On the range of the derivative of a real-valued function with bounded support

by

T. GASPARI (Bordeaux)

Abstract. We study the set $f'(X) = \{f'(x) : x \in X\}$ when $f : X \to \mathbb{R}$ is a differentiable bump. We first prove that for any C^2 -smooth bump $f : \mathbb{R}^2 \to \mathbb{R}$ the range of the derivative of f must be the closure of its interior. Next we show that if X is an infinite-dimensional separable Banach space with a C^p -smooth bump $b : X \to \mathbb{R}$ such that $\|b^{(p)}\|_{\infty}$ is finite, then any connected open subset of X^* containing 0 is the range of the derivative of a C^p -smooth bump. We also study the finite-dimensional case which is quite different. Finally, we show that in infinite-dimensional separable smooth Banach spaces, every analytic subset of X^* which satisfies a natural linkage condition is the range of the derivative of a C^1 -smooth bump. We then find an analogue of this condition in the finite-dimensional case.

1. Introduction. A bump is a function from a Banach space X to \mathbb{R} with a bounded nonempty support. In this paper we study the set $f'(X) = \{f'(x) : x \in X\}$, which is the range of the derivative of f, when f is a Fréchet differentiable bump. More precisely we will try to find necessary or sufficient conditions for a subset A of X^* to be the range of the derivative of a bump.

D. Azagra and M. Jiménez-Sevilla proved in [2] that Rolle's theorem fails in infinite dimensions. As a consequence, they deduce that there is a C^1 -smooth Lipschitz bump on l_2 such that the range of its derivative has an empty interior. However it can be shown by using Ekeland's Variational Principle ([4]) that $0 \in int(\overline{f'(X)})$ even if f is only Gateaux differentiable. Thus, if f is a C^1 -smooth bump on \mathbb{R}^n , then $f'(\mathbb{R}^n)$ is a compact neighbourhood of 0.

Let us introduce some notations. The symbol \mathbb{N} means the set $\{1, 2, \ldots\}$. We write B(x, r) for the closed ball of centre x and radius r, and S(x, r) for the sphere of centre x and radius r. Sometimes B_X is used for B(0, 1). For a function $f : X \to \mathbb{R}$, the support of f is $\operatorname{supp}(f) = \{x \in X : f(x) \neq 0\}$. As said before, f is called a bump if its support is nonempty and bounded. Recall that a function $f : X \to \mathbb{R}$ is said to be Fréchet differentiable at

²⁰⁰⁰ Mathematics Subject Classification: 46G05, 26B05, 46B20, 46T20.

 $x_0 \in X$ if there exists $f'(x_0)$ in X^* such that

$$\lim_{y \to 0} \frac{f(x_0 + y) - f(x_0) - f'(x_0)(y)}{\|y\|} = 0.$$

 $f'(x_0)$ is then called the *derivative* of f at x_0 . The set $f'(X) = \{f'(x) : x \in X\}$ is the range of the derivative of f. We will be concerned only with Fréchet differentiability.

Let us recall some notations for multiindices. The symbol $\mathbb{N}^{<\mathbb{N}}$ stands for the set of finite sequences of natural numbers. If $\sigma = (q_1, \ldots, q_k) \in \mathbb{N}^{<\mathbb{N}}$, then k is called the *length* of σ and we write $k = |\sigma|$. If $k \ge 2$ we define $\sigma_- = (q_1, \ldots, q_{k-1})$. For $j \in \{1, \ldots, k\}$, $\sigma(j) = q_j$ and $\sigma|j = (\sigma(1), \ldots, \sigma(j))$. For $\tau = (r_1, \ldots, r_m) \in \mathbb{N}^{<\mathbb{N}}$, $\sigma^{\uparrow} \tau = (q_1, \ldots, q_k, r_1, \ldots, r_m)$. The symbol $\mathbb{N}^{\mathbb{N}}$ denotes the set of infinite sequences of natural numbers. For $\sigma = (q_j)_{j \ge 1} \in$ $\mathbb{N}^{\mathbb{N}}$ and $j \in \mathbb{N}$, $\sigma(j) = q_j$ and $\sigma|j = (\sigma(1), \ldots, \sigma(j))$.

Now we describe our main results and the organization of the paper.

The goal in Section 2 is to try to answer the following question of [3]: If $f : \mathbb{R}^n \to \mathbb{R}$ is a C^1 -smooth bump, is $f'(\mathbb{R}^n)$ equal to the closure of its interior? We give a partial answer when n = 2 and f is C^2 -smooth in Theorem 2.1. Notice that in infinite dimensions, f'(X) has no reason to be closed and $\operatorname{int}(f'(X))$ can be empty (see [5]).

Section 3 is devoted to finding sufficient conditions for a connected open set to be the range of the derivative of a bump. We recall that f'(X) is connected if f is a Fréchet differentiable bump. This extension of Darboux's theorem is proved by J. Malý in [7]. However f'(X) is not always simply connected (see [3]). In finite dimensions we prove that any connected open subset of \mathbb{R}^n containing 0 is the range of the derivative of a Fréchet differentiable bump (Theorem 3.1). We then extend this result to the case when Xis an infinite-dimensional separable Banach space with a C^p -smooth bump $b: X \to \mathbb{R}$ such that $\|b^{(p)}\|_{\infty}$ is finite (Theorem 3.6).

In Section 4, we find a sufficient condition for an analytic subset of X^* to be the range of the derivative of a C^1 -smooth bump when X^* is separable (Proposition 4.2). We then exhibit analytic sets, neither closed nor open, which are the range of the derivative of a C^1 -smooth bump (Theorem 4.4). We obtain an analogue of Proposition 4.2 in finite dimensions in Theorem 4.6. Finally, we study the relationship between Theorem 4.6 and a result of [3].

2. The range of the derivative of a C^n -bump. In this section we focus on the case $X = \mathbb{R}^n$ with $n \ge 2$. Our main result is

THEOREM 2.1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a C^2 -smooth bump. Then $f'(\mathbb{R}^2)$ is equal to the closure of its interior.

