β)
and φ ≥ 0. Noticing that f = φ− ( � φ)gβ ∈ BV0(β), we have ‖Pmf‖ → 0 as
m→∞, i.e., limm→∞ Pmφ = ( � φ)gβ in L1. Therefore, (T, gβdm) is exact.

To prove the second statement, fix K > b/(1− a). Notice that P is also
a contraction in ‖ · ‖ΓK . It follows from Lemma 3.2 and Proposition 4.9 that
there exist C1 = C1(K) < ∞ and λ = λ(K) < 1 such that for any given
f ∈ BV0(β), for each k ≥ 1,

‖P kf‖BV ≤ C1λ
k‖f‖BV.

Let h ∈ L1 and f ∈ BV. Then with dµ = gβdm, we have f̂ = f− � f dµ ∈ BV
and f̂ gβ ∈ BV0(β). Now, observe that ‖f̂ ‖∞ ≤ Vf̂ = Vf and since gβ
is positive, decreasing and integrates to 1, we have Vgβ ≤ ‖gβ‖∞. Put
this together to estimate V(f̂gβ) ≤ Vf̂ ‖gβ‖∞ + ‖f̂ ‖∞Vgβ ≤ 2‖gβ‖∞Vf .
Similar reasoning leads to ‖gβ‖∞ ≥ 1 so we have ‖f̂ gβ‖ ≤ ‖gβ‖∞‖f̂ ‖ ≤
‖gβ‖∞(‖f‖+‖gβ‖∞‖f‖) = ‖gβ‖∞(1+‖gβ‖∞)‖f‖, and therefore ‖f̂ gβ‖BV ≤
(1 + ‖gβ‖∞)‖gβ‖∞‖f‖BV. Thus for each k ≥ 1,
∣∣∣

�
(h ◦ T k)fdµ−

�
h dµ

�
f dµ

∣∣∣ =
∣∣∣

�
(h ◦ T k)f̂ dµ

∣∣∣ =
∣∣∣

�
hP k(f̂ gβ) dm

∣∣∣

≤ ‖h‖ · ‖P k(f̂gβ)‖∞ ≤ ‖h‖ · ‖P k(f̂gβ)‖BV ≤ ‖h‖C1λ
k‖f̂ gβ‖BV

≤ ‖ · ‖C1λ
k(1 + ‖gβ‖∞)‖gβ‖∞‖f‖BV ≤ Cλk‖h‖ · ‖f‖BV,

where C = C1(1 +‖gβ‖∞)‖gβ‖∞ <∞. Therefore (T, gβdm) has exponential
decay of correlations.

Now in order to prove Lemma 4.6, we will use the following notations. For
each n ≥ 1, {a(n)

i }Nni=0 denotes the partition for T n; for each i = 1, . . . , Nn,

we define T (n)
i , ψ(n)

i , and F
(n)
i similarly.

Proof of Lemma 4.6. (1) Let y < 1/K. We will first show that there
exists ε = ε(y) > 0 such that for any f ∈ CK ,

f(y) ≥ ε‖f‖.(4.1)
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In fact, define ε = ε(y) by

ε =
1−Ky

1 +K(1− y)
> 0.

Then for a given f ∈ CK ,

f(0)− f(y) ≤ f(0)− f(1) = Vf ≤ K‖f‖ ≤ K[f(0)y + f(y)(1− y)],

which leads to

[1 +K(1− y)]f(y) ≥ (1−Ky)f(0) ≥ (1−Ky)‖f‖,
i.e., f(y) ≥ ε‖f‖.

Let x ≤ a1 be given. Then F
(s)
1 (x) > 0 and ψ

(s)
1 (x) ≤ ψ

(s)
1 (a1) < 1/K.

Let λ0 = λ0(x) = F
(s)
1 (x)ε(ψ(s)

1 (x)) > 0. It follows from (4.1) that for any
f ∈ CK ,

(P sf)(x) =
Ns∑

i=1

F
(s)
i (x)f(ψ(s)

i (x)) ≥ F (s)
1 (x)f(ψ(s)

1 (x))

≥ F (s)
1 (x)ε(ψ(s)

1 (x))‖f‖ = λ0‖f‖.

(2) Note that for any x < β, F (r)
1 (x) > 0. Fix x < β. It follows from

(1) that λ0 = λ0(ψ(r)
1 (x)) > 0 is well defined, since ψ(r)

1 (x) ≤ a1. Let δ0 =
δ0(x) = F

(r)
1 (x)λ0(ψ(r)

1 (x)) > 0. From (1), for any given f ∈ CK ,

(P r+sf)(x) =
Nr∑

i=1

F
(r)
i (x)(P sf)(ψ(r)

i (x)) ≥ F (r)
1 (x)(P sf)(ψ(r)

1 (x))

≥ F (r)
1 (x)λ0(ψ(r)

1 (x))‖f‖ = δ0‖f‖,

Proof of Lemma 4.7. Given a function φ on I, for each x ∈ (0, 1), φ(x−)
will denote limt→x− φ(t) provided the limit exists; similarly for φ(x+). Let
r, s be given as in Lemma 4.6 and let l = 1 + r + s ≥ 2.

The first guess for a choice of h would be h = ‖f‖Pχ[0,β] for then h ∈ J
and P lf −h = P (P l−1f −‖f‖χ[0,β]), which is decreasing on [0, β]. However,
it is not the case that we can always choose l large enough, independent of f
such that this function is positive on [0, β]. A slight modification is required.

We break the analysis into three cases.

Case 1: d ≡ T (β−) < β. By Lemma 4.6(2), δ0 = δ0(aN∗−1) > 0
is well defined. Noticing that (Pχ[0,β])(d+) = FN∗−1(d+) > 0, let t =
δ0(Pχ[0,β])(d+) > 0 and define h ∈ J (β) by

h = tχ[0,d] + δ0Pχ[0,β] · χ(d,β].
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Then � h > 0. For a given f ∈ CK(β), let f̂ = P r+sf and observe

(P f̂ − ‖f‖h)(x) =





(P f̂ )(x)− t‖f‖ if 0 ≤ x ≤ d,
(P f̂ )(x)− δ0‖f‖(Pχ[0,β])(x) if d < x ≤ β,
0 if β < x ≤ 1.

It is clear that P f̂ − ‖f‖h is decreasing on [0, d]. Let d < x ≤ β. For each
i = 1, . . . , N∗ − 1,

f̂(ψi(x)) ≥ f̂(ψN∗−1(x)) ≥ f̂(aN∗−1) ≥ δ0‖f‖.

