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On the range of the derivative of a real-valued
function with bounded support

by

T. Gaspari (Bordeaux)

Abstract. We study the set f ′(X) = {f ′(x) : x ∈ X} when f : X → R is a
differentiable bump. We first prove that for any C2-smooth bump f : R2 → R the range
of the derivative of f must be the closure of its interior. Next we show that if X is an
infinite-dimensional separable Banach space with a Cp-smooth bump b : X → R such
that ‖b(p)‖∞ is finite, then any connected open subset of X∗ containing 0 is the range
of the derivative of a Cp-smooth bump. We also study the finite-dimensional case which
is quite different. Finally, we show that in infinite-dimensional separable smooth Banach
spaces, every analytic subset of X∗ which satisfies a natural linkage condition is the range
of the derivative of a C1-smooth bump. We then find an analogue of this condition in the
finite-dimensional case.

1. Introduction. A bump is a function from a Banach space X to R
with a bounded nonempty support. In this paper we study the set f ′(X) =
{f ′(x) : x ∈ X}, which is the range of the derivative of f , when f is a
Fréchet differentiable bump. More precisely we will try to find necessary or
sufficient conditions for a subset A of X∗ to be the range of the derivative
of a bump.

D. Azagra and M. Jiménez-Sevilla proved in [2] that Rolle’s theorem
fails in infinite dimensions. As a consequence, they deduce that there is a
C1-smooth Lipschitz bump on l2 such that the range of its derivative has
an empty interior. However it can be shown by using Ekeland’s Variational
Principle ([4]) that 0 ∈ int(f ′(X)) even if f is only Gateaux differentiable.
Thus, if f is a C1-smooth bump on Rn, then f ′(Rn) is a compact neigh-
bourhood of 0.

Let us introduce some notations. The symbol N means the set {1, 2, . . .}.
We write B(x, r) for the closed ball of centre x and radius r, and S(x, r) for
the sphere of centre x and radius r. Sometimes BX is used for B(0, 1). For
a function f : X → R, the support of f is supp(f) = {x ∈ X : f(x) 6= 0}.
As said before, f is called a bump if its support is nonempty and bounded.
Recall that a function f : X → R is said to be Fréchet differentiable at
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x0 ∈ X if there exists f ′(x0) in X∗ such that

lim
y→0

f(x0 + y)− f(x0)− f ′(x0)(y)
‖y‖ = 0.

f ′(x0) is then called the derivative of f at x0. The set f ′(X) = {f ′(x) :
x ∈ X} is the range of the derivative of f . We will be concerned only with
Fréchet differentiability.

Let us recall some notations for multiindices. The symbol N<N stands
for the set of finite sequences of natural numbers. If σ = (q1, . . . , qk) ∈ N<N,
then k is called the length of σ and we write k = |σ|. If k ≥ 2 we define
σ = (q1, . . . , qk−1). For j ∈ {1, . . . , k}, σ(j) = qj and σ|j = (σ(1), . . . , σ(j)).
For τ = (r1, . . . , rm) ∈ N<N, σˆτ = (q1, . . . , qk, r1, . . . , rm). The symbol NN
denotes the set of infinite sequences of natural numbers. For σ = (qj)j≥1 ∈
NN and j ∈ N, σ(j) = qj and σ|j = (σ(1), . . . , σ(j)).

Now we describe our main results and the organization of the paper.
The goal in Section 2 is to try to answer the following question of [3]:

If f : Rn → R is a C1-smooth bump, is f ′(Rn) equal to the closure of
its interior? We give a partial answer when n = 2 and f is C2-smooth in
Theorem 2.1. Notice that in infinite dimensions, f ′(X) has no reason to be
closed and int(f ′(X)) can be empty (see [5]).

Section 3 is devoted to finding sufficient conditions for a connected open
set to be the range of the derivative of a bump. We recall that f ′(X) is
connected if f is a Fréchet differentiable bump. This extension of Darboux’s
theorem is proved by J. Malý in [7]. However f ′(X) is not always simply
connected (see [3]). In finite dimensions we prove that any connected open
subset of Rn containing 0 is the range of the derivative of a Fréchet differen-
tiable bump (Theorem 3.1). We then extend this result to the case when X
is an infinite-dimensional separable Banach space with a Cp-smooth bump
b : X → R such that ‖b(p)‖∞ is finite (Theorem 3.6).

In Section 4, we find a sufficient condition for an analytic subset of X∗

to be the range of the derivative of a C1-smooth bump when X∗ is sep-
arable (Proposition 4.2). We then exhibit analytic sets, neither closed nor
open, which are the range of the derivative of a C1-smooth bump (Theo-
rem 4.4). We obtain an analogue of Proposition 4.2 in finite dimensions in
Theorem 4.6. Finally, we study the relationship between Theorem 4.6 and
a result of [3].

2. The range of the derivative of a Cn-bump. In this section we
focus on the case X = Rn with n ≥ 2. Our main result is

Theorem 2.1. Let f : R2 → R be a C2-smooth bump. Then f ′(R2) is
equal to the closure of its interior.
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Before proceeding with the proof of this result we recall that the range
of the derivative of a C1-smooth bump on Rn is a connected compact neigh-
bourhood of the origin. We now show other properties which, applied to the
case n = 2, will allow us to prove Theorem 2.1.

Proposition 2.2. Let f : Rn → R be a Cn-smooth function. If f ′ = 0
on a compact connected set K, then f is constant on K.

Proof. If C is the set of critical points of f , Sard’s Theorem shows that
f(C) is of Lebesgue measure 0. Since K is a compact connected subset of C,
f(K) is a compact interval of R of measure 0, and hence a single point.

We need a result on connectedness.

Lemma 2.3. Let C be a connected compact subset of Rn and G the
unbounded connected component of Rn \ C. Then ∂G, the boundary of G,
is connected.

This follows from [6, §52.III.6 and §52.I.9].

Proposition 2.4. Let f : Rn → R be a Cn-smooth bump and z ∈
∂(f ′(Rn)). Then Rn \ f ′−1(z) is connected.

Proof. Assume that Rn \ f ′−1(z) is not connected. Since z 6= 0, f ′−1(z)
is bounded and thus Rn \ f ′−1(z) has a bounded nonempty connected com-
ponent, which we call B. If we denote by G the unbounded connected
component of Rn \ B, Lemma 2.3 asserts that ∂G is connected. We put
g(x) = f(x)−〈z, x〉 for x ∈ Rn. Since ∂G ⊂ ∂B (see [6, §44.III.3]), g′(x) = 0
for all x in ∂G. Proposition 2.2 implies that g is constant, equal to some C
on ∂G. We define h(x) = 0 if x ∈ G and h(x) = g(x) − C if x 6∈ G. Then
supph is bounded and nonempty, since h′(x) = f ′(x) − z 6= 0 if x ∈ B.
Clearly h is C1, so h is a C1-smooth bump, and hence 0 ∈ int(h′(Rn)).
But h′(Rn) ⊂ f ′(Rn)− z, so z ∈ int(f ′(Rn)). This contradicts the fact that
z ∈ ∂(f ′(Rn)).