Before proceeding with the proof of this result we recall that the range of the derivative of a C^1 -smooth bump on \mathbb{R}^n is a connected compact neighbourhood of the origin. We now show other properties which, applied to the case n = 2, will allow us to prove Theorem 2.1.

PROPOSITION 2.2. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^n -smooth function. If f' = 0on a compact connected set K, then f is constant on K.

Proof. If \mathcal{C} is the set of critical points of f, Sard's Theorem shows that $f(\mathcal{C})$ is of Lebesgue measure 0. Since K is a compact connected subset of \mathcal{C} , f(K) is a compact interval of \mathbb{R} of measure 0, and hence a single point.

We need a result on connectedness.

LEMMA 2.3. Let C be a connected compact subset of \mathbb{R}^n and G the unbounded connected component of $\mathbb{R}^n \setminus C$. Then ∂G , the boundary of G, is connected.

This follows from [6, §52.III.6 and §52.I.9].

PROPOSITION 2.4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^n -smooth bump and $z \in \partial(f'(\mathbb{R}^n))$. Then $\mathbb{R}^n \setminus f'^{-1}(z)$ is connected.

Proof. Assume that $\mathbb{R}^n \setminus f'^{-1}(z)$ is not connected. Since $z \neq 0$, $f'^{-1}(z)$ is bounded and thus $\mathbb{R}^n \setminus f'^{-1}(z)$ has a bounded nonempty connected component, which we call B. If we denote by G the unbounded connected component of $\mathbb{R}^n \setminus \overline{B}$, Lemma 2.3 asserts that ∂G is connected. We put $g(x) = f(x) - \langle z, x \rangle$ for $x \in \mathbb{R}^n$. Since $\partial G \subset \partial B$ (see [6, §44.III.3]), g'(x) = 0 for all x in ∂G . Proposition 2.2 implies that g is constant, equal to some C on ∂G . We define h(x) = 0 if $x \in G$ and h(x) = g(x) - C if $x \notin G$. Then supp h is bounded and nonempty, since $h'(x) = f'(x) - z \neq 0$ if $x \in B$. Clearly h is C^1 , so h is a C^1 -smooth bump, and hence $0 \in \operatorname{int}(h'(\mathbb{R}^n))$. But $h'(\mathbb{R}^n) \subset f'(\mathbb{R}^n) - z$, so $z \in \operatorname{int}(f'(\mathbb{R}^n))$. This contradicts the fact that $z \in \partial(f'(\mathbb{R}^n))$.

PROPOSITION 2.5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^n -smooth bump. Then $f'(\mathbb{R}^n)$ cannot be the union of compact sets A and B such that $0 \notin B \not\subset A$ and $A \cap B$ is a totally disconnected subset of $\partial(f'(\mathbb{R}^n))$.

Proof. We suppose that $f'(\mathbb{R}^n) = A \cup B$ with A and B as in the statement. Let $K = f'^{-1}(B)$. Then K is compact, since B is closed and $0 \notin B$. Let $x_0 \in K$ be so that $f'(x_0) \notin A \cap B$. We denote by C the connected component of x_0 in K and by G the unbounded connected component of $\mathbb{R}^n \setminus C$. Then $\partial G \subset \partial C \subset \partial K$ ([6, §44.III.3]) and ∂G is connected (Lemma 2.3). Thus $f'(\partial G)$ is a connected subset of $A \cap B$ and hence $f'(\partial G)$ is a single point, called y. Proposition 2.4 asserts that $\mathbb{R}^n \setminus f'^{-1}(y)$ is connected. Recall that $0 \notin B$, hence $y \neq 0$ and $\mathbb{R}^n \setminus f'^{-1}(y)$ is unbounded. Since $f'(x_0) \notin A \cap B$, $x_0 \in \mathbb{R}^n \setminus f'^{-1}(y)$. So it is possible to join x_0 to infinity with a continuous path staying in $\mathbb{R}^n \setminus f'^{-1}(y)$. This is absurd, because such a path must cross ∂G which is included in $f'^{-1}(y)$.

COROLLARY 2.6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a C^2 -smooth bump. Let $y \in f'(\mathbb{R}^2)$. Then there is $\alpha > 0$ such that for all $0 < \varepsilon < \alpha$, the set $f'(\mathbb{R}^2) \cap S(y, \varepsilon)$ contains a nontrivial arc of a circle.

Proof. Let $y \in f'(\mathbb{R}^2)$. If y = 0 the conclusion is obvious. If $y \neq 0$, let $\varepsilon \in]0, \|y\|/2[$. If $S(y,\varepsilon) \cap \operatorname{int}(f'(\mathbb{R}^2)) \neq \emptyset$ the result follows. Otherwise, $S(y,\varepsilon) \cap f'(\mathbb{R}^2) \subset \partial(f'(\mathbb{R}^2))$. We define $A = f'(\mathbb{R}^2) \cap \{z : \|z - y\| \ge \varepsilon\}$ and $B = f'(\mathbb{R}^2) \cap \{z : \|z - y\| \le \varepsilon\}$. The sets A and B are both compact, $0 \notin B$ and $y \in B \setminus A$. By Proposition 2.5, $f'(\mathbb{R}^2) \cap S(y,\varepsilon) = A \cap B$ cannot be a totally disconnected subset of $\partial(f'(\mathbb{R}^2))$. So $f'(\mathbb{R}^2) \cap S(y,\varepsilon)$ has a nontrivial connected component. It is easy to see that a closed connected subset of $S(y,\varepsilon)$ is an arc. \blacksquare

Proof of Theorem 2.1. We set $K = f'(\mathbb{R}^2)$. As K is closed, $\overline{\operatorname{int} K} \subset K$. To show the other inclusion, let $y \in K$. For our f and y we find $\alpha > 0$ by Corollary 2.6. We fix $0 < \beta < \alpha$. For $q \in \mathbb{N}$ and $k \in \{1, \ldots, 2q\}$ we define

$$U_k(q) = \{ y + t(\cos\theta, \sin\theta) : t \in [0, \beta], \ \theta \in [(k-1)\pi/q, k\pi/q] \},\$$

$$F_{q,k} = \{ \varepsilon \in [0, \beta] : U_k(q) \cap S(y, \varepsilon) \subset K \}.$$