Thus

(P f̂ − ‖f‖h)(x) =
N∗−1∑

i=1

Fi(x)[f̂(ψi(x))− δ0‖f‖] ≥ 0

and it is decreasing on (d, β]. Using the fact that h is continuous at d, we
conclude that P lf−‖f‖h ≥ 0 is decreasing on [0, 1], i.e., P lf−‖f‖h ∈ J (β).

Case 2: T (β−) = β and Pχ[0,β] 6= χ[0,β]. Notice that there exist c, d
with c < d < β such that (Pχ[0,β])(c+) > (Pχ[0,β])(d−). Since ψN∗(d

+) < β,
it follows from Lemma 4.6(2) that δ0 = δ0(ψN∗(d

+)) > 0 is well defined. Let

t = δ0[(Pχ[0,β])(c
+)− (Pχ[0,β])(d

−)] > 0

and define h ∈ J (β) by

h = tχ[0,c] + δ0[Pχ[0,β] − (Pχ[0,β])(d
−)]χ(c,d].

Then � h > 0. Let f ∈ CK(β) and f̂ = P r+sf . Letting s = δ0Pχ[0,β](d−)‖f‖,
we have

(P f̂ − ‖f‖h)(x) =





(P f̂ )(x)− t‖f‖ if 0 ≤ x ≤ c,
(P f̂ )(x)− δ0‖f‖(Pχ[0,β])(x) + s if c < x ≤ d,

(P f̂ )(x) if d < x ≤ 1.

Observe that P f̂ − ‖f‖h is decreasing on each of the three intervals [0, c],
(c, d] and (d, 1]. Since h is continuous at c and d, we see that P f̂ − ‖f‖h
is decreasing on [0, 1]. Since (P f̂ − ‖f‖h)(1) = (P f̂ )(1) ≥ 0, it follows that
P lf − ‖f‖h ∈ J (β).

Case 3: T (β−) = β and Pχ[0,β] = χ[0,β] (and FN∗(β) < 1). Since
aN∗−1 < β, it follows from Lemma 4.6(2) that δ0 = δ0(aN∗−1) > 0 is well
defined. Let t = (1 − FN∗(β))δ0 > 0 and define h ∈ J (β) by h = tχ[0,β].
Then � h > 0. We show that for a given f ∈ CK(β), P lf − ‖f‖h ∈ J (β).
Let f̂ = P r+sf . It is clear that P f̂ −‖f‖h is decreasing. Using the fact that
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FN∗(β) = 1, we have

(P f̂ )(β) =
N∗∑

i=1

Fi(β)f̂(ψi(β)) ≥
N∗−1∑

i=1

Fi(β)f̂(ψN∗−1(β))

≥
N∗−1∑

i=1

Fi(β)f̂(aN∗−1) ≥ (1− FN∗(β))δ0‖f‖ = t‖f‖.

Thus P lf − ‖f‖h ∈ J (β).

Proof of Lemma 4.8. Let l = l(K) ≥ 1 and h ∈ J (β) be given as in
Lemma 4.7. Choose δ > 0 so that

0 < δ <
K − b/(1− a)
K + b/(1− a)

< 1.

Note that K > b(1 + δ)/[(1− δ)(1− a)] > b(1 + δ)/(1− a). Let ε = Vh ≥ 0
and λ = min{δ/ � h, 1} > 0. Since a < 1 one may choose m ≥ 0 so that

m ≥ loga

[
K(1− δ)(1− a)− b(1 + δ)
(K + λε)(1− a)− b(1 + δ)

]
.

A simple computation shows

0 <
(
K + λε− b(1 + δ)

1− a

)
am +

b(1 + δ)
1− a ≤ K(1− δ).(4.2)

Let n = m+ l ≥ 1 and ĥ = Pm(λh) ∈ J (β). For a given f ∈ CK(β), let
ζ = Pnf − ‖f‖ĥ and φ = λ‖f‖h ∈ J . Note that

ζ = Pm(P lf − λ‖f‖h) = Pm(P lf − ‖f‖h) + (1− λ)Pm(‖f‖h)

from which ζ ∈ J , since P lf − ‖f‖h ∈ J and ‖f‖h ∈ J . Also ‖φ‖ ≤ δ‖f‖.
Thus

‖ζ‖ = ‖Pm(P lf − λ‖f‖h)‖ = ‖P nf‖ − ‖Pmφ‖ = ‖f‖ − ‖φ‖ ≥ (1− δ)‖f‖.
Using (3.3) and (4.2), observe that

Vζ ≤ VPm(P lf) + VPmφ

≤
(
amVP lf +

b(1− am)
1− a ‖P lf‖

)
+
(
amVφ+

b(1− am)
1− a ‖φ‖

)

≤
[
amK +

b(1− am)
1− a + amλε+

b(1− am)
1− a δ

]
‖f‖

=
[(
K + λε− b(1 + δ)

1− a

)
am +

b(1 + δ)
1− a

]
‖f‖

≤ K(1− δ)‖f‖ ≤ K‖ζ‖.
Clearly ζ(x) = 0 on (β, 1]. Therefore, ζ = P nf − ‖f‖ĥ ∈ CK(β).
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Proof of Proposition 4.9. Fix K > b/(1 − a). Let n = n(K) ≥ 1 and
ĥ ∈ J (β) be given as in Lemma 4.8. Let δ = � ĥ > 0. Suppose f = f1−f2 ∈
BV0(β), where f1, f2 ∈ CK(β) and ‖f‖ΓK = ‖f1‖ = ‖f2‖ (such f1, f2 exist
from Lemma 3.1). It follows from Lemma 4.8 that P nf1−‖f1‖ĥ ∈ CK(β) and
Pnf2−‖f2‖ĥ ∈ CK(β). Note that P nf = (Pnf1−‖f1‖ĥ)− (Pnf2−‖f2‖ĥ)
and ‖Pnf1 − ‖f1‖ · ĥ‖ = ‖Pnf2 − ‖f2‖ · ĥ‖. Thus

‖Pnf‖ΓK ≤ ‖Pnf1 − ‖f1‖ · ĥ‖ = (1− δ)‖f1‖ = (1− δ)‖f‖ΓK .
Since Pnf ∈ BV0(β), it follows that

‖Pn(Pnf)‖ΓK ≤ (1− δ)‖Pnf‖ΓK ≤ (1− δ)2‖f‖ΓK .
Repeating this process, we conclude that for each k ≥ 1, ‖P knf‖ΓK ≤
(1− δ)k‖f‖ΓK .

