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On the range of the derivative of a real-valued
function with bounded support

by

T. GAsPARI (Bordeaux)

Abstract. We study the set f'(X) = {f'(z) : * € X} when f : X — Ris a
differentiable bump. We first prove that for any C?-smooth bump f : R2 — R the range
of the derivative of f must be the closure of its interior. Next we show that if X is an
infinite-dimensional separable Banach space with a CP-smooth bump b : X — R such
that Hb(p)Hoo is finite, then any connected open subset of X* containing 0 is the range
of the derivative of a CP-smooth bump. We also study the finite-dimensional case which
is quite different. Finally, we show that in infinite-dimensional separable smooth Banach
spaces, every analytic subset of X* which satisfies a natural linkage condition is the range
of the derivative of a C'-smooth bump. We then find an analogue of this condition in the
finite-dimensional case.

1. Introduction. A bump is a function from a Banach space X to R
with a bounded nonempty support. In this paper we study the set f'(X) =
{f(z) : x € X}, which is the range of the derivative of f, when f is a
Fréchet differentiable bump. More precisely we will try to find necessary or
sufficient conditions for a subset A of X* to be the range of the derivative
of a bump.

D. Azagra and M. Jiménez-Sevilla proved in [2] that Rolle’s theorem
fails in infinite dimensions. As a consequence, they deduce that there is a
C'-smooth Lipschitz bump on Iy such that the range of its derivative has
an empty interior. However it can be shown by using Ekeland’s Variational
Principle ([4]) that 0 € int(f’(X)) even if f is only Gateaux differentiable.
Thus, if f is a Cl-smooth bump on R", then f'(R") is a compact neigh-
bourhood of 0.

Let us introduce some notations. The symbol N means the set {1,2,...}.
We write B(z,r) for the closed ball of centre x and radius r, and S(z,r) for
the sphere of centre  and radius r. Sometimes By is used for B(0,1). For
a function f : X — R, the support of f is supp(f) = {x € X : f(z) # 0}.
As said before, f is called a bump if its support is nonempty and bounded.
Recall that a function f : X — R is said to be Fréchet differentiable at
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xo € X if there exists f/(z() in X* such that
_ !
i £ @0 +9) = fzo) = f(@0)(y) _

y—0 [yl

f'(xo) is then called the derivative of f at xg. The set f/(X) = {f/(x) :
x € X} is the range of the derivative of f. We will be concerned only with
Fréchet differentiability.

Let us recall some notations for multiindices. The symbol N<N stands
for the set of finite sequences of natural numbers. If 0 = (q1,...,q) € NN,
then k is called the length of o and we write k = |o|. If £ > 2 we define
o-=(q1,...,qe—1).- Forj e {1,...,k}, 0(j) = ¢j and o|j = (o(1),...,0())).
For 7 = (r1,...,7m) € NN "7 = (q1,...,qx,71,- - -, 7m). The symbol NV
denotes the set of infinite sequences of natural numbers. For o = (g;)j>1 €
NY¥and j €N, o(j) = ¢gj and o|j = (0(1),...,0(j)).

Now we describe our main results and the organization of the paper.

The goal in Section 2 is to try to answer the following question of [3]:
If f:R"* — R is a Cl-smooth bump, is f/(R") equal to the closure of
its interior? We give a partial answer when n = 2 and f is C*-smooth in
Theorem 2.1. Notice that in infinite dimensions, f’(X) has no reason to be
closed and int(f'(X)) can be empty (see [5]).

Section 3 is devoted to finding sufficient conditions for a connected open
set to be the range of the derivative of a bump. We recall that f/(X) is
connected if f is a Fréchet differentiable bump. This extension of Darboux’s
theorem is proved by J. Maly in [7]. However f’(X) is not always simply
connected (see [3]). In finite dimensions we prove that any connected open
subset of R™ containing 0 is the range of the derivative of a Fréchet differen-
tiable bump (Theorem 3.1). We then extend this result to the case when X
is an infinite-dimensional separable Banach space with a CP-smooth bump
b: X — R such that ||b®)|| is finite (Theorem 3.6).

In Section 4, we find a sufficient condition for an analytic subset of X*
to be the range of the derivative of a C'-smooth bump when X* is sep-
arable (Proposition 4.2). We then exhibit analytic sets, neither closed nor
open, which are the range of the derivative of a C''-smooth bump (Theo-
rem 4.4). We obtain an analogue of Proposition 4.2 in finite dimensions in
Theorem 4.6. Finally, we study the relationship between Theorem 4.6 and
a result of [3].

2. The range of the derivative of a C"-bump. In this section we
focus on the case X = R™ with n > 2. Our main result is

THEOREM 2.1. Let f : R? — R be a C%-smooth bump. Then f'(R?) is
equal to the closure of its interior.



Range of derivative 83

Before proceeding with the proof of this result we recall that the range
of the derivative of a C'-smooth bump on R" is a connected compact neigh-
bourhood of the origin. We now show other properties which, applied to the
case n = 2, will allow us to prove Theorem 2.1.

PROPOSITION 2.2. Let f:R"™ — R be a C"™-smooth function. If f' =0
on a compact connected set K, then f is constant on K.

Proof. If C is the set of critical points of f, Sard’s Theorem shows that
f(C) is of Lebesgue measure 0. Since K is a compact connected subset of C,
f(K) is a compact interval of R of measure 0, and hence a single point. m

We need a result on connectedness.

LEMMA 2.3. Let C be a connected compact subset of R"™ and G the
unbounded connected component of R™\ C. Then 0G, the boundary of G,
s connected.

This follows from [6, §52.111.6 and §52.1.9].

PROPOSITION 2.4. Let f : R® — R be a C"-smooth bump and z €
A(f'(R™)). Then R™\ f'~'(2) is connected.