Thanks to Corollary 2.6,

$$[0,\beta] = \bigcup_{q \in \mathbb{N}} \bigcup_{k=1}^{2q} F_{q,k}.$$

Furthermore each $F_{q,k}$ is closed. Indeed, let $(\varepsilon_j)_j$ be a sequence in $F_{q,k}$ which has a limit ε . Then $\varepsilon \in [0,\beta]$. Let $z \in U_k(q) \cap S(y,\varepsilon)$ and $\theta \in [(k-1)\pi/q, k\pi/q]$ so that $z = y + \varepsilon(\cos\theta, \sin\theta)$. Then $z_j = y + \varepsilon_j(\cos\theta, \sin\theta)$ is a sequence in K which converges to z. Thus $z \in K$ and $U_k(q) \cap S(y,\varepsilon) \subset K$. So $\varepsilon \in F_{q,k}$ and $F_{q,k}$ is closed.

By Baire's theorem, there are $q_0 \in \mathbb{N}$ and $k_0 \in \{1, \ldots, 2q_0\}$ such that F_{q_0,k_0} has a nonempty interior. Thus

$$U_{k_0}(q_0) \cap \{y + t(\cos\theta, \sin\theta) : t \in \operatorname{int} F_{q_0, k_0}, \theta \in [0, 2\pi]\}$$

is an open subset of $K \cap B(y,\beta)$. Since β can be taken arbitrarily small, $y \in \overline{\operatorname{int} K}$.

3. Connected open subsets of X^* and ranges of derivative. First we study the finite-dimensional case. Our main result is

THEOREM 3.1. Let U be a connected open subset of \mathbb{R}^n containing 0. Then there is a differentiable bump $f : \mathbb{R}^n \to \mathbb{R}$ such that $f'(\mathbb{R}^n) = U$.

We first recall some tools introduced in [3].

DEFINITION 3.2. Let $(y, a) \in (\mathbb{R}^n)^2$ and $0 < \varepsilon < ||y||$. We define

$$D_{\varepsilon}(y) = \{(1-t)u + \sqrt{t}y : t \in [0,1], \|u\| \le \varepsilon\}.$$

The set $T(a, y, \varepsilon) = a + D_{\varepsilon}(y - a)$ is called the *drop* with centre *a*, vertex *y*, and thickness ε .

We also introduce the notion of stationary images.

DEFINITION 3.3. Let $g: X \to Y$ be a mapping and $y \in Y$. We call y a stationary image of g if there is a nonempty open subset Ω of X such that $g(\Omega) = \{y\}.$

The following lemma is proved in [3].

LEMMA 3.4. For every $y \in \mathbb{R}^n \setminus \{0\}$ and every $0 < \varepsilon < ||y||$ there exists a C^1 -smooth bump $g : \mathbb{R}^n \to \mathbb{R}$ such that $g'(\mathbb{R}^n) = D_{\varepsilon}(y)$ and y is a stationary image of g'.

LEMMA 3.5. Let $q \in \mathbb{N}$ and T_1, \ldots, T_q be drops with $T_i = T(a_i, y_i, \varepsilon_i)$, $a_{i+1} = y_i$ for all i in $\{1, \ldots, q-1\}$ and $a_1 = 0$. Then there exists a C^1 -smooth bump $g : \mathbb{R}^n \to \mathbb{R}$ such that

$$g'(\mathbb{R}^n) = T_1 \cup \ldots \cup T_q.$$

Proof. The proof is a simple induction. We want to show that the following holds for every $q \in \mathbb{N}$: "For every T_1, \ldots, T_q as in the lemma there is a C^1 -smooth bump g such that $g'(\mathbb{R}^n) = T_1 \cup \ldots \cup T_q$ and y_q is a stationary image of g'".

If q = 1 this is Lemma 3.4. Suppose that the property is true for some $q \geq 1$. Consider a finite set T_1, \ldots, T_{q+1} of drops with $T_i = T(a_i, y_i, \varepsilon_i)$, $a_1 = 0, a_{i+1} = y_i$ for $1 \leq i \leq q$. There are a C^1 -smooth bump $g : \mathbb{R}^n \to \mathbb{R}$, $x_0 \in X$ and r > 0 such that $g'(\mathbb{R}^n) = \bigcup_{1 \leq i \leq q} T_i$ and $g'(x) = y_q$ for all x in $B(x_0, r)$. We apply Lemma 3.4 with the drop $T_{q+1} - a_{q+1} = T(0, y_{q+1} - y_q, \varepsilon_{q+1})$. It gives a C^1 -smooth bump h so that $h'(\mathbb{R}^n) = T_{q+1} - y_q$ and $y_{q+1} - y_q$ is a stationary image of h'. Let M be large enough to ensure that $\sup(h) \subset B(0, M)$. Define $b(x) = g(x) + (2M)^{-1}rh(2Mr^{-1}(x - x_0))$ for $x \in \mathbb{R}^n$. The function b is a C^1 -smooth bump, y_{q+1} is a stationary image of b', and

$$b'(\mathbb{R}^n) = g'(\mathbb{R}^n) \cup (y_q + h'(\mathbb{R}^n)) = \bigcup_{1 \le i \le q+1} T_i.$$

Now we can prove Theorem 3.1. The idea is the following: Lemma 3.5 allows us to write any finite union of drops as the range of the derivative of a smooth bump. We cover U by a countable sequence of such sets. We show that the bumps can be taken in such a way that the series is convergent, differentiable, and that the range of its derivative is U.

Proof of Theorem 3.1.

STEP 1: U is covered by a countable sequence of good finite unions of drops.