We will show some other ergodic properties of (T, gβdm) and use a no-
tation such as i1 . . . in, n ≥ 1, to denote an index with ik ∈ {1, . . . , N} for
each k = 1, . . . , n. This notation is particularly involved in the map T n; for
a given index i1 . . . in, I(n)

i1...in
will denote the interval that is the domain of

Tin ◦ . . . ◦ Ti1 , and define

F
(n)
i1...in

= Fi1(ψi2 ◦ . . . ◦ ψin)Fi2(ψi3 ◦ . . . ◦ ψin) . . . Fin−1(ψin)Fin .

Then for almost every x,

F
(n)
i1...in

(x) = (ψ(n)
i1...in

)′(x) = (ψi1 ◦ . . . ◦ ψin)′(x),

so the F
(n)
i1...in

form a consistent set of weights for the Perron–Frobenius
operator for T n.

Let I denote the set of all finite strings of indices such as i1 . . . in with
ik ∈ {1, . . . , N} for each k = 1, . . . , n, and Iβ = {i1 . . . in ∈ I | 1 ≤ ik ≤ N∗
for k = 1, . . . , n}. Recall that β = aN∗ .

Theorem 4.10. Suppose T satisfies the conditions in Theorem 1.1 and
the expanding condition (E). Then

lim sup
n→∞

max
i1...in∈Iβ

‖F (n)
i1...in

‖∞ < 1.

Corollary 4.11. If T satisfies the conditions in Theorem 1.1 and the
expanding condition (E), then the partition of I = [0, β] into monotonicity
intervals for T is weak-Bernoulli for (Tβ, gβdx). The natural extension of
this system is therefore isomorphic to a Bernoulli shift.

Proof. One can easily deduce that

lim
n→∞

max
i1...in∈Iβ

‖F (n)
i1...in

‖1/n∞ < 1,
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Choose a power s > 0 such that T sβ is uniformly expanding on [0, β]. Com-
bining this with the exponential rate of decay in Theorem 4.5 (applied to
T sβ), it is not difficult to show directly that the monotonicity partition for
T sβ is weak-Bernoulli, and by elementary argument, so is the original mono-
tonicity partition for Tβ. Alternatively, the article of Rychlik [11] may be
invoked. A few comments are in order. First the assumptions in [11] may
appear to be incompatible with our convexity assumption (C), however,
note that the latter implies the weight function g (in the notation of [11])
is of bounded variation. The condition that g|S ≡ 0 is not generally sat-
isfied by our maps, but can be obtained with a measure-zero perturba-
tion of our weight function, so the operator P in that work is identified
with our Perron–Frobenius operator (1.2). The proof of the weak-Bernoulli
property in §3 of [11] depends only on the uniform expanding condition
and the fact that the peripheral spectrum of the operator P consists of
one simple eigenvalue at 1. These follow from our Theorem 4.5 applied
to T sβ .

Remark 4.2. The convexity condition (C) always guarantees that

max
i1...in∈Iβ

‖F (n)
i1...in

‖∞ ≤ 1

for all n large enough. This is obvious from Theorem 4.10 when FN∗(β) < 1,
i.e., T satisfies the expanding condition (E). Suppose FN∗(β) = 1. It follows
that Pχ[0,β] = χ[0,β], or equivalently, FN∗ = χ[0,β], which means that for
each j = 1, . . . , N∗, Fj(x) ≤ 1 for all x ∈ [0, 1]. Thus for all n ≥ 1,

max
i1...in∈Iβ

‖F (n)
i1...in

‖∞ ≤ 1.

In fact, in case FN∗(β) = 1, we have TN∗(β) = β, so that ψN∗(β) = β. Thus
for each n ≥ 1,

max
i1...in∈Iβ

‖F (n)
i1...in

‖∞ ≥ F (n)
N∗...N∗(β) =

n−1∏

k=0

FN∗(ψ
k
N∗(β)) =

n−1∏

k=0

FN∗(β) = 1,

which implies

max
i1...in∈Iβ

‖F (n)
i1...in

‖∞ = 1.

Thus FN∗(β) < 1 if and only if some power of T is expanding on [0, β]
(see [5]).

To prove Theorem 4.10, we first present two simple observations which
require the convexity only.

Lemma 4.12. There exists M≥1 such that for all m≥1, ‖Pm1‖∞≤M .



Invariant measures 283

Proof. Recall (the paragraph preceding Lemma 3.3) that there exist a ∈
(F1(0), 1) and b <∞ such that for any given f ∈ J and for any m ≥ 1,

VPmf ≤ amVf +
b(1− am)

1− a ‖f‖.

With f = 1 ∈ J , we have Vf = 0 and ‖f‖ = 1. Thus for any m ≥ 1,

VPm1 ≤ b

1− a.

Since (Pm1)(1) ≤ 1, it follows that

VPm1 = (Pm1)(0)− (Pm1)(1) ≥ (Pm1)(0)− 1,

so that

‖Pm1‖∞ = (Pm1)(0) ≤ VPm1 + 1 ≤ b

1− a + 1.

Letting M = b/(1− a) + 1 completes the proof.

Lemma 4.13. Let n ≥ 1 and F
(n)
i1...in

(x∗) ≥ B > 0 for some index i1 . . . in
and x∗ ∈ [0, 1]. Then for any given p, q, 0 ≤ p < q ≤ n, letting xq+1 =
ψiq+1 ◦ ψiq+2 ◦ . . . ◦ ψin(x∗) (xn+1 = x∗), we have

F
(q−p)
ip+1...iq

(xq+1) ≥ B/M2.

Proof. Let xp+1 = ψip+1 ◦ψip+2 ◦ . . . ◦ψin(x∗). If 1 ≤ p < q ≤ n− 1, then
it immediately follows from Lemma 4.12 that

B ≤ F (n)
i1...in

(x∗) = F
(p)
i1...ip

(xp+1)F (q−p)
ip+1...iq

(xq+1)F (n−q)
iq+1...in

(x∗)

≤MF
(q−p)
ip+1...iq

(xq+1)M,

which implies F (q−p)
ip+1...iq

(xq+1) ≥ B/M2.
If p = 0 or q = n, then similarly we have

B ≤ F (n)
i1...in

(x∗) ≤MF
(q−p)
ip+1...iq

(xq+1)

which implies that F (q−p)
ip+1...iq

(xq+1) ≥ B/M ≥ B/M2.

Lemma 4.14. Suppose the assumption in Theorem 4.10 holds. Then for
each j = 1, . . . , N∗, there exists α(j) ∈ N such that

∥∥∥
α(j)∏

k=1

Fj(ψk−1
j )

∥∥∥
∞
<

1
2M2 .