Proof. Assume that R™\ f'~'(z) is not connected. Since z # 0, f'~'(2)
is bounded and thus R\ f’~'(z) has a bounded nonempty connected com-
ponent, which we call B. If we denote by G the unbounded connected
component of R" \ B, Lemma 2.3 asserts that dG is connected. We put
g(x) = f(z)—(z,z) for x € R™. Since 0G C dB (see [6, §44.111.3]), ¢'(x) =0
for all x in OG. Proposition 2.2 implies that ¢ is constant, equal to some C
on dG. We define h(z) = 0 if x € G and h(z) = g(x) — C if x ¢ G. Then
supp h is bounded and nonempty, since h'(x) = f'(z) — 2z # 0 if x € B.
Clearly h is C1, so h is a C'-smooth bump, and hence 0 € int(h'(R")).
But #'(R™) C f/(R™) — z, so z € int(f’(R™)). This contradicts the fact that
z € I(f'(R")). m

PROPOSITION 2.5. Let f : R™ — R be a C™-smooth bump. Then f'(R™)
cannot be the union of compact sets A and B such that 0 ¢ B ¢ A and
AN B is a totally disconnected subset of O(f'(R™)).

Proof. We suppose that f/(R") = AU B with A and B as in the state-
ment. Let K = f/~!(B). Then K is compact, since B is closed and 0 ¢ B.
Let zyp € K be so that f'(z¢) € AN B. We denote by C' the connected com-
ponent of g in K and by G the unbounded connected component of R\ C'.
Then 0G C 9C C 90K ([6, §44.111.3]) and OG is connected (Lemma 2.3).
Thus f/(0G) is a connected subset of AN B and hence f'(0G) is a single
point, called y. Proposition 2.4 asserts that R™\ f’ _l(y) is connected. Recall
that 0 & B, hence y # 0 and R™\ f'~! () is unbounded. Since f'(z¢) & ANB,
xg € R™\ f’_l(y). So it is possible to join z( to infinity with a continuous
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path staying in R™\ f 71(y). This is absurd, because such a path must cross
dG which is included in f'~'(y). =

COROLLARY 2.6. Let f:R? — R be a C?-smooth bump. Let y € f'(R?).
Then there is o > 0 such that for all 0 < & < a, the set f'(R?) N S(y,e)
contains a nontrivial arc of a circle.

Proof. Let y € f'(R?). If y = 0 the conclusion is obvious. If y # 0,
let € € 10, ||ly||/2[. If S(y,e) Nint(f'(R?)) # 0 the result follows. Otherwise,
S(y,e) N f(R?) C A(f'(R?)). We define A = f'(R*)N{z: ||z —y| >} and
B = f'(R®)N{z: ||z —y| <e}. The sets A and B are both compact, 0 ¢ B
and y € B\ A. By Proposition 2.5, f/(R?) N S(y,e) = AN B cannot be a
totally disconnected subset of O(f'(R?)). So f/(R*)NS(y, ) has a nontrivial
connected component. It is easy to see that a closed connected subset of
S(y,e) is an arc. m

Proof of Theorem 2.1. We set K = f'(R?). As K is closed, int K C K.
To show the other inclusion, let y € K. For our f and y we find a > 0 by
Corollary 2.6. We fix 0 < f < a. For ¢ ¢ Nand k € {1,...,2¢q} we define

Uk(q) = {y + t(cosb,sinb) : t € [0,5], 0 € [(k— 1)n/q, kn/q]},
For={e€l0,5]:Uk(q) N S(y,e) C K}.
Thanks to Corollary 2.6,

geN k=1

Furthermore each Fyj is closed. Indeed, let (g;); be a sequence in F
which has a limit €. Then ¢ € [0,5]. Let z € Ug(q) N S(y,e) and 0 €
[((k—1)m/q, km/q| so that z = y+e(cos§,sin@). Then z; = y+¢;(cosf,sinb)
is a sequence in K which converges to z. Thus z € K and U (¢)NS(y,¢) C K.
So e € F,j, and F, is closed.

By Baire’s theorem, there are q9 € N and kg € {1,...,2qp} such that
Fy, ko has a nonempty interior. Thus

Uko(q0) N{y + t(cosB,sin ) : t € int Fy, 1., 0 € [0, 27]}

is an open subset of K N B(y,3). Since § can be taken arbitrarily small,
y€E€int K. m

3. Connected open subsets of X* and ranges of derivative. First
we study the finite-dimensional case. Our main result is

THEOREM 3.1. Let U be a connected open subset of R™ containing 0.
Then there is a differentiable bump f : R™ — R such that f'(R™) =U.

We first recall some tools introduced in [3].
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DEFINITION 3.2. Let (y,a) € (R®)? and 0 < ¢ < ||y||. We define
De(y) = {(1 —t)u+ Vty:t e 0,1, [[u] <e}.

The set T'(a,y,e) = a+ D:(y — a) is called the drop with centre a, vertex y,
and thickness €.

We also introduce the notion of stationary images.

DEFINITION 3.3. Let g: X — Y be a mapping and y € Y. We call y a
stationary image of g if there is a nonempty open subset {2 of X such that

9(£2) = {y}.
The following lemma is proved in [3].

LEMMA 3.4. For every y € R™"\{0} and every 0 < e < ||y|| there exists a
Cl-smooth bump g : R™ — R such that ¢'(R") = D.(y) and y is a stationary
image of ¢'.

LEMMA 3.5. Let ¢ € N and Ty,...,T; be drops with T; = T(a;,yi, i),
aiv1 =y forall i in {1,...,q — 1} and a; = 0. Then there exists a C'-
smooth bump g : R™ — R such that

JgR") =T1U...UT,.