Consider the following set:

$$W = \{ y \in U : \text{there are } q \in \mathbb{N} \text{ and } q \text{ drops} \\ T_1 = T(a_1, y_1, \varepsilon_1), \dots, T_q = T(a_q, y_q, \varepsilon_q) \text{ in } U \text{ such that} \\ a_1 = 0, y_q = y \text{ and } a_{i+1} = y_i \text{ for all } 1 \le i \le q-1 \}.$$

We are going to show that W = U. Since U is connected, it is sufficient to prove that W is a closed open nonempty subset of U. Of course $0 \in W$, so $W \neq \emptyset$. Let $y \in W$ and $\varepsilon > 0$ with $B(y,\varepsilon) \subset U$. If $z \in B(y,\varepsilon/2)$, then $T(y,z, ||z-y||/10) \subset U$, so $z \in W$ and W is open. We take a sequence $(z_k)_k$ in W which has a limit z in U. There is $\varepsilon > 0$ with $B(z, 2\varepsilon) \subset U$. Find k > 0 so that $z_k \in B(z,\varepsilon)$. Then $T(z_k, z, ||z-z_k||/10) \subset U$, thus $z \in W$. Therefore W is a closed subset of U. Hence W = U.

If $y \in U = W$, there exist q drops $T_1 = T(a_1, y_1, \varepsilon_1), \ldots, T_q = T(a_q, y_q, \varepsilon_q)$ in U such that $a_1 = 0$, $y_q = y$ and $a_{i+1} = y_i$ for all $1 \le i \le q - 1$. We take $\varepsilon_y > 0$ such that $B(y, 2\varepsilon_y) \subset U$ and w_y in $B(y, \varepsilon_y)$. We define $P_y = T_1 \cup \ldots T_q \cup T(y, w_y, ||w_y - y||/10)$. Then

$$U = \bigcup_{y \in U} \operatorname{int} P_y.$$

By Lindelöf's theorem ([8]), there exists a countable sequence $(y_k)_{k\in\mathbb{N}}$ in U such that

$$U = \bigcup_{k \ge 1} \operatorname{int} P_{y_k}.$$

STEP 2: There is a differentiable bump f such that each P_{y_k} is in $f'(\mathbb{R}^n)$.

According to Lemma 3.5, for all $k \in \mathbb{N}$, there is a C^1 -smooth bump f_k with $f'_k(\mathbb{R}^n) = P_{y_k}$. After a possible homothety we can suppose that $\|f_k\|_{\infty} \leq 1$. Let $M_k \geq 1$ be such that $\operatorname{supp}(f_k) \subset B(0, M_k)$. We define

$$x_k = (2^{-1} + \ldots + 2^{-k}, 0, \ldots, 0), \quad b_k(x) = 8^{-k} M_k^{-1} f_k(8^k M_k(x - x_k)).$$

Then $b'_k(\mathbb{R}^n) = P_{y_k}$ and $\operatorname{supp}(b_k) \subset B(x_k, 8^{-k}) = S_k$. If $k \neq j$, then $S_k \cap S_j = \emptyset$ and $\bigcup_{k \in \mathbb{N}} S_k \subset B(0, 2)$. We denote by x_∞ the point $(1, 0, \ldots, 0)$. The function

$$f = \sum_{k \ge 1} b_k$$

is obviously C^1 on $\mathbb{R}^n \setminus \{x_\infty\}$. Let $x \in \mathbb{R}^n$ and $k \ge 1$. If $x \notin S_k$, then $b_k(x) = 0$. If $x \in S_k$, then $|b_k(x)| \le 8^{-k} M_k^{-1} ||f_k||_{\infty} \le 8^{-k}$ and $||x - x_\infty|| \ge 8^{-k} M_k^{-1} ||f_k||_{\infty} \le 8^{-k}$

$$1 - ((2^{-1} + \ldots + 2^{-k}) + 8^{-k}) \ge 2^{-k-1}. \text{ Thus } |b_k(x)| \le 4||x - x_{\infty}||^2 \text{ and}$$
$$\frac{|f(x) - f(x_{\infty})|}{||x - x_{\infty}||} \le \frac{\sup_k |b_k(x)|}{||x - x_{\infty}||} \le 4||x - x_{\infty}||,$$

so f is differentiable at x_{∞} and $f'(x_{\infty}) = 0$. Therefore f is a differentiable bump on \mathbb{R}^n and

$$f'(\mathbb{R}^n) = \bigcup_{k \in \mathbb{N}} P_{y_k} = U. \blacksquare$$

We remark that f is not C^1 -smooth because if it were, U would be closed. f is nevertheless C^1 -smooth on $\mathbb{R}^n \setminus \{x_\infty\}$.

We now obtain similar results in infinite dimensions. Our main result is

THEOREM 3.6. Let X be an infinite-dimensional Banach space with a separable dual. Let $p \in \mathbb{N}$ be such that there exists a C^p -smooth bump $b: X \to \mathbb{R}$ with $\|b^{(p)}\|_{\infty}$ finite. Let U be a connected open subset of X^* containing 0. Then there is a C^p -smooth bump $f: X \to \mathbb{R}$ such that f'(X) = U.

Until the end of this section, X is as in Theorem 3.6. Notice that the separability of X^* implies that there exists indeed $p \ge 1$ and a C^p -smooth bump $b: X \to \mathbb{R}$ such that $\|b^{(p)}\|_{\infty}$ is finite ([4, p. 58]). We remark that the mean value theorem implies that $\|b^{(j)}\|_{\infty}$ is finite for all j in $\{0, \ldots, p\}$. In [1], it was proved that there is a C^1 -smooth bump such that the range of its derivative is equal to X^* . Theorem 3.6 is an improvement of this result. We now establish results which will be used to prove Theorem 3.6.

LEMMA 3.7. There is a C^p -smooth bump $F: X \to \mathbb{R}$ such that $B_{X^*} \subset F'(X)$ and $\|F^{(p)}\|_{\infty}$ is finite.

Proof.