Proof. For j = 1, since ‖F1‖∞ < 1, there exists m ≥ 1 such that
(‖F1‖∞)m < 1/(2M2). With α(1) = m, it is clear that

∥∥∥
α(1)∏

k=1

F1(ψk−1
1 )

∥∥∥
∞
≤ (‖F1‖∞)α(1) <

1
2M2 .
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Fix j, 2 ≤ j ≤ N . First suppose either Tj(x) < x for all x ∈ Ij =
[aj−1, aj ], or that Tj(x) > x for all x ∈ Ij . Then either Tj(aj) < aj or
Tj(aj−1) > aj−1. It is easy to see that there exists m ≥ 1 such that either
for any k ≥ m,

ψkj (x) >
aj + Tj(aj)

2
> Tj(aj) for all x,

or for any k ≥ m,

ψkj (x) <
aj−1 + Tj(aj−1)

2
< Tj(aj−1) for all x,

which implies in either case that for any k ≥ m, we have Fj(ψkj (x)) = 0 for
all x. Letting α(j) = m+ 1, we get

∥∥∥
α(j)∏

k=1

Fj(ψk−1
j )

∥∥∥
∞

= 0,

which completes the proof in this case.
Now assume 2 ≤ j ≤ N∗ and Tj(z∗) = z∗ (so ψj(z∗) = z∗) for some

z∗ ∈ [aj−1, aj ] (0 < z∗ ≤ β if such z∗ exists). Then

z∗ = ψj(z∗) =
z∗�

0

Fj(x) dx+ aj−1 =
z∗�

0

Fj(x) dx+
1�

z∗
Fj−1(x) dx(4.3)

≥
z∗�

0

Fj(x) dx ≥ z∗Fj(z∗),

since Fj =
∑j

i=1 Fi is decreasing. Thus Fj(z∗) ≤ 1 and hence for any x ≥ z∗,
Fj(x) ≤ 1.

We claim that such a z∗ is unique. In fact, if ψj(z0) = z0, ψj(z1) = z1,
and 0 < z0 < z1 ≤ β, then Fj(x) ≤ 1 on [z0, 1] so that z1 − z0 = � z1z0 Fj(t) dt
and hence Fj(x) = 1 on [z0, z1]. Then Fj−1(x) = 0 on [z0, z1]. Thus β ≤ z0,
which is a contradiction.

We will show that there exist ε > 0 and w∗ < z∗ such that for any
y ∈ [w∗, 1], Fj(y) ≤ 1 − ε < 1. First suppose Fj(z∗) < 1. The assumption
that Fj is upper semicontinuous implies then that there exist ε > 0 and
w∗ < z∗ such that for any y ∈ [w∗, 1], Fj(y) ≤ 1−ε and so Fj(y) ≤ 1−ε < 1.
Next in case Fj(z∗) = 1, it follows from (4.3) that Fj(x) = 1 on [0, z∗] and
Fj−1(x) = 0 on (z∗, 1]. Thus β ≤ z∗, which means z∗ = β and so j = N∗.
Then FN∗(x) = 1 on [0, β], which indicates that FN∗ is increasing on [0, β].
Since FN∗(β) < 1, it easily follows that there exists ε (= 1−FN∗(β)) > 0 such
that for any y ∈ [0, 1], Fj(y) = FN∗(y) ≤ 1− ε < 1. Therefore in either case,
there exist ε > 0 and w∗ < z∗ such that for any y ∈ [w∗, 1], Fj(y) ≤ 1−ε < 1.

Note that for any x < z∗, ψkj (x) ↗ z∗ as k → ∞ and for any x > z∗,
ψkj (x) ↘ z∗ as k → ∞. Thus there exists m ≥ 1 such that for any given
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k ≥ m, for any x ∈ [0, 1], ψkj (x) > w∗ and hence Fj(ψkj (x)) ≤ 1− ε. Let

α(j) =
[
m− ln(2M3)

ln(1− ε)

]
+ 1.

By Lemma 4.12,

∥∥∥
α(j)∏

k=1

Fj(ψk−1
j )

∥∥∥
∞
≤
∥∥∥

m∏

k=1

Fj(ψk−1
j )

∥∥∥
∞

∥∥∥
α(j)∏

k=m+1

Fj(ψk−1
j )

∥∥∥
∞

≤ ‖F (m)
j...j︸︷︷︸
m

‖∞
α(j)∏

k=m+1

‖Fj(ψk−1
j )‖∞

≤M(1− ε)α(j)−m <
1

2M2 .

We now introduce some notations and definitions.

Definition 4.1. (1) For n ≥ 3, an index i1 . . . in is said to be bowl-
shaped if there exists r, 2 ≤ r ≤ n− 1, for which i1 > ir and

i1 ≥ . . . ≥ ir < ir+1 < . . . < in.

(2) For n ≥ 1, an index i1 . . . in is said to be increasing if i1 ≤ . . . ≤ in.
(3) For n ≥ 1, an index i1 . . . in is said to be decreasing if i1 ≥ . . . ≥ in.
(4) For n ≥ 1, an index i1 . . . in is said to be monotone if it is either

increasing or decreasing.

Under the notations in Lemma 4.14, let α =
∑N∗

j=1 α(j).

Lemma 4.15. Suppose the assumption in Theorem 4.10 holds. Let n ≥ 1
and an index i1 . . . in ∈ Iβ be given so that ‖F (n)

i1...in
‖∞ ≥ 1. If for some s, t,

1 ≤ s < t ≤ n, a subindex is . . . it is monotone, then t− s < α.

Proof. Suppose t − s ≥ α. Since either is ≤ . . . ≤ it or is ≥ . . . ≥ it,
there exist j and r such that 1 ≤ j ≤ N∗ and s− 1 ≤ r ≤ t− α(j) and

ir+1 = . . . = ir+α(j) = j.

Using Lemma 4.12 and Lemma 4.14, we obtain

1 ≤ ‖F (n)
i1...in

‖∞ ≤ ‖F (r)
i1...ir
‖∞‖F (α(j))

ir+1...ir+α(j)
‖∞‖F (n−r−α(j))

ir+α(j)+1...in
‖∞

≤M‖F (α(j))
j...j︸︷︷︸
α(j)

‖∞M = M2
∥∥∥
α(j)∏

k=1

Fj(ψk−1
j )

∥∥∥
∞

< M2 1
2M2 =

1
2
,

which is a contradiction.
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Remark 4.3. The proof of Lemma 4.15 directly shows that in particular
when

is . . . it = j . . . j︸ ︷︷ ︸
t−s+1

for some j ∈ {1, . . . , N∗}, we have t− s+ 1 < α(j).

It is not difficult to show the following result.