Proof. The proof is a simple induction. We want to show that the fol-
lowing holds for every ¢ € N: “For every T,...,T, as in the lemma there is
a Cl-smooth bump g such that ¢'(R") = Ty U...UT, and y, is a stationary
image of ¢’ 7.

If ¢ = 1 this is Lemma 3.4. Suppose that the property is true for some
g > 1. Consider a finite set T1,...,Ty41 of drops with T; = T'(ai, vi,€4),
a1 =0, aj;1 = y; for 1 <i < q. There are a C'-smooth bump g : R® — R,
zo € X and 7 > 0 such that ¢'(R") = U;<;,Ti and ¢'(z) = y, for
all z in B(zg,7). We apply Lemma 3.4 with the drop Ty41 — ag41 =
T(0, Yg+1—Yq Eg+1)- 1t gives a Cl-smooth bump h so that b/ (R™) = Ty41—yq
and yg4+1 — Yq is a stationary image of h'. Let M be large enough to ensure
that supp(h) C B(0, M). Define b(z) = g(x) + (2M)~'rh(2Mr~1(x — x))
for € R™. The function b is a C'-smooth bump, Yg+1 is a stationary image
of b, and

VR =g R U+ KR = | T s
1<i<g+1

Now we can prove Theorem 3.1. The idea is the following: Lemma 3.5
allows us to write any finite union of drops as the range of the derivative of
a smooth bump. We cover U by a countable sequence of such sets. We show
that the bumps can be taken in such a way that the series is convergent,
differentiable, and that the range of its derivative is U.
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Proof of Theorem 3.1.

STEP 1: U is covered by a countable sequence of good finite unions of
drops.

Consider the following set:

W = {y € U : there are ¢ € N and ¢ drops
Ty =T(a1,y1,€1),--., Ty =T(aq,yq,€q) in U such that
a1 =0,y, =y and a;41 =y; forall 1 <i < gq—1}.
We are going to show that W = U. Since U is connected, it is sufficient
to prove that W is a closed open nonempty subset of U. Of course 0 € W,
so W # (. Let y € W and € > 0 with B(y,e) C U. If z € B(y,&/2), then
T(y, z, ||z — y||/10) C U, so z € W and W is open. We take a sequence (zx)
in W which has a limit z in U. There is ¢ > 0 with B(z,2¢) C U. Find
k > 0 so that zp € B(z,¢). Then T(zg, 2, ||z — 2¢||/10) C U, thus z € W.
Therefore W is a closed subset of U. Hence W = U.
If y € U=W, there exist ¢ drops T1 =T (a1,y1,€1), ..., Ty =T (aq, Yq. €q)
in U such that a1 = 0, y; = y and a;41 = y;foralll < i < ¢g— 1.
We take ¢, > 0 such that B(y,2¢,) C U and wy in B(y,e,). We define
Py,=TU... T, UT(y,wy, |wy — y||/10). Then

U=|]JintP,
yeU

By Lindel6f’s theorem ([8]), there exists a countable sequence (yi)gen in U
such that

U= U int P, .
k>1

STEP 2: There is a differentiable bump f such that each Py, isin f'(R™).

According to Lemma 3.5, for all & € N, there is a C''-smooth bump
fr with f{(R") = P,,. After a possible homothety we can suppose that
Il f&llooc < 1. Let My > 1 be such that supp(fx) C B(0, My). We define

T = (2_1 +...+ 2_k, 0,...,0), br(x) = 8_kMk_1fk(8kMk(l‘ —xp)).

Then b} (R") = P,, and supp(by) C B(zk,8 %) = Sy. If k # j, then S, N S;
= () and Uy Sk C B(0,2). We denote by xo the point (1,0,...,0). The

function
F=> b

k>1

is obviously C! on R™ \ {#o}. Let * € R™ and k > 1. If x € Sy, then
br(z) = 0. If 2 € S, then |bg(x)] < 87FM ™| fello <87 and ||z — 20| >
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T— (27 +...+27F) +87%) > 27F1 Thus |by(z)| < 4]|z — 70]|* and
(@) = F@oe)| _ supy [be(a)
[ N

so f is differentiable at xo and f’(x+) = 0. Therefore f is a differentiable
bump on R” and

< 4“1‘ - xOOHv

f®Y=JP,=U n

keN

We remark that f is not C''-smooth because if it were, U would be closed.
f is nevertheless C'-smooth on R™ \ {7}

We now obtain similar results in infinite dimensions. Our main result is

THEOREM 3.6. Let X be an infinite-dimensional Banach space with a
separable dual. Let p € N be such that there exists a CP-smooth bump
b: X — R with |b?)||s finite. Let U be a connected open subset of X* con-
taining 0. Then there is a CP-smooth bump f : X — R such that f'(X) ="U.

Until the end of this section, X is as in Theorem 3.6. Notice that the
separability of X™* implies that there exists indeed p > 1 and a CP-smooth
bump b : X — R such that ||b(?)|| is finite ([4, p. 58]). We remark that
the mean value theorem implies that ||b)|| is finite for all j in {0,...,p}.
In [1], it was proved that there is a C'-smooth bump such that the range of
its derivative is equal to X*. Theorem 3.6 is an improvement of this result.
We now establish results which will be used to prove Theorem 3.6.

LEMMA 3.7. There is a CP-smooth bump F : X — R such that Bx+ C
F'(X) and |F®)||y, is finite.

Proof.

STEP 1: There is a CP-smooth bump f so that f(x) =1 for all x € 2Bx
and || fP) | is finite.

After maybe a translation and multiplication by —1, we can suppose
b(0) > 0. We take a C°°-smooth bump ¢ : R — R such that 0 < ¢ <1,
o(t) = 1if t € [2716(0),2713b(0)], and ©(0) < 1. By the continuity of b
there is 6 > 0 such that b(z) € [2716(0),2713b(0)] if + € 6Bx. We put
f(@) = (1 —(0)"(p(b(6z/2)) — ¢(0)) and the result follows.