STEP 1: There is a C^p -smooth bump f so that f(x) = 1 for all $x \in 2B_X$ and $||f^{(p)}||_{\infty}$ is finite.

After maybe a translation and multiplication by -1, we can suppose b(0) > 0. We take a C^{∞} -smooth bump $\varphi : \mathbb{R} \to \mathbb{R}$ such that $0 \leq \varphi \leq 1$, $\varphi(t) = 1$ if $t \in [2^{-1}b(0), 2^{-1}3b(0)]$, and $\varphi(0) < 1$. By the continuity of b there is $\delta > 0$ such that $b(x) \in [2^{-1}b(0), 2^{-1}3b(0)]$ if $x \in \delta B_X$. We put $f(x) = (1 - \varphi(0))^{-1}(\varphi(b(\delta x/2)) - \varphi(0))$ and the result follows.

STEP 2: There is a C^p -smooth bump f_0 such that the stationary images of f'_0 are dense in B_{X^*} and $\|f_0^{(p)}\|_{\infty}$ is finite.

Since X^* is separable, there is a dense sequence $(y_k^*)_{k\geq 1}$ in B_{X^*} . Let M > 1 be so large that $\operatorname{supp}(f) \subset MB_X$ and $\|f^{(j)}\|_{\infty} < M$ for all j in $\{0, \ldots, p\}$. Fix now a sequence $(x_k)_{k\geq 1}$ in X so that $\|x_k - x_q\| \geq 2M + 1 > 3$

if $k \neq q$ and $||x_k|| < 4M + 3$. We define

$$f_0(x) = \sum_{k \ge 1} \langle y_k^*, x \rangle f(x - x_k),$$

which is a sum of C^p -smooth functions with separated supports. Thus f_0 is C^p -smooth, $\operatorname{supp}(f_0) \subset (5M+3)B_X$ and $f'_0(x) = y_k^*$ if $x \in B(x_k, 1)$. If $x \in \operatorname{supp}(f_0)$, then

$$\|f_0^{(p)}(x)\| \le \sup_{k\ge 1} \{\|y_k^*\| \cdot \|x\| \cdot \|f^{(p)}(x-x_k)\| + p\|y_k^*\| \cdot \|f^{(p-1)}(x-x_k)\| \}$$

$$\le (5M+3)M + pM = (5M+3+p)M.$$

STEP 3: We construct a sequence $(f_i)_{i\geq 1}$ of C^p -smooth bump functions.

We set L = 5M + 3. Then $L \ge 8$, $\operatorname{supp}(f_0) \subset LB_X$ and $||x_k|| < L - 1$ for all $k \ge 1$. For $j \ge 0$ we define

$$f_{j+1}(x) = \sum_{k \ge 1} L^{-p-1} f_j(L(x-x_k)).$$

For $\sigma = (k_1, \ldots, k_j) \in \mathbb{N}^{<\mathbb{N}}$ we put

$$S(\sigma) = B(x_{k_1} + L^{-1}x_{k_2} + \ldots + L^{-j+1}x_{k_j}, L^{-j+1})$$

and we prove that

$$\begin{cases} S(\sigma^{k}) \subset S(\sigma) \text{ for all } \sigma \in \mathbb{N}^{<\mathbb{N}} \text{ and } k \in \mathbb{N}.\\ \text{For all } \sigma, \tau \text{ in } \mathbb{N}^{<\mathbb{N}}, \ |\sigma| = |\tau| \text{ and } \sigma \neq \tau \Rightarrow S(\sigma) \cap S(\tau) = \emptyset \end{cases}$$

For $j \ge 1$ we denote by $\mathcal{P}(j)$ the following statement:

$$\begin{cases} \operatorname{supp}(f_j) \subset \bigcup_{\sigma \in \mathbb{N}^j} S(\sigma) \text{ and } f_j \text{ is } C^p \text{-smooth.} \\ For \text{ all } \sigma \in \mathbb{N}^j \text{ and } k \in \mathbb{N}, \ x \in S(\sigma \hat{k}) \Rightarrow f'_j(x) = L^{-jp} y_k^*. \end{cases}$$

We have $\operatorname{supp}(f_1) \subset \bigcup_{\sigma \in \mathbb{N}} S(\sigma)$. Let $x \in \operatorname{supp}(f_1)$ and $\sigma \in \mathbb{N}$ so that $x \in S(\sigma)$. If z is in a small neighbourhood of x, then $f_1(z) = L^{-p-1}f_0(L(z-x_{\sigma}))$. Therefore f_1 is C^p -smooth. Let $k \in \mathbb{N}$ and $x \in S(\sigma \land k)$. We have $S(\sigma \land k) \subset S(\sigma)$ so $f_1(z) = L^{-p-1}f_0(L(z-x_{\sigma}))$ in a neighbourhood of x. Thus $f'_1(x) = L^{-p}f'_0(L(x-x_{\sigma})) = L^{-p}y_k^*$, since $L(x-x_{\sigma}) \in B(x_k, 1)$. Consequently, $\mathcal{P}(1)$ holds.

Let $j \geq 1$ and suppose that $\mathcal{P}(j)$ holds. Then

$$\operatorname{supp}(f_{j+1}) \subset \bigcup_{k \ge 1} \operatorname{supp}(x \mapsto f_j(L(x - x_k))) \subset \bigcup_{k \ge 1} (x_k + L^{-1} \operatorname{supp}(f_j))$$
$$\subset \bigcup_{k \ge 1} \bigcup_{\sigma \in \mathbb{N}^j} S(k^{\hat{\sigma}}) \subset \bigcup_{\sigma \in \mathbb{N}^{j+1}} S(\sigma).$$

Let $x \in \operatorname{supp}(f_{j+1})$ and $\sigma \in \mathbb{N}^{j+1}$ be such that $x \in S(\sigma)$. Clearly $f_{j+1}(z) = L^{-p-1}f_j(L(z-x_{\sigma(1)}))$ in a neighbourhood of x, so f_{j+1} is C^p -smooth. Let $\sigma \in \mathbb{N}^{j+1}$, $k \in \mathbb{N}$ and $x \in S(\sigma k)$. In a neighbourhood of x, $f_{j+1}(z) = C^{-p-1}f_j(z)$

 $L^{-p-1}f_j(L(z-x_{\sigma(1)}))$. Thus $f'_{j+1}(x) = L^{-p}f'_j(L(x-x_{\sigma(1)})) = L^{-(j+1)p}y_k^*$, since $L(x-x_{\sigma(1)}) \in S(\sigma(2), \dots, \sigma(j+1), k)$. Finally, $\mathcal{P}(j+1)$ holds.