Lemma 4.16. For any n ≥ 1 and for any given index i1 . . . in, there
exists a (unique) partition of {1, . . . , n} such that

(1) 1 = n0 ≤ n1 < . . . < nk ≤ nk+1 = n for some k ≥ 0;
(2) either n1 = 1 or i1 . . . in1 is increasing with in1−1 < in1 ;
(3) for each l = 1, . . . , k − 1, inl . . . inl+1 is bowl-shaped ;
(4) ink . . . in is decreasing.

Definition 4.2. For a given index ω = i1 . . . in, n ≥ 3, b(ω) denotes the
number of bowl-shaped subindices contained in ω, i.e., b(ω) = max{k−1, 0}
with the notation as above.

For each n ≥ 1, define Un to be

Un = {i1 . . . in ∈ Iβ | ‖F (n)
i1...in

‖∞ ≥ 1}
and let U =

⋃∞
n=1 Un.

Lemma 4.17. Suppose the assumption in Theorem 4.10 holds and that
there exists {nk}∞k=1 for which nk → ∞ as k → ∞ and Unk 6= ∅. Then for
any given L ≥ 1, there exists ω ∈ U such that b(ω) ≥ L.

Proof. We first show that there exists D ≥ 1 for which for any n ≥ 1
and for any given ω = i1 . . . in ∈ Un, there exists a (unique) partition of
{1, . . . , n} such that

(1) 1 = n0 ≤ n1 < . . . < nk ≤ nk+1 = n for some k ≥ 0;
(2) either n1 = 1 or i1 . . . in1 is increasing with in1−1 < in1 ;
(3) for each l = 1, . . . , k − 1, inl . . . inl+1 is bowl-shaped;
(4) ink . . . in is decreasing;
(5) for each l = 0, 1, . . . , k, nl+1 − nl ≤ D.

By Lemma 4.16, it suffices to show (5). In fact, it immediately follows
from Lemma 4.15 that n1 − n0 = n1 − 1 < α and nk+1 − nk = n− nk < α,
since each corresponding index is monotone. Also, for each l = 1, . . . , k− 1,
we have nl+1 − nl < α + N∗, since each index inl . . . inl+1 consists of one
decreasing index and one strictly increasing index. Letting D = α+N∗− 1,
we obtain nl+1 − nl ≤ D for each l = 0, 1, . . . , k.
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Now choose n ≥ (L+ 3)D and ω = i1 . . . in ∈ Un. Using the notations as
above, we get

(L+ 3)D ≤ n =
k∑

l=0

(nl+1 − nl) + 1 ≤ (k + 1)D + 1,

which implies that b(ω) = k − 1 ≥ L.

Remark 4.4. In case k ≥ 1, it is easy to see that

b(ω) > n/D − 2.

The following is true for any interval map that satisfies condition (C1).

Lemma 4.18. Let j1 . . . jm, m ≥ 3, be bowl-shaped , i.e., there exists r,
2 ≤ r ≤ m− 1, such that j1 > jr and

j1 ≥ . . . ≥ jr < jr+1 < . . . < jm.

Let zm+1 ∈ (0, 1] be given and for each s = 1, . . . ,m, let

(1) zs = ψjs ◦ . . . ◦ ψjm(zm+1) = ψjs(zs+1) (zs ∈ Ijs);
(2) As = Fjs(zs+1).

Then for each s = 1, . . . ,m,

As ≤ zs/zs+1.

Moreover , if for some t ∈ {1, . . . , r − 1},
j1 ≥ . . . ≥ jt > jt+1 = . . . = jr < jr+1

(such a t always exists), then

At ≤ zt/zt+1 − Ar.
Proof. First, note that for each s = 1, . . . ,m, we have zs+1 > 0. Then

for a fixed s, 1 ≤ s ≤ m,

zs = ψjs(zs+1) =
zs+1�

0

Fjs(x) dx+ ajs−1 =
zs+1�

0

Fjs(x) dx+
1�

zs+1

Fjs−1(x) dx

≥
zs+1�

0

Fjs(x) dx ≥ zs+1Fjs(zs+1) ≥ zs+1Fjs(zs+1) = zs+1As,

which implies As ≤ zs/zs+1.

To prove the second statement, observe that zt+1 ∈ Ijt+1 and zr+1 ∈
Ijr+1 , so that zt+1 ≤ zr+1, since jt+1 < jr+1. Noticing that jt > jr, we have
Fjt ≥ Fjr + Fjt , which means

Fjt(zt+1) ≥ Fjr(zt+1) + Fjt(zt+1) ≥ Fjr(zr+1) + Fjt(zt+1) ≥ Ar + At.
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Thus similarly

zt = ψjt(zt+1) ≥
zt+1�

0

Fjt(x) dx ≥ zt+1Fjt(zt+1) ≥ zt+1(Ar + At).

Therefore At ≤ zt/zt+1 −Ar.
Proof of Theorem 4.10. Let ω = i1 . . . in ∈ Un, n ≥ 3α, and choose

x∗ ∈ [0, 1] so that F (n)
i1...in

(x∗) ≥ 1/2. Denote the partition of {1, . . . , n−α(1)}
given in Lemma 4.16 by

1 = n0 ≤ n1 < . . . < nk ≤ nk+1 = n− α(1), k ≥ 2.

Note that b(ω) ≤ k − 1 + α(1). Let xn+1 = x∗ and for each s = 1, . . . , n, let

xs = ψis ◦ . . . ◦ ψin(x∗) = ψis(xs+1).

Since in−α(1)+1 . . . in 6= 1 . . . 1 (see Remark 4.3), we have xs > 0 for each
s = 1, . . . , n − α(1) + 1. Also for each l = 2, . . . , k, xnl ≥ a1, since inl >
inl−1 ≥ 1.

Fix l, 1 ≤ l ≤ k − 1, and consider a bowl-shaped index j1 . . . jm =
inl . . . inl+1 , where m = nl+1−nl+1. Let zm+1 = xnl+1+1 (> 0) and for each
s = 1, . . . ,m, define zs = ψjs(zs+1) (= ψinl+s−1(xnl+s)) and As = Fjs(zs+1).
Under the notations in Lemma 4.18, observe that for each s = 1, . . . ,m,

As ≤
zs
zs+1

(4.4)

and

At ≤
zt
zt+1

− Ar =
(

1− zt+1

zt
Ar

)
zt
zt+1

.

We now show that there exists δ > 0, which depends on T only, such
that

zt+1

zt
Ar ≥ δ > 0.

First it follows from Lemma 4.13 that for each s = 1, . . . ,m,

As ≥
1

2M2 .

Consequently,

zt+1 ≥ At+1zt+2 ≥ . . . ≥ At+1At+2 . . . Arzr+1 ≥
(

1
2M2

)r−t
zr+1.