STEP 2: There is a CP-smooth bump fo such that the stationary images
of fj are dense in Bx+ and ||fép)||OO is finite.

Since X* is separable, there is a dense sequence (y;)g>1 in Bx=. Let
M > 1 be so large that supp(f) € MByx and |||, < M for all j in
{0,...,p}. Fix now a sequence (zj)r>1 in X so that ||z —z4|| > 2M +1 >3
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if k # g and ||zk|| < 4M + 3. We define
fol@) = (i ) f(x — 1),
k>1

which is a sum of CP-smooth functions with separated supports. Thus fy
is CP-smooth, supp(fo) C (5M + 3)Bx and fj(z) = y; if x € B(zg, 1). If
x € supp(fo), then

|57 (@) < sup{lyi | - [l 1F® @ = @)l + plyill - 172D (@ = 21}

< (5M +3)M +pM = (5M + 3+ p)M.
STEP 3: We construct a sequence (f;)j>1 of CP-smooth bump functions.

We set L = 5M + 3. Then L > 8, supp(fo) C LBx and ||zx|| < L—1 for
all k£ > 1. For j > 0 we define

firi(x ZL P lf] (z — ).
k>1
For o = (ki,...,k;) € NN we put
S(o) = B(xp, + L ap, +...+ L_j"'lxkj,L_jH)
and we prove that
S(c"k) C S(c) for all 0 € N<N and k € N.
For all o,7 in NN |o| = |7| and 0 # 7 = S(0) N S(1) = 0.
For 7 > 1 we denote by P(j) the following statement:
supp(fj) C Uyens S(o) and f; is CP-smooth.
Forallo € NV and k €N, z € S(c"k) = fi(z) = L=ipyx.
We have supp(f1) C Uyey S(0). Let 2 € supp(f1) and o € N so that z € S(0).
If z is in a small neighbourhood of z, then fi1(z) = L™P~!fo(L(z — z5)).
Therefore f; is CP-smooth. Let k € N and x € S(0 k). We have S(c" k) C
S(o) so f1(z) = L7P7 1 fo(L(z — x,)) in a neighbourhood of z. Thus fi(z) =
L7Pfi(L(x — z5)) = L7 Py;, since L(x — z,) € B(wzy,1). Consequently,
P(1) holds.
Let j > 1 and suppose that P(j) holds. Then

supp(fj+1) C | supp( — fi(L(x — 2x))) € | (@x + L' supp(f;))

E>1 k>1
clJ UsEaoc |J S0
k>1 oeNi oceNstl

Let « € supp(fj+1) and o € N/t be such that z € S(0). Clearly fj11(2) =
LP7 L (L(z — To(1))) in a neighbourhood of x, so fji1 is CP-smooth. Let
o € Tl k € N and z € S(0"k). In a neighbourhood of z, fji1(z) =
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L7 fi(L(z = 2(1)))- Thus ff, () = L7PfI(L(z — 25(1))) = L™ 0HDPy,
since L(z — x5(1)) € S(0(2),...,0(j + 1), k). Finally, P(j + 1) holds.

STEP 4: F'=3 .~ fj is a CP-smooth function and | F®)| is finite.
For all j > 0, ||fj+1llcc < L7P71| fjlloc- Thus the series of the || f;oo

is convergent. This proves the existence of F' and its continuity. For j > 1
and 0 € N7, S(0) C S(o(1)) C LBx. Thus supp(f;) C LB, for all j > 0
and hence F' has a bounded support. If m € {0,...,p}, then ”fJ(T1)||oo <
L P 1 lso < LA™ ooy 50 3550 1F™ |loe < 00. Therefore F is a

CP-smooth function and ||F(™)]|, is finite for all 0 < m < p.
STEP 5: Any point in Bx+ is in the range of the derivative of F.

Fix z* in Bx~. There exists k1 > 1 such that |z* —y; || < L. Then
LP(2*—yf ) isin Bx~, so thereis kg > 1 such that || LP(z* —y; )—yy, || < L7P.
Thus [[2* = (y, + L7Pyp,)ll < L=2P. We construct inductively a sequence
o = (kj)j>1 € NY such that [|2* — (y;(l) +L7Pys o)+ LT (- 1)Py )|| <

L=7P for all j > 1. Then
2" = ZL yU(J-H

j>0
Forq>1vvedeﬁnez Z LJy( )anqu:Z?;éfj.Letw:
djso L™’ 'Zo(j41) and wy = Zj;oL To(j+1)- For all j € {0,...,q — 1},
wq € S(o]j+1) so fi(wg) = L™7Py? i q)- Thus Fy(wg) = z; The sequence

F!), is uniformly convergent, (w,), converges to w and converges
q/a a)a Zq)q
to z*, so F'(w) = z*. =

The next result provides the existence of plateau functions.

LEMMA 3.8. There is a CP-smooth bump b : X — R such that

b(X)C[0,1], blx)=1 if ||z| <2 and ||p|e <1.

Proof. Let ¢ : R — R be a C*-smooth function so that ¢(t) = 0 if
t<0,0< o<1, =1ift > 2 and |¢'(¢t)] < 1 for all ¢ € R. Let
bp : X — R be a CP-smooth bump with by(0) > 2 and Hbép)Hoo < 00. We
define b(z) = bo(rz) with » > 0 small enough to have b(z) > 2 if ||z|| < 2,
and ||b'||cc < 1. Then the function given by F(z) = ¢(b(z)) satisfies the
conditions of the lemma. m

LEMMA 3.9. There is a constant K such that for all y* in X*, there are
a CP-smooth bump f: X — R and a real number a > 0 such that

y* +aBx- C f'(X) C K||y*||Bx~ and f'(z)=y" if ||lzf| <1.