Proposition 2.5. Let f : Rn → R be a Cn-smooth bump. Then f ′(Rn)
cannot be the union of compact sets A and B such that 0 6∈ B 6⊂ A and
A ∩B is a totally disconnected subset of ∂(f ′(Rn)).

Proof. We suppose that f ′(Rn) = A ∪ B with A and B as in the state-
ment. Let K = f ′−1(B). Then K is compact, since B is closed and 0 6∈ B.
Let x0 ∈ K be so that f ′(x0) 6∈ A∩B. We denote by C the connected com-
ponent of x0 in K and by G the unbounded connected component of Rn \C.
Then ∂G ⊂ ∂C ⊂ ∂K ([6, §44.III.3]) and ∂G is connected (Lemma 2.3).
Thus f ′(∂G) is a connected subset of A ∩ B and hence f ′(∂G) is a single
point, called y. Proposition 2.4 asserts that Rn \f ′−1(y) is connected. Recall
that 0 6∈ B, hence y 6= 0 and Rn\f ′−1(y) is unbounded. Since f ′(x0) 6∈ A∩B,
x0 ∈ Rn \ f ′−1(y). So it is possible to join x0 to infinity with a continuous



84 T. Gaspari

path staying in Rn \f ′−1(y). This is absurd, because such a path must cross
∂G which is included in f ′−1(y).

Corollary 2.6. Let f : R2 → R be a C2-smooth bump. Let y ∈ f ′(R2).
Then there is α > 0 such that for all 0 < ε < α, the set f ′(R2) ∩ S(y, ε)
contains a nontrivial arc of a circle.

Proof. Let y ∈ f ′(R2). If y = 0 the conclusion is obvious. If y 6= 0,
let ε ∈ ]0, ‖y‖/2[. If S(y, ε) ∩ int(f ′(R2)) 6= ∅ the result follows. Otherwise,
S(y, ε) ∩ f ′(R2) ⊂ ∂(f ′(R2)). We define A = f ′(R2) ∩ {z : ‖z − y‖ ≥ ε} and
B = f ′(R2)∩ {z : ‖z − y‖ ≤ ε}. The sets A and B are both compact, 0 6∈ B
and y ∈ B \ A. By Proposition 2.5, f ′(R2) ∩ S(y, ε) = A ∩ B cannot be a
totally disconnected subset of ∂(f ′(R2)). So f ′(R2)∩S(y, ε) has a nontrivial
connected component. It is easy to see that a closed connected subset of
S(y, ε) is an arc.

Proof of Theorem 2.1. We set K = f ′(R2). As K is closed, intK ⊂ K.
To show the other inclusion, let y ∈ K. For our f and y we find α > 0 by
Corollary 2.6. We fix 0 < β < α. For q ∈ N and k ∈ {1, . . . , 2q} we define

Uk(q) = {y + t(cos θ, sin θ) : t ∈ [0, β], θ ∈ [(k − 1)π/q, kπ/q]},
Fq,k = {ε ∈ [0, β] : Uk(q) ∩ S(y, ε) ⊂ K}.

Thanks to Corollary 2.6,

[0, β] =
⋃

q∈N

2q⋃

k=1

Fq,k.

Furthermore each Fq,k is closed. Indeed, let (εj)j be a sequence in Fq,k
which has a limit ε. Then ε ∈ [0, β]. Let z ∈ Uk(q) ∩ S(y, ε) and θ ∈
[(k − 1)π/q, kπ/q] so that z = y+ε(cos θ, sin θ). Then zj = y+εj(cos θ, sin θ)
is a sequence inK which converges to z. Thus z ∈ K and Uk(q)∩S(y, ε) ⊂ K.
So ε ∈ Fq,k and Fq,k is closed.

By Baire’s theorem, there are q0 ∈ N and k0 ∈ {1, . . . , 2q0} such that
Fq0,k0 has a nonempty interior. Thus

Uk0(q0) ∩ {y + t(cos θ, sin θ) : t ∈ intFq0,k0 , θ ∈ [0, 2π]}
is an open subset of K ∩ B(y, β). Since β can be taken arbitrarily small,
y ∈ intK.

3. Connected open subsets of X∗ and ranges of derivative. First
we study the finite-dimensional case. Our main result is

Theorem 3.1. Let U be a connected open subset of Rn containing 0.
Then there is a differentiable bump f : Rn → R such that f ′(Rn) = U .

We first recall some tools introduced in [3].
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Definition 3.2. Let (y, a) ∈ (Rn)2 and 0 < ε < ‖y‖. We define

Dε(y) = {(1− t)u+
√
t y : t ∈ [0, 1], ‖u‖ ≤ ε}.

The set T (a, y, ε) = a+Dε(y− a) is called the drop with centre a, vertex y,
and thickness ε.

We also introduce the notion of stationary images.

Definition 3.3. Let g : X → Y be a mapping and y ∈ Y . We call y a
stationary image of g if there is a nonempty open subset Ω of X such that
g(Ω) = {y}.

The following lemma is proved in [3].

Lemma 3.4. For every y ∈ Rn\{0} and every 0 < ε < ‖y‖ there exists a
C1-smooth bump g : Rn → R such that g′(Rn) = Dε(y) and y is a stationary
image of g′.

Lemma 3.5. Let q ∈ N and T1, . . . , Tq be drops with Ti = T (ai, yi, εi),
ai+1 = yi for all i in {1, . . . , q − 1} and a1 = 0. Then there exists a C1-
smooth bump g : Rn → R such that

g′(Rn) = T1 ∪ . . . ∪ Tq.
Proof. The proof is a simple induction. We want to show that the fol-

lowing holds for every q ∈ N: “For every T1, . . . , Tq as in the lemma there is
a C1-smooth bump g such that g′(Rn) = T1 ∪ . . .∪ Tq and yq is a stationary
image of g′ ”.

If q = 1 this is Lemma 3.4. Suppose that the property is true for some
q ≥ 1. Consider a finite set T1, . . . , Tq+1 of drops with Ti = T (ai, yi, εi),
a1 = 0, ai+1 = yi for 1 ≤ i ≤ q. There are a C1-smooth bump g : Rn → R,
x0 ∈ X and r > 0 such that g′(Rn) =

⋃
1≤i≤q Ti and g′(x) = yq for

all x in B(x0, r). We apply Lemma 3.4 with the drop Tq+1 − aq+1 =
T (0, yq+1−yq, εq+1). It gives a C1-smooth bump h so that h′(Rn) = Tq+1−yq
and yq+1 − yq is a stationary image of h′. Let M be large enough to ensure
that supp(h) ⊂ B(0,M). Define b(x) = g(x) + (2M)−1rh(2Mr−1(x − x0))
for x ∈ Rn. The function b is a C1-smooth bump, yq+1 is a stationary image
of b′, and

b′(Rn) = g′(Rn) ∪ (yq + h′(Rn)) =
⋃

1≤i≤q+1

Ti.