Using the notation in the proof of Lemma 4.17, we have r−t ≤ m−2 ≤ D−1.
Also using the fact that zr+1 ∈ Ijr+1 and jr+1 > jr ≥ 1, we get zr+1 ≥ a1
and so

zt+1 ≥
(

1
2M2

)D−1

a1.
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Let δ = (2M2)−Da1 > 0. Then

zt+1

zt
Ar ≥

(
1

2M2

)D−1

a1
1

2M2 = δ.

This indicates that
At ≤ (1− δ) zt

zt+1
,

which combined with (4.4) implies that for a fixed l, 1 ≤ l ≤ k − 1,

F
(nl+1−nl)
inl ...inl+1−1

(xnl+1) = F
(m−1)
j1...jm−1

(zm) =
m−1∏

s=1

As ≤ (1− δ)
m−1∏

s=1

zs
zs+1

= (1− δ) z1

zm
= (1− δ) xnl

xnl+1

.

Therefore

1
2
≤ F (n)

i1...in
(x∗) = F

(n1−1)
i1...in1−1

(xn1)
( k−1∏

l=1

F
(nl+1−nl)
inl ...inl+1−1

(xnl+1)
)
F

(n−nk+1)
ink ...in

(x∗)

≤M
k−1∏

l=1

(
(1− δ) xnl

xnl+1

)
M ≤M2 xn1

xnk
(1− δ)k−1

≤M2 1
a1

(1− δ)b(ω)−α(1),

where we have used the fact that for each l = 2, . . . , k, xnl ≥ a1, since
inl > inl−1 ≥ 1.

This gives a contradiction if n is chosen so that

n

D
>

ln(a1/(2M2))
ln(1− δ) + 2 + α(1),

which would imply that

b(ω)− α(1) >
n

D
− 2− α(1) >

ln(a1/2M2)
ln(1− δ)

(see Remark 4.4) or equivalently

M2 1
a1

(1− δ)b(ω)−α(1) <
1
2
.

Therefore there exists L ≥ 1 such that for any n ≥ L, Un = ∅.

5. Ergodic properties of an invariant measure: case II. Through-
out this section T is assumed to satisfy the conditions of Theorem 1.1. As
mentioned in Remark 4.2, when FN∗(β) = 1, every power of the map T fails
to be expanding on [0, β]. However it turns out that (T, gβdm) is exact.
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Theorem 5.1. Suppose T satisfies the conditions in Theorem 1.1 and
FN∗(β) = 1. If f ∈ BV(β), f ≥ 0, and ‖f‖ = β, then

‖Pnf − χ[0,β]‖ → 0 as n→∞.
Notice that the assumption FN∗(β) = 1 implies Pχ[0,β] = χ[0,β]. Let

g∗ = χ[0,β]/β ∈ BV(β). Theorem 5.1 shows that (T, g∗dm) is exact (see the
proof of Theorem 4.5), so that gβ = g∗ = χ[0,β]/β. Combined with Theorem
4.5, this yields the following.

Corollary 5.2. Suppose T satisfies the conditions in Theorem 1.1.
Then gβ obtained from Lemma 4.4 is a unique invariant density of T in
BV(β) and (T, gβdm) is exact.

In order to show Theorem 5.1, we establish convergence at the single
point zero, after which the full result will follow easily.

Lemma 5.3. Let f ∈ J (β). Then (P nf)(0)→ ‖f‖ as n→∞.

Proof. Since we assume Pχ[0,β] = χ[0,β], using Remark 2.1, we may fur-
ther assume that FN∗ ≡ 1.

For each n ≥ 0, let Cn = (Pnf)(0). Then

Cn+1 =
N∑

i=1

Fi(0)(Pnf)(ψi(0)) ≤
N∑

i=1

Fi(0)(Pnf)(0) = Cn,

so that as n→∞, Cn ↘ C∗ for some C∗ ≥ ‖f‖.
Let b0 = 0. For each k ≥ 1, let lk = max{i | 1 ≤ i ≤ N∗, Fi(bk−1) > 0}

and bk = ψlk(bk−1).
Next, we claim that for each k, limn→∞ Pnf(bk) = limn→∞ Pnf(b0)

= C∗.
Once again we use (C1) for a fixed k to find

Flk(bk−1) = 1− Flk−1(bk−1) > 0,

while for each n ≥ 0,

(Pn+1f)(bk−1) =
N∗∑

i=1

Fi(bk−1)(Pnf)(ψi(bk−1))

=
lk∑

i=1

Fi(bk−1)(Pnf)(ψi(bk−1))

≤
lk−1∑

i=1

Fi(bk−1)(Pnf)(0) + Flk(bk−1)(Pnf)(ψlk(bk−1))

=
lk−1∑

i=1

Fi(bk−1)Cn + Flk(bk−1)(Pnf)(bk).
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Thus for each k ≥ 1,

lim inf
n→∞

(Pnf)(bk−1) ≤ (1− Flk(bk−1))C∗ + Flk(bk−1) lim inf
n→∞

(Pnf)(bk).

Noticing that limn→∞(Pnf)(b0) = C∗ and using induction on k, we have for
each k ≥ 0,

C∗ ≤ lim inf
n→∞

(Pnf)(bk).

Meanwhile, fix k ≥ 0. Since for any given n ≥ 0, P nf is decreasing, it
follows that (P nf)(bk) ≤ (Pnf)(0) = Cn, which implies

lim sup
n→∞

(Pnf)(bk) ≤ C∗.

Thus for each k ≥ 0, limn→∞(Pnf)(bk) = C∗, as claimed.
Next, observe that for each k ≥ 0, bk < β, for if not, and if k is chosen

to be minimal such that bk = β, then obviously lk = N∗ and FN∗(bk−1) > 0.
However, FN∗ = 1−FN∗−1 is increasing, so FN∗ > 0 on [bk−1, bk] = [bk−1, β],
contradicting ψN∗ ≡ β on [bk−1, β] in the convexity condition (C1).

However, we will show that

sup{bk | k ≥ 0} = β,(5.1)

in which case for any x ∈ [0, β), limn→∞(Pnf)(x) = C∗. As limn→∞(Pnf)(x)
= 0 on (β, 1], it easily follows that C∗ = ‖f‖, i.e., limn→∞(Pnf)(x) = ‖f‖
on [0, β]. In particular, (P nf)(0) → ‖f‖ as n → ∞, which completes the
proof.

To see (5.1), let r = max{lk | k ≥ 1} and notice that l1 ≥ 2 so r ≥ 2. If
r < N∗ set s = inf{T (x+) | ar ≤ x < β}, otherwise set s = β. We want to
show that the sequence bk is contained in [0, s]. If for some k, bk > s, then
r < N∗ and

∑N∗
i=r+1 Fi(bk) > 0. If this is not the case, i.e.