90 T. Gaspari

Proof. Let b be the CP-smooth bump given by Lemma 3.8 and G the
CP-smooth bump given by Lemma 3.7. There is an A > 1 such that Bx+ C
G'(X) € ABx~, supp(G) C ABx and supp(b) C ABx. We put F(z) =
A72||y*||G(Ax). Then A~Y|y*||Bx+~ C F'(X) C ||y*||Bx+ and supp(F) C
Bx. We now fix a point z¢g € X with ||zo|| = 3/2 and we define

flx) =2y" (/2 — 20)b(x/2 — x0) + 2F (/2 — ).

Then supp(f) C (24 + 3)Bx. We set K = 2A + 8 and a = A~!||y*||. We
remark that K is independent of y*. It is clear that K and f satisfy the
conditions of the lemma. u

In what follows, K is the constant given by Lemma 3.9.

LEMMA 3.10. Let U be a connected open subset of X*. Let y* € U be
such that there are ¢ > 1 and a sequence yg,...,y, of points of U with
yo = 0, yg = y* and By, Kllyiy, —yill) € U for all i € {0,...,q —1}.
Then there exist a CP-smooth bump f: X — R and § > 0 such that

y* €int(f(X)), f(X)CU and f'(z)=y" if [z]| <0

Proof (by induction). The case ¢ = 1 is immediate from Lemma 3.9. We
fix ¢ > 2 and suppose that the property is true for g—1. Let yg, . . ., y, satisfy
the hypotheses. By the induction hypothesis we have a CP-smooth bump ¢
and a > 0 such that y7_; € int(¢'(X)), ¢'(X) C U and ¢'(x) = y;_; for all
x € aBx. Furthermore Lemma 3.9 gives a CP-smooth bump h such that
Yg — Yg—1 € Int(W (X)), M'(X) C Kllyg — yg_1[|1Bx- and h'(z) = y; —yg_,
for all x € Byx. We take L > 1 large enough to have supp(h) C LBy and
we define

f(z) = g(z) + L~ ah(a ™ Lz).
Then yj € int(f'(X)), f/(X) C ¢'(X) U (yg_, +1'(X)) C U and f'(z) = y5
if 2] < L7 'a. =

We are now able to prove Theorem 3.6.

Proof of Theorem 3.6.

STEP 1: Fach point y* in U satisfies the condition of Lemma 3.10.

Define

A={y"€U:3q¢eN,3(y; =0,47,...,y;, =y") € Ut so that

B(y;, Kllyia —yill) U for alli € {0,...,q —1}}.
We are going to prove that A = U. Since 0 € A, A is not empty. Clearly
A is an open subset of U. Let (y;)r be a sequence in A which has a limit
y* in U. There is a« > 0 such that B(y*,2«a) C U. If kg is large enough,

then y; € B(y*, K ta). Thus B(yy,, Klly* — yj, ) C U and hence y* € A.
Therefore A is a closed subset of U. Since U is connected, A = U.
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STEP 2: There is a sequence (fi)k>1 of CP-smooth bumps with U =
Ugs1 fr(X).

If y* € U, then y* € A so Lemma 3.10 can be applied. We let f,« be the
function given by Lemma 3.10. We have

U= |J mt(f]-(X)).
y*elU
As X* is separable, we can apply Lindel6f’s theorem ([8]): There is a count-
able sequence (y; ), in U such that

U= U int(f;Z(X)) and therefore U = U f;z (X).
k>1 k>1
We put fi, = fy:.
STEP 3: There is a CP-smooth bump f such that U = f'(X).

After possible homotheties we can suppose that supp(fx) C Bx for all
k > 1. Since X is infinite-dimensional, there exists a sequence (xj)r>1 in X
such that ||z < 7 for every k > 1 and ||z, — x4]| > 3 if ¢ # k. We define

f@) =" felx — ).
k>1
If ||z — x|| > 3/2 for all k, then f is zero and so is CP-smooth in a neigh-
bourhood of z. If there is k so that ||z — x| < 3/2, then ||z — 4| > 3/2 for
all ¢ # k, so f(z) = fr(z) and f'(z) = f/(z) when z is in a neighbourhood
of z. Thus f is a CP-smooth function and f'(X) = > fo(X) =U. =

We give a stronger version of Theorem 3.6 which will be needed in what
follows.

ProrosSITION 3.11. Let X be as in Theorem 3.6. Let U be a connected
open subset of X* containing 0. Let (z;)k>1 be a sequence of points of U.
There is a CP-smooth bump f : X — R such that f'(X)=U and each z
is a stationary image of f'.

Proof. In the proof of Theorem 3.6, when we use Lindel6f’s theorem to
extract the sequence (yj)x, we can add to this family some elements in such
a way that {z; : ¢ € N} C {y; : k € N}. The function f which is then
constructed satisfies the following statement: For all k, there is d; > 0 so
that f'(z) =y} if ||z — 2x|| < 0. So every z} is a stationary image of f'. =

4. Well-linked sets and ranges of derivative. In finite dimensions
the range of the derivative of a C'-smooth bump is compact. If X is an
infinite-dimensional separable Banach space we see, by the definition, that
the range of the derivative of a C'-smooth bump is an analytic set. Moreover,
if f is a C'-smooth bump and f’ is Lipschitzian, there exists M > 0 such that
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each point of f/(X) can be joined to 0 by an M-Lipschitzian path contained
in f/(X). It is sufficient to consider the path v(¢t) = f'((1—t)xo+tz) with g
so that f’(xz¢) = 0. Furthermore we have seen in Section 2 that it makes sense
to assume f'(X) = int(f’(X)). Consequently, Proposition 4.2 and Theorem
4.6 are partial converses of these necessary conditions. In the first result of
this section (Proposition 4.2), we give a sufficient condition for an analytic
subset of X* to be the range of the derivative of a C''-smooth bump when
X* is separable. Let us introduce this condition.