Now we can prove Theorem 3.1. The idea is the following: Lemma 3.5
allows us to write any finite union of drops as the range of the derivative of
a smooth bump. We cover U by a countable sequence of such sets. We show
that the bumps can be taken in such a way that the series is convergent,
differentiable, and that the range of its derivative is U .
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Proof of Theorem 3.1.

Step 1: U is covered by a countable sequence of good finite unions of
drops.

Consider the following set:

W = {y ∈ U : there are q ∈ N and q drops

T1 = T (a1, y1, ε1), . . . , Tq = T (aq, yq, εq) in U such that

a1 = 0, yq = y and ai+1 = yi for all 1 ≤ i ≤ q − 1}.
We are going to show that W = U . Since U is connected, it is sufficient
to prove that W is a closed open nonempty subset of U . Of course 0 ∈ W ,
so W 6= ∅. Let y ∈ W and ε > 0 with B(y, ε) ⊂ U . If z ∈ B(y, ε/2), then
T (y, z, ‖z − y‖/10) ⊂ U , so z ∈W and W is open. We take a sequence (zk)k
in W which has a limit z in U . There is ε > 0 with B(z, 2ε) ⊂ U . Find
k > 0 so that zk ∈ B(z, ε). Then T (zk, z, ‖z − zk‖/10) ⊂ U , thus z ∈ W .
Therefore W is a closed subset of U . Hence W = U .

If y ∈ U =W , there exist q drops T1 = T (a1, y1, ε1), . . . , Tq = T (aq, yq, εq)
in U such that a1 = 0, yq = y and ai+1 = yi for all 1 ≤ i ≤ q − 1.
We take εy > 0 such that B(y, 2εy) ⊂ U and wy in B(y, εy). We define
Py = T1 ∪ . . . Tq ∪ T (y, wy, ‖wy − y‖/10). Then

U =
⋃

y∈U
intPy.

By Lindelöf’s theorem ([8]), there exists a countable sequence (yk)k∈N in U
such that

U =
⋃

k≥1

intPyk .

Step 2: There is a differentiable bump f such that each Pyk is in f ′(Rn).

According to Lemma 3.5, for all k ∈ N, there is a C1-smooth bump
fk with f ′k(Rn) = Pyk . After a possible homothety we can suppose that
‖fk‖∞ ≤ 1. Let Mk ≥ 1 be such that supp(fk) ⊂ B(0,Mk). We define

xk = (2−1 + . . .+ 2−k, 0, . . . , 0), bk(x) = 8−kMk
−1fk(8kMk(x− xk)).

Then b′k(R
n) = Pyk and supp(bk) ⊂ B(xk, 8−k) = Sk. If k 6= j, then Sk ∩ Sj

= ∅ and
⋃
k∈N Sk ⊂ B(0, 2). We denote by x∞ the point (1, 0, . . . , 0). The

function
f =

∑

k≥1

bk

is obviously C1 on Rn \ {x∞}. Let x ∈ Rn and k ≥ 1. If x 6∈ Sk, then
bk(x) = 0. If x ∈ Sk, then |bk(x)| ≤ 8−kMk

−1‖fk‖∞ ≤ 8−k and ‖x− x∞‖ ≥
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1− ((2−1 + . . .+ 2−k) + 8−k) ≥ 2−k−1. Thus |bk(x)| ≤ 4‖x− x∞‖2 and

|f(x)− f(x∞)|
‖x− x∞‖

≤ supk |bk(x)|
‖x− x∞‖

≤ 4‖x− x∞‖,

so f is differentiable at x∞ and f ′(x∞) = 0. Therefore f is a differentiable
bump on Rn and

f ′(Rn) =
⋃

k∈N
Pyk = U.

We remark that f is not C1-smooth because if it were, U would be closed.
f is nevertheless C1-smooth on Rn \ {x∞}.

We now obtain similar results in infinite dimensions. Our main result is

Theorem 3.6. Let X be an infinite-dimensional Banach space with a
separable dual. Let p ∈ N be such that there exists a Cp-smooth bump
b : X → R with ‖b(p)‖∞ finite. Let U be a connected open subset of X∗ con-
taining 0. Then there is a Cp-smooth bump f : X → R such that f ′(X) = U .

Until the end of this section, X is as in Theorem 3.6. Notice that the
separability of X∗ implies that there exists indeed p ≥ 1 and a Cp-smooth
bump b : X → R such that ‖b(p)‖∞ is finite ([4, p. 58]). We remark that
the mean value theorem implies that ‖b(j)‖∞ is finite for all j in {0, . . . , p}.
In [1], it was proved that there is a C1-smooth bump such that the range of
its derivative is equal to X∗. Theorem 3.6 is an improvement of this result.
We now establish results which will be used to prove Theorem 3.6.

Lemma 3.7. There is a Cp-smooth bump F : X → R such that BX∗ ⊂
F ′(X) and ‖F (p)‖∞ is finite.

Proof.

Step 1: There is a Cp-smooth bump f so that f(x) = 1 for all x ∈ 2BX
and ‖f (p)‖∞ is finite.

After maybe a translation and multiplication by −1, we can suppose
b(0) > 0. We take a C∞-smooth bump ϕ : R → R such that 0 ≤ ϕ ≤ 1,
ϕ(t) = 1 if t ∈ [2−1b(0), 2−13b(0)], and ϕ(0) < 1. By the continuity of b
there is δ > 0 such that b(x) ∈ [2−1b(0), 2−13b(0)] if x ∈ δBX . We put
f(x) = (1− ϕ(0))−1(ϕ(b(δx/2))− ϕ(0)) and the result follows.

Step 2: There is a Cp-smooth bump f0 such that the stationary images
of f ′0 are dense in BX∗ and ‖f (p)

0 ‖∞ is finite.

Since X∗ is separable, there is a dense sequence (y∗k)k≥1 in BX∗ . Let
M > 1 be so large that supp(f) ⊂ MBX and ‖f (j)‖∞ < M for all j in
{0, . . . , p}. Fix now a sequence (xk)k≥1 in X so that ‖xk−xq‖ ≥ 2M+1 > 3
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if k 6= q and ‖xk‖ < 4M + 3. We define

f0(x) =
∑

k≥1

〈y∗k, x〉f(x− xk),

which is a sum of Cp-smooth functions with separated supports. Thus f0

is Cp-smooth, supp(f0) ⊂ (5M + 3)BX and f ′0(x) = y∗k if x ∈ B(xk, 1). If
x ∈ supp(f0), then

‖f (p)
0 (x)‖ ≤ sup

k≥1
{‖y∗k‖ · ‖x‖ · ‖f (p)(x− xk)‖+ p‖y∗k‖ · ‖f (p−1)(x− xk)‖}

≤ (5M + 3)M + pM = (5M + 3 + p)M.