STEP 4: $F = \sum_{j\geq 0} f_j$ is a C^p -smooth function and $||F^{(p)}||_{\infty}$ is finite.

For all $j \geq 0$, $||f_{j+1}||_{\infty} \leq L^{-p-1}||f_j||_{\infty}$. Thus the series of the $||f_j||_{\infty}$ is convergent. This proves the existence of F and its continuity. For $j \geq 1$ and $\sigma \in \mathbb{N}^j$, $S(\sigma) \subset S(\sigma(1)) \subset LB_X$. Thus $\operatorname{supp}(f_j) \subset LB_x$ for all $j \geq 0$ and hence F has a bounded support. If $m \in \{0, \ldots, p\}$, then $||f_{j+1}^{(m)}||_{\infty} \leq L^{m-p-1}||f_j^{(m)}||_{\infty} \leq L^{-1}||f_j^{(m)}||_{\infty}$, so $\sum_{j\geq 0} ||f_j^{(m)}||_{\infty} < \infty$. Therefore F is a C^p -smooth function and $||F^{(m)}||_{\infty}$ is finite for all $0 \leq m \leq p$.

STEP 5: Any point in B_{X^*} is in the range of the derivative of F.

Fix z^* in B_{X^*} . There exists $k_1 \ge 1$ such that $||z^* - y_{k_1}^*|| \le L^{-p}$. Then $L^p(z^* - y_{k_1}^*)$ is in B_{X^*} , so there is $k_2 \ge 1$ such that $||L^p(z^* - y_{k_1}^*) - y_{k_2}^*|| \le L^{-p}$. Thus $||z^* - (y_{k_1}^* + L^{-p}y_{k_2}^*)|| \le L^{-2p}$. We construct inductively a sequence $\sigma = (k_j)_{j\ge 1} \in \mathbb{N}^{\mathbb{N}}$ such that $||z^* - (y_{\sigma(1)}^* + L^{-p}y_{\sigma(2)}^* + \ldots + L^{-(j-1)p}y_{\sigma(j)}^*)|| \le L^{-jp}$ for all $j \ge 1$. Then

$$z^* = \sum_{j \ge 0} L^{-jp} y^*_{\sigma(j+1)}.$$

For $q \ge 1$ we define $z_q^* = \sum_{j=0}^{q-1} L^{-jp} y_{\sigma(j+1)}^*$ and $F_q = \sum_{j=0}^{q-1} f_j$. Let $w = \sum_{j\ge 0} L^{-j} x_{\sigma(j+1)}$ and $w_q = \sum_{j=0}^{q-1} L^{-j} x_{\sigma(j+1)}$. For all $j \in \{0, \ldots, q-1\}$, $w_q \in S(\sigma|j+1)$ so $f'_j(w_q) = L^{-jp} y_{\sigma(j+1)}^*$. Thus $F'_q(w_q) = z_q^*$. The sequence $(F'_q)_q$ is uniformly convergent, $(w_q)_q$ converges to w and $(z_q^*)_q$ converges to z^* , so $F'(w) = z^*$.

The next result provides the existence of plateau functions.

LEMMA 3.8. There is a C^p -smooth bump $b: X \to \mathbb{R}$ such that

 $b(X) \subset [0,1], \quad b(x) = 1 \quad if \ ||x|| \le 2 \quad and \quad ||b'||_{\infty} \le 1.$

Proof. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a C^{∞} -smooth function so that $\varphi(t) = 0$ if $t \leq 0, 0 \leq \varphi \leq 1, \varphi(t) = 1$ if $t \geq 2$, and $|\varphi'(t)| \leq 1$ for all $t \in \mathbb{R}$. Let $b_0 : X \to \mathbb{R}$ be a C^p -smooth bump with $b_0(0) > 2$ and $||b_0^{(p)}||_{\infty} < \infty$. We define $b(x) = b_0(rx)$ with r > 0 small enough to have $b(x) \geq 2$ if $||x|| \leq 2$, and $||b'||_{\infty} \leq 1$. Then the function given by $F(x) = \varphi(b(x))$ satisfies the conditions of the lemma.

LEMMA 3.9. There is a constant K such that for all y^* in X^* , there are a C^p -smooth bump $f: X \to \mathbb{R}$ and a real number a > 0 such that

$$y^* + aB_{X^*} \subset f'(X) \subset K ||y^*|| B_{X^*}$$
 and $f'(x) = y^*$ if $||x|| \le 1$.

T. Gaspari

Proof. Let b be the C^p -smooth bump given by Lemma 3.8 and G the C^p -smooth bump given by Lemma 3.7. There is an A > 1 such that $B_{X^*} \subset G'(X) \subset AB_{X^*}$, $\operatorname{supp}(G) \subset AB_X$ and $\operatorname{supp}(b) \subset AB_X$. We put $F(x) = A^{-2} ||y^*|| G(Ax)$. Then $A^{-1} ||y^*|| B_{X^*} \subset F'(X) \subset ||y^*|| B_{X^*}$ and $\operatorname{supp}(F) \subset B_X$. We now fix a point $x_0 \in X$ with $||x_0|| = 3/2$ and we define

$$f(x) = 2y^*(x/2 - x_0)b(x/2 - x_0) + 2F(x/2 - x_0).$$

Then $\operatorname{supp}(f) \subset (2A+3)B_X$. We set K = 2A+8 and $a = A^{-1}||y^*||$. We remark that K is independent of y^* . It is clear that K and f satisfy the conditions of the lemma.