DEFINITION 4.1. Let F be a subset of X*. We say that F satisfies con-
dition (As) if there are a mapping ¢ : NN U NN — X* and a summable
sequence (Jx)r>1 of positive numbers such that

e(NNUNY) = F.

o e NNand o] =1=[0,¢(c)] Cint F and |¢(0)| < 1.

o e NNand [0 > 2= [p(0), p(0)] Cint F and |jo(0) — @(o-)|| < 6.
o € NN = (o) = limy, p(a|k).

PROPOSITION 4.2. Let X be an infinite-dimensional Banach space with

a separable dual. Let F be a subset of X*. If F satisfies (Awxo), then there
is a Ct-smooth bump f: X — R such that f'(X)=F.

Proof. Since X* is separable, Theorem 3.6 and Proposition 3.11 can be
applied with p = 1. Since X is infinite-dimensional, for a given x € X, there
is a sequence (wi)ren in B(x,3/2) such that [|w, — wg| > B/5 if k # q.
We write wy, = wi(x, 3). We will proceed by induction on k := |o|. In the
following, if |o| = 1, we put ¢(c-) =0, a,_ =1, z,_ = 0.

For k € N, denote by P(k) the following statement: “For all & € N<N
with |o| = k, there are z, € Bx, a, € ]0,27%[, &, € ]0,min(27%,6;)[ and a
C'-smooth bump h, : X — R such that

(i) p(o2) + h(X) = [¢(0-),p(0)] + €5 int Bx+ C int F.

(ii) Al (x) = p(0) — p(0-) for all x € B(z,, o).

(iii) supp(hs) C B(zo_,s_) C Bx.

(iv) If |7| = |o| and T # o, then supp(h,)N supp(h;) = 0.”

STEP 1: P(1) holds.

Let 0 € N<N with |o] = 1. Since [0, ¢(0)] C int F, there is 0 < g, < &1
with [0,¢(0)] + €Bx+ C int F. We apply Proposition 3.11 to obtain a
C*'-smooth bump g, such that g/ (X) = [0, ¢(c)] + &, int Bx+ and (o) is a
stationary image of g... We can suppose that supp(g,) C Bx. Define

ho(z) =127 g5 (12(2 — wy1y(0,1))).

Then supp(hs) C B(wy(1)(0,1),1271) C Bx. Moreover there are z, in
Bx and 0 < o, < 1 such that hl(z) = ¢(o) for all z in B(xs,ap).
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Finally, if |o|] = || = 1 and o # 7, then supp(h,) N supp(h;) = 0,
because |lw,1)(0,1) — w1y (0,1)]| > 571,

STEP 2: P(k) holds for all k> 1.

Take k > 1 and suppose that P(k) holds. Let o € N<N with |o| = k + 1.
There is 0 < €, < 041 such that [p(0_), p(0)]+e;Bx+ C int F. Proposition
3.11 gives a Cl-smooth bump g, such that ¢/ (X) = [0,0(c) — ¢(c.)] +
g int Bx«, ¢(0) — ¢(0_) is a stationary image of ¢/ and supp(g,) C Bx.
We put

ha(x) = 12_1040_90(1205;,1 (l‘ - wa(k+1)(xo_, 040_)))'
We have supp(ho) C B(wy(41)(To_, ¥0_),127 s ) C B(z_,a5_) C Bx. If
lo| =|7| = k+ 1 and o # 7, we can easily check that
B(wa(k—&-l)(xa_a ), 12_10{0_) N B(wr(k—i-l)(x‘r_v ar_), 12_10‘7_) =10,

so supp(hs) Nsupp(h;) = 0. Moreover (o) — ¢(o-) is clearly a stationary
image of h. So there are z, € Bx and a, € ]0,27%[ such that A/ (z) =
o(o) — p(o.) for all z € B(x,, ). Finally, P(k 4+ 1) holds.

STEP 3: The function f =3 4, szk hy is a C'-smooth bump.
For k > 1 we define Gy(x) = 3_ ;)= ho(2). Since this is a sum of Cl-

smooth functions with disjoint supports, it is C'-smooth. We recall that for
allc € NN p/ (X) = ¢/(X) =[0,p(0) —¢(c.)] + &, int Bx+. For all z € X,
G (@)l < sup{||h;(2)|] : o] = K}
< supfllp(o) —p(o)|| +&o : o] = k} < 20
By the mean value theorem we get |Gy(x)| < 2J) since supp(Gy) C Bx.
Therefore f is a C''-smooth bump.

STEP 4: f'(X) is equal to F.

Let fi(z) = > <<, Gj(x). For all 0 € N<N| B(2,,0,) C B(2y_,a5_).
Thus, if & > 1 and |o| = k, then G'(z,) = ¢(o|j) — p(olj — 1) for all
1 < j <k and hence f|(z,) = ¢(0).

Let x € X. Three cases can arise:

Case 1: For all 0 € NN 2 ¢ B(x,,a,). Then f'(z) = 0.

Case 2: There is 0 € NY so that = € B(zg), ag|y) for all & > 1. Thus
(To|x)x converges to x and since ( f1)k is uniformly convergent, we have

f(z) = limg, fi(2or) = limg p(o|k) = (o).
Case 3: There is ¢ € N<N guch that =z € B(zg,ay,) and z ¢
Ujen B(%575, -j). Then f'(z) = fir(z) = (o).