Step 3: We construct a sequence (fj)j≥1 of Cp-smooth bump functions.

We set L = 5M + 3. Then L ≥ 8, supp(f0) ⊂ LBX and ‖xk‖ < L− 1 for
all k ≥ 1. For j ≥ 0 we define

fj+1(x) =
∑

k≥1

L−p−1fj(L(x− xk)).

For σ = (k1, . . . , kj) ∈ N<N we put

S(σ) = B(xk1 + L−1xk2 + . . .+ L−j+1xkj , L
−j+1)

and we prove that{
S(σˆk) ⊂ S(σ) for all σ ∈ N<N and k ∈ N.
For all σ, τ in N<N, |σ| = |τ | and σ 6= τ ⇒ S(σ) ∩ S(τ) = ∅.

For j ≥ 1 we denote by P(j) the following statement:
{

supp(fj) ⊂
⋃
σ∈Nj S(σ) and fj is Cp-smooth.

For all σ ∈ Nj and k ∈ N, x ∈ S(σˆk)⇒ f ′j(x) = L−jpy∗k.

We have supp(f1)⊂⋃σ∈N S(σ). Let x∈ supp(f1) and σ ∈N so that x∈ S(σ).
If z is in a small neighbourhood of x, then f1(z) = L−p−1f0(L(z − xσ)).
Therefore f1 is Cp-smooth. Let k ∈ N and x ∈ S(σˆk). We have S(σˆk) ⊂
S(σ) so f1(z) = L−p−1f0(L(z−xσ)) in a neighbourhood of x. Thus f ′1(x) =
L−pf ′0(L(x − xσ)) = L−py∗k, since L(x − xσ) ∈ B(xk, 1). Consequently,
P(1) holds.

Let j ≥ 1 and suppose that P(j) holds. Then

supp(fj+1) ⊂
⋃

k≥1

supp(x 7→ fj(L(x− xk))) ⊂
⋃

k≥1

(xk + L−1 supp(fj))

⊂
⋃

k≥1

⋃

σ∈Nj
S(kˆσ) ⊂

⋃

σ∈Nj+1

S(σ).

Let x ∈ supp(fj+1) and σ ∈ Nj+1 be such that x ∈ S(σ). Clearly fj+1(z) =
L−p−1fj(L(z − xσ(1))) in a neighbourhood of x, so fj+1 is Cp-smooth. Let
σ ∈ Nj+1, k ∈ N and x ∈ S(σˆk). In a neighbourhood of x, fj+1(z) =
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L−p−1fj(L(z − xσ(1))). Thus f ′j+1(x) = L−pf ′j(L(x − xσ(1))) = L−(j+1)py∗k,
since L(x− xσ(1)) ∈ S(σ(2), . . . , σ(j + 1), k). Finally, P(j + 1) holds.

Step 4: F =
∑

j≥0 fj is a Cp-smooth function and ‖F (p)‖∞ is finite.

For all j ≥ 0, ‖fj+1‖∞ ≤ L−p−1‖fj‖∞. Thus the series of the ‖fj‖∞
is convergent. This proves the existence of F and its continuity. For j ≥ 1
and σ ∈ Nj , S(σ) ⊂ S(σ(1)) ⊂ LBX . Thus supp(fj) ⊂ LBx for all j ≥ 0

and hence F has a bounded support. If m ∈ {0, . . . , p}, then ‖f (m)
j+1‖∞ ≤

Lm−p−1‖f (m)
j ‖∞ ≤ L−1‖f (m)

j ‖∞, so
∑

j≥0 ‖f
(m)
j ‖∞ < ∞. Therefore F is a

Cp-smooth function and ‖F (m)‖∞ is finite for all 0 ≤ m ≤ p.
Step 5: Any point in BX∗ is in the range of the derivative of F .

Fix z∗ in BX∗ . There exists k1 ≥ 1 such that ‖z∗ − y∗k1
‖ ≤ L−p. Then

Lp(z∗−y∗k1
) is in BX∗ , so there is k2 ≥ 1 such that ‖Lp(z∗−y∗k1

)−y∗k2
‖ ≤ L−p.

Thus ‖z∗ − (y∗k1
+ L−py∗k2

)‖ ≤ L−2p. We construct inductively a sequence
σ = (kj)j≥1 ∈ NN such that ‖z∗− (y∗σ(1) +L−py∗σ(2) + . . .+L−(j−1)py∗σ(j))‖ ≤
L−jp for all j ≥ 1. Then

z∗ =
∑

j≥0

L−jpy∗σ(j+1).

For q ≥ 1 we define z∗q =
∑q−1

j=0 L
−jpy∗σ(j+1) and Fq =

∑q−1
j=0 fj . Let w =

∑
j≥0 L

−jxσ(j+1) and wq =
∑q−1

j=0 L
−jxσ(j+1). For all j ∈ {0, . . . , q − 1},

wq ∈ S(σ|j + 1) so f ′j(wq) = L−jpy∗σ(j+1). Thus F ′q(wq) = z∗q . The sequence
(F ′q)q is uniformly convergent, (wq)q converges to w and (z∗q )q converges
to z∗, so F ′(w) = z∗.

The next result provides the existence of plateau functions.

Lemma 3.8. There is a Cp-smooth bump b : X → R such that

b(X) ⊂ [0, 1], b(x) = 1 if ‖x‖ ≤ 2 and ‖b′‖∞ ≤ 1.

Proof. Let ϕ : R → R be a C∞-smooth function so that ϕ(t) = 0 if
t ≤ 0, 0 ≤ ϕ ≤ 1, ϕ(t) = 1 if t ≥ 2, and |ϕ′(t)| ≤ 1 for all t ∈ R. Let
b0 : X → R be a Cp-smooth bump with b0(0) > 2 and ‖b(p)

0 ‖∞ < ∞. We
define b(x) = b0(rx) with r > 0 small enough to have b(x) ≥ 2 if ‖x‖ ≤ 2,
and ‖b′‖∞ ≤ 1. Then the function given by F (x) = ϕ(b(x)) satisfies the
conditions of the lemma.

Lemma 3.9. There is a constant K such that for all y∗ in X∗, there are
a Cp-smooth bump f : X → R and a real number a > 0 such that

y∗ + aBX∗ ⊂ f ′(X) ⊂ K‖y∗‖BX∗ and f ′(x) = y∗ if ‖x‖ ≤ 1.
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Proof. Let b be the Cp-smooth bump given by Lemma 3.8 and G the
Cp-smooth bump given by Lemma 3.7. There is an A > 1 such that BX∗ ⊂
G′(X) ⊂ ABX∗ , supp(G) ⊂ ABX and supp(b) ⊂ ABX . We put F (x) =
A−2‖y∗‖G(Ax). Then A−1‖y∗‖BX∗ ⊂ F ′(X) ⊂ ‖y∗‖BX∗ and supp(F ) ⊂
BX . We now fix a point x0 ∈ X with ‖x0‖ = 3/2 and we define

f(x) = 2y∗(x/2− x0)b(x/2− x0) + 2F (x/2− x0).