In what follows, K is the constant given by Lemma 3.9.

LEMMA 3.10. Let U be a connected open subset of X^* . Let $y^* \in U$ be such that there are $q \ge 1$ and a sequence y_0^*, \ldots, y_q^* of points of U with $y_0^* = 0, y_q^* = y^*$ and $B(y_i^*, K || y_{i+1}^* - y_i^* ||) \subset U$ for all $i \in \{0, \ldots, q-1\}$. Then there exist a C^p -smooth bump $f: X \to \mathbb{R}$ and $\delta > 0$ such that

$$y^* \in \operatorname{int}(f'(X)), \quad f'(X) \subset U \quad and \quad f'(x) = y^* \quad if \ \|x\| \le \delta$$

Proof (by induction). The case q = 1 is immediate from Lemma 3.9. We fix $q \ge 2$ and suppose that the property is true for q-1. Let y_0^*, \ldots, y_q^* satisfy the hypotheses. By the induction hypothesis we have a C^p -smooth bump g and $\alpha > 0$ such that $y_{q-1}^* \in \operatorname{int}(g'(X)), g'(X) \subset U$ and $g'(x) = y_{q-1}^*$ for all $x \in \alpha B_X$. Furthermore Lemma 3.9 gives a C^p -smooth bump h such that $y_q^* - y_{q-1}^* \in \operatorname{int}(h'(X)), h'(X) \subset K || y_q^* - y_{q-1}^* || B_{X^*}$ and $h'(x) = y_q^* - y_{q-1}^*$ for all $x \in B_X$. We take $L \ge 1$ large enough to have $\operatorname{supp}(h) \subset LB_X$ and we define

$$f(x) = g(x) + L^{-1}\alpha h(\alpha^{-1}Lx).$$

Then $y_q^* \in \operatorname{int}(f'(X)), f'(X) \subset g'(X) \cup (y_{q-1}^* + h'(X)) \subset U$ and $f'(x) = y_q^*$ if $\|x\| \le L^{-1}\alpha$.

We are now able to prove Theorem 3.6.

Proof of Theorem 3.6.

STEP 1: Each point y^* in U satisfies the condition of Lemma 3.10.

Define

$$\mathcal{A} = \{ y^* \in U : \exists q \in \mathbb{N}, \exists (y_0^* = 0, y_1^*, \dots, y_q^* = y^*) \in U^{q+1} \text{ so that} \\ B(y_i^*, K \| y_{i+1}^* - y_i^* \|) \subset U \text{ for all } i \in \{0, \dots, q-1\} \}.$$

We are going to prove that $\mathcal{A} = U$. Since $0 \in \mathcal{A}$, \mathcal{A} is not empty. Clearly \mathcal{A} is an open subset of U. Let $(y_k^*)_k$ be a sequence in \mathcal{A} which has a limit y^* in U. There is $\alpha > 0$ such that $B(y^*, 2\alpha) \subset U$. If k_0 is large enough, then $y_{k_0}^* \in B(y^*, K^{-1}\alpha)$. Thus $B(y_{k_0}^*, K || y^* - y_{k_0}^* ||) \subset U$ and hence $y^* \in \mathcal{A}$. Therefore \mathcal{A} is a closed subset of U. Since U is connected, $\mathcal{A} = U$.

STEP 2: There is a sequence $(f_k)_{k\geq 1}$ of C^p -smooth bumps with $U = \bigcup_{k\geq 1} f'_k(X)$.

If $y^* \in U$, then $y^* \in \mathcal{A}$ so Lemma 3.10 can be applied. We let f_{y^*} be the function given by Lemma 3.10. We have

$$U = \bigcup_{y^* \in U} \operatorname{int}(f'_{y^*}(X)).$$

As X^* is separable, we can apply Lindelöf's theorem ([8]): There is a countable sequence $(y_k^*)_k$ in U such that

$$U = \bigcup_{k \ge 1} \operatorname{int}(f'_{y_k^*}(X))$$
 and therefore $U = \bigcup_{k \ge 1} f'_{y_k^*}(X).$

We put $f_k = f_{y_k^*}$.

STEP 3: There is a C^p -smooth bump f such that U = f'(X).

After possible homotheties we can suppose that $\operatorname{supp}(f_k) \subset B_X$ for all $k \geq 1$. Since X is infinite-dimensional, there exists a sequence $(x_k)_{k\geq 1}$ in X such that $||x_k|| < 7$ for every $k \geq 1$ and $||x_k - x_q|| > 3$ if $q \neq k$. We define

$$f(x) = \sum_{k \ge 1} f_k(x - x_k).$$

If $||x - x_k|| > 3/2$ for all k, then f is zero and so is C^p -smooth in a neighbourhood of x. If there is k so that $||x - x_k|| \le 3/2$, then $||x - x_q|| > 3/2$ for all $q \ne k$, so $f(z) = f_k(z)$ and $f'(z) = f'_k(z)$ when z is in a neighbourhood of x. Thus f is a C^p -smooth function and $f'(X) = \bigcup_{k>1} f'_k(X) = U$.

We give a stronger version of Theorem 3.6 which will be needed in what follows.

PROPOSITION 3.11. Let X be as in Theorem 3.6. Let U be a connected open subset of X^* containing 0. Let $(z_k^*)_{k\geq 1}$ be a sequence of points of U. There is a C^p -smooth bump $f: X \to \mathbb{R}$ such that f'(X) = U and each z_k^* is a stationary image of f'.

Proof. In the proof of Theorem 3.6, when we use Lindelöf's theorem to extract the sequence $(y_k^*)_k$, we can add to this family some elements in such a way that $\{z_q^* : q \in \mathbb{N}\} \subset \{y_k^* : k \in \mathbb{N}\}$. The function f which is then constructed satisfies the following statement: For all k, there is $\delta_k > 0$ so that $f'(x) = y_k^*$ if $||x - x_k|| < \delta_k$. So every z_k^* is a stationary image of f'.