It is therefore clear that f/(X) = p(NNUNY) = F. u
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For closed sets we can rewrite condition (A ) using sequences. Indeed,
it is not hard to prove that a closed subset F of X* satisfies (Ax) if and
only if there are a summable sequence (0y)k>1 of positive numbers and a
sequence (y;)k>1 of points in int F' with yi = 0 such that for all y* in F,
there is a nondecreasing function ¢ : N — N so that limg_ .. y:Z(k) = y*,
¥(1) =1 and for all k> 1,

Yoy Yoesny] CIEEand lygee1y = g | < Ok

Proposition 4.2 is false in finite dimensions. Indeed, we can construct a
compact subset P of R? which satisfies condition (A ) but which is not the
range of the derivative of a C''-smooth bump. Because of its form, we call
this set a comb. We define

P = ([_172] X [_170]) U ([172] X [_17 1])7

Py = (U[2—1+...+2‘q—8“’,2‘1+.--+2‘q+8“’]> x [0,1]
g1

(comb’s teeth) and
P =(-3/2,0)+ (PLUP,).

LU

The comb in R?

If n > 2, then P x Bgn—2 is not the range of the derivative of a C''-smooth
bump, because of the following lemma:

LEMMA 4.3. For = and y in F define r(z,y) = inf{diam(v([0,1])) :
v :10,1] — F is continuous, ¥(0) = x and v(1) = y}. If F = V'(R™) with
b:R" — R a C'-smooth bump, then for all € > 0 there exists a finite e-net
i F for the metric r.

The proof of this lemma is clear: Since b’ is uniformly continuous on
supp(b), we find § > 0 such that ||b'(z) — ¥ (y)| < € if ||z — y|| < 6. Take a
finite d-net in supp(b) for the norm; then its range under b’ is a finite e-net
in F for the metric r. Notice that if H is an infinite-dimensional separable
Hilbert space, then P x By is a subset of R? x H which satisfies condition
(Aso), hence is the range of the derivative of a C''-smooth bump on R? x H.

We now give examples of subsets of X*, neither closed nor open, which
satisfy (Aso)-
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THEOREM 4.4. Let X be an infinite-dimensional Banach space with a
separable dual. Let U be a bounded open convex subset of X* containing 0
and let U C A C U be any analytic set. Then there exists a C'-smooth
bump f: X — R such that f'(X) = A.

Proof. Let U and A be as in the theorem. We put aj, = 27%, k € N.

STEP 1: We construct a mapping v : NN UNN — X* such that
Y(NNUNN) = 4 = ¢(NV).
o€ NN and [o| > 2 = [[¢(0) = ¢(0)]| < iy
o € NN = ¢(0) = limg ¥(o k).

Let g be a bijection from N onto N<N. Since A is analytic, there is a
continuous mapping xo on NV such that xo(NY) = A. We define the map
x on NY UN<N by x(0) = xo(0) if 0 € N¥, and x(0) € {xo(7) : 7 € NV
and 0 < 7}if o € NN, Then (NN UNY) = A and for all 0 € NV
(x(o|k))r converges and x (o) = limy x(ok).

We will define h : NN — N<N by induction over k := |o]. If |o| = 1,
then h(o) = g(o(1)). If |o| = k > 2, we put

h(o) = h(o-)"g(a(k)) if [x(h(o-)"g(o(k))) — x(h(o)ll < o,
h(o-) otherwise.
So, if o € N<N/ there is a unique u(c) € N<N U {f)} such that h(c) =
h(c-) u(o). Let o € NN. There is a unique sequence (u(c|k))g>1 in N<NU{(}
such that h(olk) = u(o|1)” ... u(o|k) for all k. We then define
h(o) =u(o]l)" ... u(olk)" ...

The mapping h is a surjection from N<N U NN onto itself. Indeed, for each
o € N<N_ there is p € N with g(p) = o, thus h(p) = g(p) = 0. Now
let 0 € NY. There exists a stricly increasing sequence (g;)j>1 of positive
integers such that

Vji>1, Vk,p>aqj, |Ix(olk) —x(olp)ll <yt
We take go = 0. For all k£ > 1, there is a unique my € N so that g(my) =
(o(gr—1 +1),...,0(qx)). We set 7 = (my)r>1. For all £ > 2 and all
je{2,...,k},

Ix(g(ma)” ... "g(my)) — x(g(m1)” ... "g(m;-1))|
= lIx(elg;) — x(olgi-1)Il < oy
so h(t|k) = g(m1)" ... g(my) = o|qr and hence h(7) = 0.

We define 1 on NN UNN by 4(c) = x(h(c)). The range of 1 is clearly
included in A. Let a € A and o € N with a = x(0). We have proved that
there exists 7 € N such that h(7) = . Then ¥(7) = x(h(7)) = x(¢) = a
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so A C y(NY). It is clear that if o € N<N and |o| > 2, then
[¥(0) = (o)l < lIx(h(a)) = x(h(e )] < gy
Finally, if o € NN, then (v(o|k))s converges and
lim(o|k) = lim x(h(o]k)) = lim x((h(0))Ink) = x(h(0)) = (o).

STEP 2: A satisfies (Aso).

We define ¢ : NYUN<N — X* by ¢(0) = (1 — ayo)90(0) if 0 € NN, and
¢(0) = (o) if o € NY. We can easily verify that (A ) holds with 6, = 2ay,.
Then Proposition 4.2 completes the proof. =

We now introduce a sufficient condition in finite dimensions which is not
far from condition (Cso).

DEFINITION 4.5. Let F' be a subset of R". We say that F' satisfies con-
dition (C) if F is closed, there are a summable sequence (y)x>2, & sequence
(gr)k>1 of positive integers with ¢g; = 1 and a mapping ¢ : DUUk21 Dy — F
(where D =[];5;{1,...,¢;} and Dy = [[;<;< {1, -,q;}) such that

©(DUUp>1 Di) = F, (1) = 0 and, for all k > 2,
o€ Dy = [p(0), 9(0)] C int F and [l(c) — p(o)]| < 0.
o€ D= p(o)=limygp(alk).