Then supp(f) ⊂ (2A + 3)BX . We set K = 2A + 8 and a = A−1‖y∗‖. We
remark that K is independent of y∗. It is clear that K and f satisfy the
conditions of the lemma.

In what follows, K is the constant given by Lemma 3.9.

Lemma 3.10. Let U be a connected open subset of X∗. Let y∗ ∈ U be
such that there are q ≥ 1 and a sequence y∗0, . . . , y

∗
q of points of U with

y∗0 = 0, y∗q = y∗ and B(y∗i ,K‖y∗i+1 − y∗i ‖) ⊂ U for all i ∈ {0, . . . , q − 1}.
Then there exist a Cp-smooth bump f : X → R and δ > 0 such that

y∗ ∈ int(f ′(X)), f ′(X) ⊂ U and f ′(x) = y∗ if ‖x‖ ≤ δ.
Proof (by induction). The case q = 1 is immediate from Lemma 3.9. We

fix q ≥ 2 and suppose that the property is true for q−1. Let y∗0, . . . , y
∗
q satisfy

the hypotheses. By the induction hypothesis we have a Cp-smooth bump g
and α > 0 such that y∗q−1 ∈ int(g′(X)), g′(X) ⊂ U and g′(x) = y∗q−1 for all
x ∈ αBX . Furthermore Lemma 3.9 gives a Cp-smooth bump h such that
y∗q − y∗q−1 ∈ int(h′(X)), h′(X) ⊂ K‖y∗q − y∗q−1‖BX∗ and h′(x) = y∗q − y∗q−1
for all x ∈ BX . We take L ≥ 1 large enough to have supp(h) ⊂ LBX and
we define

f(x) = g(x) + L−1αh(α−1Lx).

Then y∗q ∈ int(f ′(X)), f ′(X) ⊂ g′(X) ∪ (y∗q−1 + h′(X)) ⊂ U and f ′(x) = y∗q
if ‖x‖ ≤ L−1α.

We are now able to prove Theorem 3.6.

Proof of Theorem 3.6.

Step 1: Each point y∗ in U satisfies the condition of Lemma 3.10.

Define

A = {y∗ ∈ U : ∃q ∈ N, ∃(y∗0 = 0, y∗1, . . . , y
∗
q = y∗) ∈ U q+1 so that

B(y∗i ,K‖y∗i+1 − y∗i ‖) ⊂ U for all i ∈ {0, . . . , q − 1}}.
We are going to prove that A = U . Since 0 ∈ A, A is not empty. Clearly
A is an open subset of U . Let (y∗k)k be a sequence in A which has a limit
y∗ in U . There is α > 0 such that B(y∗, 2α) ⊂ U . If k0 is large enough,
then y∗k0

∈ B(y∗,K−1α). Thus B(y∗k0
,K‖y∗ − y∗k0

‖) ⊂ U and hence y∗ ∈ A.
Therefore A is a closed subset of U . Since U is connected, A = U .
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Step 2: There is a sequence (fk)k≥1 of Cp-smooth bumps with U =⋃
k≥1 f

′
k(X).

If y∗ ∈ U , then y∗ ∈ A so Lemma 3.10 can be applied. We let fy∗ be the
function given by Lemma 3.10. We have

U =
⋃

y∗∈U
int(f ′y∗(X)).

As X∗ is separable, we can apply Lindelöf’s theorem ([8]): There is a count-
able sequence (y∗k)k in U such that

U =
⋃

k≥1

int(f ′y∗k(X)) and therefore U =
⋃

k≥1

f ′y∗k(X).

We put fk = fy∗k .

Step 3: There is a Cp-smooth bump f such that U = f ′(X).

After possible homotheties we can suppose that supp(fk) ⊂ BX for all
k ≥ 1. Since X is infinite-dimensional, there exists a sequence (xk)k≥1 in X
such that ‖xk‖ < 7 for every k ≥ 1 and ‖xk − xq‖ > 3 if q 6= k. We define

f(x) =
∑

k≥1

fk(x− xk).

If ‖x − xk‖ > 3/2 for all k, then f is zero and so is Cp-smooth in a neigh-
bourhood of x. If there is k so that ‖x−xk‖ ≤ 3/2, then ‖x−xq‖ > 3/2 for
all q 6= k, so f(z) = fk(z) and f ′(z) = f ′k(z) when z is in a neighbourhood
of x. Thus f is a Cp-smooth function and f ′(X) =

⋃
k≥1 f

′
k(X) = U .

We give a stronger version of Theorem 3.6 which will be needed in what
follows.

Proposition 3.11. Let X be as in Theorem 3.6. Let U be a connected
open subset of X∗ containing 0. Let (z∗k)k≥1 be a sequence of points of U .
There is a Cp-smooth bump f : X → R such that f ′(X) = U and each z∗k
is a stationary image of f ′.

Proof. In the proof of Theorem 3.6, when we use Lindelöf’s theorem to
extract the sequence (y∗k)k, we can add to this family some elements in such
a way that {z∗q : q ∈ N} ⊂ {y∗k : k ∈ N}. The function f which is then
constructed satisfies the following statement: For all k, there is δk > 0 so
that f ′(x) = y∗k if ‖x− xk‖ < δk. So every z∗k is a stationary image of f ′.

4. Well-linked sets and ranges of derivative. In finite dimensions
the range of the derivative of a C1-smooth bump is compact. If X is an
infinite-dimensional separable Banach space we see, by the definition, that
the range of the derivative of a C1-smooth bump is an analytic set. Moreover,
if f is a C1-smooth bump and f ′ is Lipschitzian, there existsM > 0 such that
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each point of f ′(X) can be joined to 0 by an M -Lipschitzian path contained
in f ′(X). It is sufficient to consider the path γ(t) = f ′((1−t)x0 +tx) with x0
so that f ′(x0) = 0. Furthermore we have seen in Section 2 that it makes sense
to assume f ′(X) = int(f ′(X)). Consequently, Proposition 4.2 and Theorem
4.6 are partial converses of these necessary conditions. In the first result of
this section (Proposition 4.2), we give a sufficient condition for an analytic
subset of X∗ to be the range of the derivative of a C1-smooth bump when
X∗ is separable. Let us introduce this condition.

Definition 4.1. Let F be a subset of X∗. We say that F satisfies con-
dition (A∞) if there are a mapping ϕ : N<N ∪ NN → X∗ and a summable
sequence (δk)k≥1 of positive numbers such that




ϕ(N<N ∪ NN) = F.