∑N∗
i=r+1 Fi(bk) = 0,

then
∑N∗

i=r+1 Fi ≡ 0 on [s, bk] since the sum is an increasing function on [0, β],
which in view of the convexity condition (C1) contradicts the definition of
s above. But then clearly lk+1 > r, another contradiction.

Choose m ≥ 1 so that lm = r. Then bm = ψlm(bm−1) = ψr(bm−1) ∈
[ar−1, ar]. Since 0 < bm < β and

T [bm, β] ⊆ [Tr(bm), β] ∪ [s, β] ⊆ [Tr(bm), β] ∪ [bm, β],

it follows from Lemma 4.2 that bm−1 = Tr(bm) < bm, i.e., Tr(ar−1) ≤
Tr(bm) < bm ≤ s.

Now, on [0, s], Fr is increasing, so

0 < Fr(bm−1) = Fr(Tr(bm)) ≤ Fr(bm),

which implies lm+1 = r. A simple induction shows that lm+k = r for all
k = 0, 1, . . . and that the sequence bm+k is increasing on [ar−1, ar] for all
such k.



292 C. Bose et al.

Define b∗ = limk→∞ bm+k = liml→∞ bl. Using ar−1 ≤ b∗ ≤ ar and b∗ ≤ s,
combined with Tr(b∗) = b∗ yields

T [b∗, β] ⊆ [Tr(b∗), β] ∪ [s, β] ⊆ [b∗, β].

Finally, Lemma 4.2 implies b∗ = β and (5.1) has been verified.

Proof of Theorem 5.1. Let f ∈ J (β) and ‖f‖ = β. For each n ≥ 1, let
dn = inf{x ∈ [0, 1] | (P nf)(x) ≤ 1}. Clearly, for any given n ≥ 1, dn (≤ β)
exists, and

β = ‖Pnf‖ =
dn�

0

Pnf +
1�

dn

Pnf,

which implies that
1�

dn

|Pnf − χ[0,β]| =
β�

dn

[1− (Pnf)(x)] dx

=
dn�

0

[(Pnf)(x)− 1] dx =
dn�

0

|Pnf − χ[0,β]|.

Since for each n ≥ 1, P nf is decreasing, we have

‖Pnf − χ[0,β]‖ = 2
dn�

0

|Pnf − χ[0,β]| ≤ 2dn[(Pnf)(0)− 1] ≤ 2[(P nf)(0)− 1].

It follows from Lemma 5.3 that ‖P nf − χ[0,β]‖ → 0 as n→∞.
Now suppose f ∈ BV(β), f ≥ 0, and ‖f‖ = β. Then f−χ[0,β] ∈ BV0(β),

and hence there exist f 1, f2 ∈ J (β) such that f − χ[0,β] = f1 − f2 and
‖f1‖ = ‖f2‖. Thus

‖Pnf − χ[0,β]‖ = ‖Pn(f1 − f2)‖
= ‖(Pnf1 − ‖f1‖χ[0,β]/β)− (Pnf2 − ‖f2‖χ[0,β]/β)‖
≤ [‖Pn(βf1/‖f1‖)− χ[0,β]‖+ ‖Pn(βf2/‖f2‖)− χ[0,β]‖] · ‖f1‖/β,

where the last expression converges to 0 as n→∞. Therefore ‖P nf − χ[0,β]‖
→ 0 as n→∞.

6. Ergodic properties on the unit interval. Suppose T satisfies the
conditions of Theorem 1.1 and

⋃∞
n=1 T

n[0, a1] = T [0, 1] (which is the case
in particular when β = 1). Corollary 5.2 indicates that g ∈ BV obtained
from Theorem 1.1 is a unique invariant density of T and (T, gdm) is ex-
act. Furthermore, Theorem 4.5, combined with Theorem 4.10, shows that if
FN (1) < 1, then (T, gdm) has exponential decay of correlations and some
power of T is expanding, hence Bernoulli. In this section, we will consider the
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case where
⋃∞
n=1 T

n[0, a1] ( T [0, 1] (so β < 1) and investigate ergodic prop-
erties of (T, gdm) on the unit interval. Maps satisfying the Lasota–Yorke
convexity condition are known to have the property that the invariant prob-
ability density is unique and the unique a.c.i.m. is exact for T (cf. [9]). It
turns out that our weaker convexity condition (C) is not sufficient to im-
ply exactness, or even to guarantee uniqueness of the invariant probability
density as the following simple example shows.

Example 6.1. Let

T (x) =





2x if 0 ≤ x < 1/4,
2x− 1/2 if 1/4 ≤ x < 3/4,
2x− 1 if x ≥ 3/4

1

0 11 3__

3

1_

1_
2

T

T

T

4 2 4

T

1

2

Fig. 6.1

(see Figure 6.1). Lebesgue measure is preserved and β = 1/2. However, T
supports infinitely many a.c.i.m. on [0, 1] with densities g1 = 2χ[0,1/2], g2 =
2χ[1/2,1] and gα = αg1 +(1−α)g2, for 0 < α < 1, so T is certainly not exact.
(However, Tβ is exact, as required by the arguments in §5, and obviously
T |[1/2,1] is also exact.) Consider the nontrivial invariant interval [1/2, 1]. If
it is only noticed that T [1/2, 1] ⊆ [1/2, 1] then T−1[1/2, 1] ⊇ [1/2, 1], from
which it follows that the interval is invariant. This simple observation turns
out to be the key to understanding exactness, even when Lebesgue measure
is not invariant.

With this example in mind, we define our mixing condition denoted
by (M):

(M) For each d ∈ (β, 1], T [β, d] * [β, d].

Remark 6.1. We present two conditions related to the uniqueness of
the invariant density.

(A) For any c, d, 0 < c < d, we have 0 ∈ ⋂n≥1
⋃
k≥n T

k[c, d].
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(B) If D is a finite union of closed intervals, then either 0 ∈ D or T (D)
* D.

It can be shown directly that (A) is a necessary and sufficient condition
for T to have a unique invariant density in BV. It is clear that (A) implies
(B), which is stronger than (M). In general, neither of the converses is true.
However, it turns out that condition (M), together with the convexity con-
dition (C), does imply (A). In other words, it guarantees the uniqueness of
invariant density, and in fact the exactness also follows.

Throughout this section T is assumed to satisfy the conditions of Theo-
rem 1.1 and condition (M).

Lemma 6.1. Let gβ be the invariant density defined in Lemma 4.4. Then
gβ = g.