Again, we can rewrite this condition in terms of sequences: F' satisfies
condition (C) if and only if F' is closed, there are a sequence (yj),>1 of points
in int F with y; = 0, a nondecreasing sequence (Ij)x>1 of finite subsets of N
with 1 = {1} and a summable sequence (Jx);>1 of positive numbers such
that for all y* in F, there is a function v : N — N so that limy y:;;(k) = y* and
for all k > 1, ¥(k) € I, [?/Z(k)vy;kp(kﬂ)] C int F' and ||y;(k+1) — y;(k)H < Of.

Using the same ideas as in the proof of Proposition 4.2, we get

THEOREM 4.6. Let n > 1 and F be a subset of R™. If F satisfies condi-
tion (C), then there is a C' -smooth bump f : R"* — R such that f'(R") = F.

Let us now recall the condition introduced in [3]:

A subset F' of X* is said to satisfy condition () if there are a summable
sequence (d)r>1 of positive numbers and a sequence (C})i>1 of bounded
closed subsets of X* such that F' = J,~, Ck, C1 is convex and contains 0,
for all k > 1, Cy C int Ciyq and for all y in Ckyq \ int C, there is z in Cy
such that [z,y] C Ci41 and ||y — z|| < dg.

The authors of [3] prove that any subset of R™ satisfying (x) is the range
of the derivative of a C''-smooth bump. We are going to show that condition
(%) is equivalent to condition (C). Consequently, Theorem 4.6 is nothing but
Theorem 12 of [3]. Later we will explain the advantages of condition (C).

PROPOSITION 4.7. If X =R", then condition (x) is equivalent to (C).
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Proof. Let F be a subset of R™.
STEP 1: Condition (%) = Condition (C).

We suppose that F' satisfies (x). We put S; = {0}. For £ > 1 we define
€k = 21 min(ék, diSt(Ck+1, 8F)),

Sk+1 = Sk U {a finite gx-net of Cf},

qr = Card S, D = szl{l,...,qj} and Dy = ngjgk{l,...,qj}. We
define ¢ : [Jp>; Dr — R™ by induction. First we set 69 = diam(C7) and
©(1) = 0. We fix £ > 1 and assume that ¢ is defined on Dy, ¢(Dy) = Sk
and for all o € Dy, [p(0-),p(0)] C int F' and ||¢(0) — ¢(0)|| < 205—1. We
remark that if y € Cf, then there is z € Sy such that ||y — 2| < 2051
and [z,y] Cint F. If 0 € Dy we set T, = {y € Si41 : [y — v(0)]] < 2051
and [¢(0),y] C int F'}. We can write T, = {z1,..., 2} with r < gx41. We
define p(c"j) = z; if 1 < j < rand p(c7j) = ¢(o) if r < j < qry1-
Then ¢ is defined on Dy,q and has all the required properties. The fact
that ¢(Dg+1) = Sk41 follows from the remark. In this way we define ¢ on
Ug>1 Di- If 0 € D, then the sequence (p(c|k))y is convergent and we define
p(0) = limy p(o k).

Let y € F. There is a sequence (zj)>1 such that limy, z; = y and 25, € C,
for all k£ > 1. For all k > 1, there is 0} € D41 with ||z — ¢(ok)|| < Ik and
[¢(0ok), zk) C int F. The sequence (oj(1))x takes a finite number of values
in {1,...,¢1}. Thus there is r1 in {1,...,¢q1} so that {k : ox(1) = r} is
infinite. By induction we build a sequence (r;);>1 in D such that for all j,
{k : op(i) = r; for 1 < i < j} is infinite. Then 7 = (rq,...,rj,...) isin D
and (1) = y. Therefore (x) implies (C).

STEP 2: Condition (C) = Condition (x).

We assume that F satisfies (C). There is €1 > 0 such that B(0,e1) Cint F.
We define C = B(0,¢e1). For k > 1, if 0 € Dy, then there is 0 < g, < Jj
with [p(o-), ()] + B(0,e,) C int F. The set

Bi= U (U (o), p(0)] + B(0.2))

c€Dy

is compact and is in int F. So oy, = 3 min(6y, dist(By, OF)) > 0. Finally, we
define Cjy1 = By + B(0, o). The sequence (Cy)i>1 satisfies all the required
conditions, thus F satisfies condition (x). m

We have proved that condition (C) can be extended to infinite dimen-
sions. Indeed, Proposition 4.2 shows that (As) is a sufficient condition in
smooth infinite-dimensional Banach spaces and (A ) can be considered as
an extension of (C). The situation is different with condition (x). In fact, if X
is an infinite-dimensional Banach space, we can construct a subset R of X*
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which satisfies condition (x) but which is not the range of the derivative of a
C'-smooth bump. Let us describe R. Since X is infinite-dimensional, there
is € > 0 and a 3e-separated sequence (ej)r>1 in Sx=-. We fix a point w in
X* with ||lw|| = 3/2. We define

Dy ={tw:x € Sx+ N Bley,e), /k<t<1}, D=|] Dy,
E>1

R=w+ ({re X*:1<|z|| <2} UD)
=(w+ {zxe X" :1< ||z <2} UD))U{w}.

We remark that the construction of R is only possible in an infinite-
dimensional Banach space. Here is a 2-dimensional representation of R:

The wheel with broken spokes

Because of its form, R is called the “wheel with broken spokes”. In fact,
in infinite dimensions, we can imagine that each spoke is in a new direction
and comes closer to w, the centre of the wheel. Then R satisfies condition (x)
but R is not the range of the derivative of a C'-smooth bump, because w
cannot be joined to 0 by a continuous path in R. Thus condition (k) is not
sufficient in infinite dimensions.
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