σ ∈ N<N and |σ| = 1⇒ [0, ϕ(σ)] ⊂ intF and ‖ϕ(σ)‖ < δ1.
σ ∈ N<N and |σ| ≥ 2⇒ [ϕ(σ ), ϕ(σ)] ⊂ intF and ‖ϕ(σ)− ϕ(σ )‖ < δ|σ|.

σ ∈ NN ⇒ ϕ(σ) = limk ϕ(σ|k).

Proposition 4.2. Let X be an infinite-dimensional Banach space with
a separable dual. Let F be a subset of X∗. If F satisfies (A∞), then there
is a C1-smooth bump f : X → R such that f ′(X) = F .

Proof. Since X∗ is separable, Theorem 3.6 and Proposition 3.11 can be
applied with p = 1. Since X is infinite-dimensional, for a given x ∈ X, there
is a sequence (wk)k∈N in B(x, β/2) such that ‖wk − wq‖ > β/5 if k 6= q.
We write wk = wk(x, β). We will proceed by induction on k := |σ|. In the
following, if |σ| = 1, we put ϕ(σ ) = 0, ασ = 1, xσ = 0.

For k ∈ N, denote by P(k) the following statement: “For all σ ∈ N<N
with |σ| = k, there are xσ ∈ BX , ασ ∈ ]0, 2−k[, εσ ∈ ]0,min(2−k, δk)[ and a
C1-smooth bump hσ : X → R such that

(i) ϕ(σ ) + h′σ(X) = [ϕ(σ ), ϕ(σ)] + εσ intBX∗ ⊂ intF .
(ii) h′σ(x) = ϕ(σ)− ϕ(σ ) for all x ∈ B(xσ, ασ).
(iii) supp(hσ) ⊂ B(xσ , ασ ) ⊂ BX .
(iv) If |τ | = |σ| and τ 6= σ, then supp(hσ)∩ supp(hτ ) = ∅.”
Step 1: P(1) holds.

Let σ ∈ N<N with |σ| = 1. Since [0, ϕ(σ)] ⊂ intF , there is 0 < εσ < δ1
with [0, ϕ(σ)] + εσBX∗ ⊂ intF . We apply Proposition 3.11 to obtain a
C1-smooth bump gσ such that g′σ(X) = [0, ϕ(σ)] + εσ intBX∗ and ϕ(σ) is a
stationary image of g′σ. We can suppose that supp(gσ) ⊂ BX . Define

hσ(x) = 12−1gσ(12(x− wσ(1)(0, 1))).

Then supp(hσ) ⊂ B(wσ(1)(0, 1), 12−1) ⊂ BX . Moreover there are xσ in
BX and 0 < ασ < 1 such that h′σ(x) = ϕ(σ) for all x in B(xσ, ασ).
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Finally, if |σ| = |τ | = 1 and σ 6= τ , then supp(hσ) ∩ supp(hτ ) = ∅,
because ‖wσ(1)(0, 1)− wτ(1)(0, 1)‖ > 5−1.

Step 2: P(k) holds for all k ≥ 1.

Take k ≥ 1 and suppose that P(k) holds. Let σ ∈ N<N with |σ| = k+ 1.
There is 0 < εσ < δk+1 such that [ϕ(σ ), ϕ(σ)]+εσBX∗ ⊂ intF . Proposition
3.11 gives a C1-smooth bump gσ such that g′σ(X) = [0, ϕ(σ) − ϕ(σ )] +
εσ intBX∗ , ϕ(σ) − ϕ(σ ) is a stationary image of g′σ and supp(gσ) ⊂ BX .
We put

hσ(x) = 12−1ασ gσ(12α−1
σ (x− wσ(k+1)(xσ , ασ ))).

We have supp(hσ) ⊂ B(wσ(k+1)(xσ , ασ ), 12−1ασ ) ⊂ B(xσ , ασ ) ⊂ BX . If
|σ| = |τ | = k + 1 and σ 6= τ , we can easily check that

B(wσ(k+1)(xσ , ασ ), 12−1ασ ) ∩B(wτ(k+1)(xτ , ατ ), 12−1ατ ) = ∅,
so supp(hσ) ∩ supp(hτ ) = ∅. Moreover ϕ(σ) − ϕ(σ ) is clearly a stationary
image of h′σ. So there are xσ ∈ BX and ασ ∈ ]0, 2−k[ such that h′σ(x) =
ϕ(σ)− ϕ(σ ) for all x ∈ B(xσ, ασ). Finally, P(k + 1) holds.

Step 3: The function f =
∑

k≥1
∑
|σ|=k hσ is a C1-smooth bump.

For k ≥ 1 we define Gk(x) =
∑
|σ|=k hσ(x). Since this is a sum of C1-

smooth functions with disjoint supports, it is C1-smooth. We recall that for
all σ ∈ N<N, h′σ(X) = g′σ(X) = [0, ϕ(σ)−ϕ(σ )]+εσ intBX∗ . For all x ∈ X,

‖G′k(x)‖ ≤ sup{‖h′σ(x)‖ : |σ| = k}
≤ sup{‖ϕ(σ)− ϕ(σ )‖+ εσ : |σ| = k} ≤ 2δk.

By the mean value theorem we get |Gk(x)| ≤ 2δk since supp(Gk) ⊂ BX .
Therefore f is a C1-smooth bump.

Step 4: f ′(X) is equal to F .

Let fk(x) =
∑

1≤j≤kGj(x). For all σ ∈ N<N, B(xσ, ασ) ⊂ B(xσ , ασ ).
Thus, if k ≥ 1 and |σ| = k, then G′j(xσ) = ϕ(σ|j) − ϕ(σ|j − 1) for all
1 ≤ j ≤ k and hence f ′k(xσ) = ϕ(σ).

Let x ∈ X. Three cases can arise:

Case 1: For all σ ∈ N<N, x 6∈ B(xσ, ασ). Then f ′(x) = 0.
Case 2: There is σ ∈ NN so that x ∈ B(xσ|k, ασ|k) for all k ≥ 1. Thus

(xσ|k)k converges to x and since (f ′k)k is uniformly convergent, we have
f ′(x) = limk f

′
k(xσ|k) = limk ϕ(σ|k) = ϕ(σ).

Case 3: There is σ ∈ N<N such that x ∈ B(xσ, ασ) and x 6∈⋃
j∈NB(xσˆj , ασˆj). Then f ′(x) = f ′k(x) = ϕ(σ).

It is therefore clear that f ′(X) = ϕ(N<N ∪ NN) = F .
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For closed sets we can rewrite condition (A∞) using sequences. Indeed,
it is not hard to prove that a closed subset F of X∗ satisfies (A∞) if and
only if there are a summable sequence (δk)k≥1 of positive numbers and a
sequence (y∗k)k≥1 of points in intF with y∗1 = 0 such that for all y∗ in F,
there is a nondecreasing function ψ : N → N so that limk→∞ y∗ψ(k) = y∗,
ψ(1) = 1 and for all k ≥ 1,

[y∗ψ(k), y
∗
ψ(k+1)] ⊂ intF and ‖y∗ψ(k+1) − y∗ψ(k)‖ < δk.