Proof. Let g2 = gχ(β,1] = g − gβ. Since Pgβ = gβ, it follows that
Pg2 = g2. Suppose g2 6≡ 0. Since g2 is decreasing on (β, 1], there exists
γ ∈ (β, 1] such that g−1

2 (R \ {0}) = [β, γ]. We claim that T [β, γ] ⊆ [β, γ],
which contradicts the mixing condition (M) and so yields g2 ≡ 0, i.e., gβ = g.
To prove the claim, let B = [0, β) ∪ (γ, 1] and observe

0 =
�

B

g2 dm =
�
Pg2 · χB dm =

�

T−1B

g2 dm =
�

Bc∩T−1B

g2 dm,

which implies that Bc ∩ T−1B ⊆ {β, γ}. Since T (Bc) = T [β, γ] is a finite
union of nontrivial closed intervals, it follows that T (Bc) ⊆ Bc, as we have
claimed.

Lemma 6.2. For a given f ∈ BV,

‖(Pnf)χ(β,1]‖ → 0 as n→∞.

Proof. For each n ≥ 1, let hn = (1/n)
∑n−1

s=0 P
s1 and take a subsequence

{nk}∞k=1 so that hnk → h in ‖ · ‖ as nk → ∞, where h ∈ J is an invariant
density of T (see the proof of Theorem 1.1). It follows from Lemma 6.1 that
h(x) = 0 on (β, 1].

Let f ≥ 0 and f ∈ BV. Since T [0, β] ⊆ [0, β], we have T−1[β, 1] ⊆ [β, 1]
and so

1�

β

Pf dm ≤
1�

β

f dm.

Let M = ‖f‖∞ <∞. It inductively follows that for a given n ≥ 1,
1�

β

Pn−1f dm ≤
1�

β

Pn−2f dm ≤ . . . ≤
1�

β

f dm,
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which implies
1�

β

Pn−1f dm =
1
n

n−1∑

s=0

1�

β

Pn−1f dm ≤ 1
n

n−1∑

s=0

1�

β

P sf dm

≤ 1
n

n−1∑

s=0

1�

β

P s(M · 1) dm = M
1
n

n−1∑

s=0

1�

β

P s1 dm

= M‖hnχ(β,1]‖ ≤M‖hn − h‖.
Since ‖hnk − h‖ → 0 as nk →∞, it follows that

‖(Pnf)χ(β,1]‖ → 0 as n→∞.
For any given f ∈ BV, letting f = f+ − f−, where f+, f− ≥ 0 and

f+, f− ∈ BV, and applying the same argument to f+, f−, we have

‖(Pnf)χ(β,1]‖ → 0 as n→∞.
Corollary 6.3. Let gβ be the invariant density defined in Lemma 4.4.

Then gβ = g is a unique invariant density of T .

Proof. Suppose φ ∈ BV, φ ≥ 0, and Pφ = φ. By Lemma 6.2,
1�

β

φdm =
1�

β

Pmφdm→ 0 as m→∞,

which implies φ(x) = 0 on (β, 1], i.e., φ ∈ BV(β). From Corollary 5.2, we
get φ = g. Therefore g = gβ is a unique invariant density of T .

Theorem 6.4. Suppose T satisfies the conditions in Theorem 1.1 and
condition (M). Then (T, gdm) is exact.

Proof. Let f ∈ BV, f ≥ 0, and ‖f‖ = 1. Let ε > 0 be given. From
Lemma 6.2, there exists m ≥ 1 such that

‖(Pmf)χ(β,1]‖ < ε/3.

Let fβ = (Pmf)χ[0,β] ∈ BV(β) and A = ‖fβ‖. Using Theorem 4.5, choose
n > m so that

‖Pn−m(fβ/A)− g‖ < ε/3.

Since A = 1− ‖(Pmf)χ(β,1]‖ ≤ 1 and P is a contraction in ‖ · ‖,
‖Pnf − g‖ ≤ ‖Pn−mfβ − Ag‖+ ‖(A− 1)g‖+ ‖P n−m(Pmf − fβ)‖

≤ ‖Pn−m(fβ/A)− g‖+ (1− A) + ‖(Pmf)χ(β,1]‖
< ε/3 + ε/3 + ε/3 = ε.

Therefore (T, gdm) is exact.

Theorem 6.5. Suppose T satisfies the conditions in Theorem 1.1 and
conditions (M) and (E). If limx→β+ FN∗+1(x) < 1, then some power of T
is expanding , hence Bernoulli.
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Using the additional hypothesis limx→β+ FN∗+1(x) < 1 and the mixing
condition (M), we modify the proof of Lemma 4.14 and obtain the following.

Lemma 6.6. Suppose the assumption in Theorem 6.5 holds. Then for
each j = 1, . . . , N , there exists α(j) ∈ N such that

∥∥∥
α(j)∏

k=1

Fj(ψk−1
j )

∥∥∥
∞
<

1
2M2 .

Proof. From the proof of Lemma 4.14, it suffices to show that ifN∗ < j ≤
N and Tj(z∗) = z∗ for some z∗ ∈ [aj−1, aj ] (z∗ ≥ β), then there exist ε > 0
and w∗ < z∗ such that for any y ∈ [w∗, 1], Fj(y) ≤ 1− ε < 1. In fact, in the
case where Fj(z∗) < 1, similarly the fact that Fj is upper semicontinuous
completes the proof of the claim. If Fj(z∗) = 1, then it also follows from (4.3)
that Fj(x) = 1 on [0, z∗). Using T [0, β] = [0, β] and the Markov property of
P we get � 1

0FN∗ = � β0 FN∗ = β so that FN∗(x) = 1 on [0, β]. We conclude
that (Fj − FN∗)(x) = 0 on [0, β]. Thus T [β, z∗] ⊆ [β, z∗]. By the mixing
condition (M), we get z∗ = β and so j = N∗ + 1. Note that FN∗+1(x) = 0
on [0, β] and FN∗+1 is decreasing on (β, 1]. Since limx→β+ FN∗+1(x) < 1, it
follows that there exist ε > 0 and w∗ < z∗ = β such that for any y ∈ [w∗, 1],
Fj(y) = FN∗+1(y) ≤ 1 − ε < 1. We also observe that there can be at most
one fixed point in each monotonicity interval. For if aj−1 ≤ z1 < z2 ≤ aj are
two fixed points, then as in the proof of Lemma 4.14 we see that Fj ≡ 1 on
[z1, z2], from which it follows that T [β, z2] ⊆ [β, z2], contradicting (M). The
remainder of the argument follows as in Lemma 4.14. We omit the details.

For the completion of the proof of Theorem 6.5, the rest of the arguments
in the proof of Theorem 4.10 can be applied with only a slight modification,
e.g., replacing N∗ and Iβ with N and I, respectively.
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