Proposition 4.2 is false in finite dimensions. Indeed, we can construct a
compact subset P of R2 which satisfies condition (A∞) but which is not the
range of the derivative of a C1-smooth bump. Because of its form, we call
this set a comb. We define

P1 = ([−1, 2]× [−1, 0]) ∪ ([1, 2]× [−1, 1]),

P2 =
( ⋃

q≥1

[2−1 + . . .+ 2−q − 8−q, 2−1 + . . .+ 2−q + 8−q]
)
× [0, 1]

(comb’s teeth) and
P = (−3/2, 0) + (P1 ∪ P2).

0

The comb in R2

If n ≥ 2, then P × BRn−2 is not the range of the derivative of a C1-smooth
bump, because of the following lemma:

Lemma 4.3. For x and y in F define r(x, y) = inf{diam(γ([0, 1])) :
γ : [0, 1] → F is continuous, γ(0) = x and γ(1) = y}. If F = b′(Rn) with
b : Rn → R a C1-smooth bump, then for all ε > 0 there exists a finite ε-net
in F for the metric r.

The proof of this lemma is clear: Since b′ is uniformly continuous on
supp(b), we find δ > 0 such that ‖b′(x)− b′(y)‖ < ε if ‖x − y‖ < δ. Take a
finite δ-net in supp(b) for the norm; then its range under b′ is a finite ε-net
in F for the metric r. Notice that if H is an infinite-dimensional separable
Hilbert space, then P × BH is a subset of R2 ×H which satisfies condition
(A∞), hence is the range of the derivative of a C1-smooth bump on R2×H.

We now give examples of subsets of X∗, neither closed nor open, which
satisfy (A∞).
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Theorem 4.4. Let X be an infinite-dimensional Banach space with a
separable dual. Let U be a bounded open convex subset of X∗ containing 0
and let U ⊂ A ⊂ U be any analytic set. Then there exists a C1-smooth
bump f : X → R such that f ′(X) = A.

Proof. Let U and A be as in the theorem. We put αk = 2−k, k ∈ N.

Step 1: We construct a mapping ψ : N<N ∪ NN → X∗ such that




ψ(N<N ∪ NN) = A = ψ(NN).
σ ∈ N<N and |σ| ≥ 2⇒ ‖ψ(σ)− ψ(σ )‖ < α|σ|.

σ ∈ NN ⇒ ψ(σ) = limk ψ(σ|k).

Let g be a bijection from N onto N<N. Since A is analytic, there is a
continuous mapping χ0 on NN such that χ0(NN) = A. We define the map
χ on NN ∪ N<N by χ(σ) = χ0(σ) if σ ∈ NN, and χ(σ) ∈ {χ0(τ) : τ ∈ NN
and σ < τ} if σ ∈ N<N. Then χ(N<N ∪ NN) = A and for all σ ∈ NN,

(χ(σ|k))k converges and χ(σ) = limk χ(σ|k).
We will define h : N<N → N<N by induction over k := |σ|. If |σ| = 1,

then h(σ) = g(σ(1)). If |σ| = k ≥ 2, we put

h(σ) =
{
h(σ )ˆg(σ(k)) if ‖χ(h(σ )ˆg(σ(k)))− χ(h(σ ))‖ < αk,
h(σ ) otherwise.

So, if σ ∈ N<N, there is a unique u(σ) ∈ N<N ∪ {∅} such that h(σ) =
h(σ )ˆu(σ). Let σ ∈ NN. There is a unique sequence (u(σ|k))k≥1 in N<N∪{∅}
such that h(σ|k) = u(σ|1)ˆ . . . ˆu(σ|k) for all k. We then define

h(σ) = u(σ|1)ˆ . . . ˆu(σ|k)ˆ . . .

The mapping h is a surjection from N<N ∪ NN onto itself. Indeed, for each
σ ∈ N<N, there is p ∈ N with g(p) = σ, thus h(p) = g(p) = σ. Now
let σ ∈ NN. There exists a stricly increasing sequence (qj)j≥1 of positive
integers such that

∀j ≥ 1, ∀k, p ≥ qj , ‖χ(σ|k)− χ(σ|p)‖ < αj+1.

We take q0 = 0. For all k ≥ 1, there is a unique mk ∈ N so that g(mk) =
(σ(qk−1 + 1), . . . , σ(qk)). We set τ = (mk)k≥1. For all k ≥ 2 and all
j ∈ {2, . . . , k},
‖χ(g(m1)ˆ . . . ˆg(mj))− χ(g(m1)ˆ . . . ˆg(mj−1))‖

= ‖χ(σ|qj)− χ(σ|qj−1)‖ < αj

so h(τ |k) = g(m1)ˆ . . . ˆg(mk) = σ|qk and hence h(τ) = σ.
We define ψ on N<N ∪ NN by ψ(σ) = χ(h(σ)). The range of ψ is clearly

included in A. Let a ∈ A and σ ∈ NN with a = χ(σ). We have proved that
there exists τ ∈ NN such that h(τ) = σ. Then ψ(τ) = χ(h(τ)) = χ(σ) = a,
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so A ⊂ ψ(NN). It is clear that if σ ∈ N<N and |σ| ≥ 2, then

‖ψ(σ)− ψ(σ )‖ ≤ ‖χ(h(σ))− χ(h(σ ))‖ < α|σ|.

Finally, if σ ∈ NN, then (ψ(σ|k))k converges and

lim
k
ψ(σ|k) = lim

k
χ(h(σ|k)) = lim

k
χ((h(σ))|nk) = χ(h(σ)) = ψ(σ).

Step 2: A satisfies (A∞).

We define ϕ : NN ∪N<N → X∗ by ϕ(σ) = (1−α|σ|)ψ(σ) if σ ∈ N<N, and
ϕ(σ) = ψ(σ) if σ ∈ NN. We can easily verify that (A∞) holds with δk = 2αk.
Then Proposition 4.2 completes the proof.

We now introduce a sufficient condition in finite dimensions which is not
far from condition (C∞).

Definition 4.5. Let F be a subset of Rn. We say that F satisfies con-
dition (C) if F is closed, there are a summable sequence (δk)k≥2, a sequence
(qk)k≥1 of positive integers with q1 = 1 and a mapping ϕ : D∪⋃k≥1Dk → F

(where D =
∏
j≥1 {1, . . . , qj} and Dk =

∏
1≤j≤k {1, . . . , qj}) such that





ϕ(D ∪⋃k≥1Dk) = F , ϕ(1) = 0 and, for all k ≥ 2,
σ ∈ Dk ⇒ [ϕ(σ ), ϕ(σ)] ⊂ intF and ‖ϕ(σ)− ϕ(σ )‖ < δk.
σ ∈ D ⇒ ϕ(σ) = limk ϕ(σ|k).

Again, we can rewrite this condition in terms of sequences: F satisfies
condition (C) if and only if F is closed, there are a sequence (y∗k)k≥1 of points
in intF with y∗1 = 0, a nondecreasing sequence (Ik)k≥1 of finite subsets of N
with I1 = {1} and a summable sequence (δk)k≥1 of positive numbers such
that for all y∗ in F , there is a function ψ : N→ N so that limk y

∗
ψ(k) = y∗ and

for all k ≥ 1, ψ(k) ∈ Ik, [y∗ψ(k), y
∗
ψ(k+1)] ⊂ intF and ‖y∗ψ(k+1) − y∗ψ(k)‖ < δk.

Using the same ideas as in the proof of Proposition 4.2, we get

Theorem 4.6. Let n ≥ 1 and F be a subset of Rn. If F satisfies condi-
tion (C), then there is a C1 -smooth bump f : Rn → R such that f ′(Rn) = F .

Let us now recall the condition introduced in [3]:
A subset F of X∗ is said to satisfy condition (∗) if there are a summable

sequence (δk)k≥1 of positive numbers and a sequence (Ck)k≥1 of bounded
closed subsets of X∗ such that F =

⋃
k≥1Ck, C1 is convex and contains 0,

for all k ≥ 1, Ck ⊂ intCk+1 and for all y in Ck+1 \ intCk, there is z in Ck
such that [z, y] ⊂ Ck+1 and ‖y − z‖ < δk.

The authors of [3] prove that any subset of Rn satisfying (∗) is the range
of the derivative of a C1-smooth bump. We are going to show that condition
(∗) is equivalent to condition (C). Consequently, Theorem 4.6 is nothing but
Theorem 12 of [3]. Later we will explain the advantages of condition (C).

Proposition 4.7. If X = Rn, then condition (∗) is equivalent to (C).
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Proof. Let F be a subset of Rn.

Step 1: Condition (∗)⇒ Condition (C).

We suppose that F satisfies (∗). We put S1 = {0}. For k ≥ 1 we define
εk = 2−1 min(δk,dist(Ck+1, ∂F )),

Sk+1 = Sk ∪ {a finite εk-net of Ck},
qk = CardSk, D =

∏
j≥1 {1, . . . , qj} and Dk =

∏
1≤j≤k {1, . . . , qj}. We

define ϕ :
⋃
k≥1Dk → Rn by induction. First we set δ0 = diam(C1) and

ϕ(1) = 0. We fix k ≥ 1 and assume that ϕ is defined on Dk, ϕ(Dk) = Sk
and for all σ ∈ Dk, [ϕ(σ ), ϕ(σ)] ⊂ intF and ‖ϕ(σ) − ϕ(σ )‖ < 2δk−1. We
remark that if y ∈ Ck, then there is z ∈ Sk such that ‖y − z‖ < 2δk−1
and [z, y] ⊂ intF . If σ ∈ Dk we set Tσ = {y ∈ Sk+1 : ‖y − ϕ(σ)‖ < 2δk−1
and [ϕ(σ), y] ⊂ intF}. We can write Tσ = {z1, . . . , zr} with r ≤ qk+1. We
define ϕ(σˆj) = zj if 1 ≤ j ≤ r and ϕ(σˆj) = ϕ(σ) if r < j ≤ qk+1.
Then ϕ is defined on Dk+1 and has all the required properties. The fact
that ϕ(Dk+1) = Sk+1 follows from the remark. In this way we define ϕ on⋃
k≥1Dk. If σ ∈ D, then the sequence (ϕ(σ|k))k is convergent and we define

ϕ(σ) = limk ϕ(σ|k).
Let y ∈ F . There is a sequence (zk)k≥1 such that limk zk = y and zk ∈ Ck

for all k ≥ 1. For all k ≥ 1, there is σk ∈ Dk+1 with ‖zk − ϕ(σk)‖ < δk and
[ϕ(σk), zk] ⊂ intF . The sequence (σk(1))k takes a finite number of values
in {1, . . . , q1}. Thus there is r1 in {1, . . . , q1} so that {k : σk(1) = r1} is
infinite. By induction we build a sequence (rj)j≥1 in D such that for all j,
{k : σk(i) = ri for 1 ≤ i ≤ j} is infinite. Then τ = (r1, . . . , rj , . . .) is in D
and ϕ(τ) = y. Therefore (∗) implies (C).

Step 2: Condition (C)⇒ Condition (∗).

We assume that F satisfies (C). There is ε1 > 0 such that B(0, ε1)⊂ intF .
We define C1 = B(0, ε1). For k ≥ 1, if σ ∈ Dk, then there is 0 < εσ < δk
with [ϕ(σ ), ϕ(σ)] +B(0, εσ) ⊂ intF . The set

Bk = Ck ∪
( ⋃

σ∈Dk
[ϕ(σ ), ϕ(σ)] +B(0, εσ)

)

is compact and is in intF . So αk = 1
2 min(δk,dist(Bk, ∂F )) > 0. Finally, we

define Ck+1 = Bk+B(0, αk). The sequence (Ck)k≥1 satisfies all the required
conditions, thus F satisfies condition (∗).

We have proved that condition (C) can be extended to infinite dimen-
sions. Indeed, Proposition 4.2 shows that (A∞) is a sufficient condition in
smooth infinite-dimensional Banach spaces and (A∞) can be considered as
an extension of (C). The situation is different with condition (∗). In fact, if X
is an infinite-dimensional Banach space, we can construct a subset R of X∗
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which satisfies condition (∗) but which is not the range of the derivative of a
C1-smooth bump. Let us describe R. Since X is infinite-dimensional, there
is ε > 0 and a 3ε-separated sequence (ek)k≥1 in SX∗ . We fix a point w in
X∗ with ‖w‖ = 3/2. We define

Dk = {tx : x ∈ SX∗ ∩B(ek, ε), 1/k ≤ t ≤ 1}, D =
⋃

k≥1

Dk,

R = w + ({x ∈ X∗ : 1 ≤ ‖x‖ ≤ 2} ∪D)

= (w + ({x ∈ X∗ : 1 ≤ ‖x‖ ≤ 2} ∪D)) ∪ {w}.
We remark that the construction of R is only possible in an infinite-

dimensional Banach space. Here is a 2-dimensional representation of R:

 
0 w

The wheel with broken spokes

Because of its form, R is called the “wheel with broken spokes”. In fact,
in infinite dimensions, we can imagine that each spoke is in a new direction
and comes closer to w, the centre of the wheel. Then R satisfies condition (∗)
but R is not the range of the derivative of a C1-smooth bump, because w
cannot be joined to 0 by a continuous path in R. Thus condition (∗) is not
sufficient in infinite dimensions.
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Université Bordeaux 1
351, cours de la Libération
33400 Talence, France
E-mail: gaspari@math.u-bordeaux.fr

Received July 5, 2001
Revised version April 15, 2002 (4771)