4. Well-linked sets and ranges of derivative. In finite dimensions the range of the derivative of a C^1 -smooth bump is compact. If X is an infinite-dimensional separable Banach space we see, by the definition, that the range of the derivative of a C^1 -smooth bump is an analytic set. Moreover, if f is a C^1 -smooth bump and f' is Lipschitzian, there exists M > 0 such that each point of f'(X) can be joined to 0 by an *M*-Lipschitzian path contained in f'(X). It is sufficient to consider the path $\gamma(t) = f'((1-t)x_0+tx)$ with x_0 so that $f'(x_0) = 0$. Furthermore we have seen in Section 2 that it makes sense to assume f'(X) = int(f'(X)). Consequently, Proposition 4.2 and Theorem 4.6 are partial converses of these necessary conditions. In the first result of this section (Proposition 4.2), we give a sufficient condition for an analytic subset of X^* to be the range of the derivative of a C^1 -smooth bump when X^* is separable. Let us introduce this condition.

DEFINITION 4.1. Let F be a subset of X^* . We say that F satisfies condition (\mathcal{A}_{∞}) if there are a mapping $\varphi : \mathbb{N}^{\leq \mathbb{N}} \cup \mathbb{N}^{\mathbb{N}} \to X^*$ and a summable sequence $(\delta_k)_{k\geq 1}$ of positive numbers such that

 $\begin{cases} \varphi(\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^{\mathbb{N}}) = F. \\ \sigma \in \mathbb{N}^{<\mathbb{N}} \text{ and } |\sigma| = 1 \Rightarrow [0, \varphi(\sigma)] \subset \operatorname{int} F \text{ and } \|\varphi(\sigma)\| < \delta_1. \\ \sigma \in \mathbb{N}^{<\mathbb{N}} \text{ and } |\sigma| \ge 2 \Rightarrow [\varphi(\sigma_{-}), \varphi(\sigma)] \subset \operatorname{int} F \text{ and } \|\varphi(\sigma) - \varphi(\sigma_{-})\| < \delta_{|\sigma|}. \\ \sigma \in \mathbb{N}^{\mathbb{N}} \Rightarrow \varphi(\sigma) = \lim_k \varphi(\sigma|k). \end{cases}$

PROPOSITION 4.2. Let X be an infinite-dimensional Banach space with a separable dual. Let F be a subset of X^* . If F satisfies (\mathcal{A}_{∞}) , then there is a C^1 -smooth bump $f: X \to \mathbb{R}$ such that f'(X) = F.

Proof. Since X^* is separable, Theorem 3.6 and Proposition 3.11 can be applied with p = 1. Since X is infinite-dimensional, for a given $x \in X$, there is a sequence $(w_k)_{k \in \mathbb{N}}$ in $B(x, \beta/2)$ such that $||w_k - w_q|| > \beta/5$ if $k \neq q$. We write $w_k = w_k(x, \beta)$. We will proceed by induction on $k := |\sigma|$. In the following, if $|\sigma| = 1$, we put $\varphi(\sigma_-) = 0$, $\alpha_{\sigma_-} = 1$, $x_{\sigma_-} = 0$.

For $k \in \mathbb{N}$, denote by $\mathcal{P}(k)$ the following statement: "For all $\sigma \in \mathbb{N}^{<\mathbb{N}}$ with $|\sigma| = k$, there are $x_{\sigma} \in B_X$, $\alpha_{\sigma} \in [0, 2^{-k}[, \varepsilon_{\sigma} \in]0, \min(2^{-k}, \delta_k)[$ and a C^1 -smooth bump $h_{\sigma} : X \to \mathbb{R}$ such that

(i) $\varphi(\sigma_{-}) + h'_{\sigma}(X) = [\varphi(\sigma_{-}), \varphi(\sigma)] + \varepsilon_{\sigma} \text{ int } B_{X^*} \subset \text{ int } F.$ (ii) $h'_{\sigma}(x) = \varphi(\sigma) - \varphi(\sigma_{-}) \text{ for all } x \in B(x_{\sigma}, \alpha_{\sigma}).$ (iii) $\operatorname{supp}(h_{\sigma}) \subset B(x_{\sigma_{-}}, \alpha_{\sigma_{-}}) \subset B_X.$ (iv) If $|\tau| = |\sigma|$ and $\tau \neq \sigma$, then $\operatorname{supp}(h_{\sigma}) \cap \operatorname{supp}(h_{\tau}) = \emptyset.$ " STEP 1: $\mathcal{P}(1)$ holds.

Let $\sigma \in \mathbb{N}^{<\mathbb{N}}$ with $|\sigma| = 1$. Since $[0, \varphi(\sigma)] \subset \text{int } F$, there is $0 < \varepsilon_{\sigma} < \delta_1$ with $[0, \varphi(\sigma)] + \varepsilon_{\sigma} B_{X^*} \subset \text{int } F$. We apply Proposition 3.11 to obtain a C^1 -smooth bump g_{σ} such that $g'_{\sigma}(X) = [0, \varphi(\sigma)] + \varepsilon_{\sigma} \text{ int } B_{X^*}$ and $\varphi(\sigma)$ is a stationary image of g'_{σ} . We can suppose that $\sup(g_{\sigma}) \subset B_X$. Define

$$h_{\sigma}(x) = 12^{-1}g_{\sigma}(12(x - w_{\sigma(1)}(0, 1))).$$

Then $\operatorname{supp}(h_{\sigma}) \subset B(w_{\sigma(1)}(0,1), 12^{-1}) \subset B_X$. Moreover there are x_{σ} in B_X and $0 < \alpha_{\sigma} < 1$ such that $h'_{\sigma}(x) = \varphi(\sigma)$ for all x in $B(x_{\sigma}, \alpha_{\sigma})$.

Finally, if $|\sigma| = |\tau| = 1$ and $\sigma \neq \tau$, then $\operatorname{supp}(h_{\sigma}) \cap \operatorname{supp}(h_{\tau}) = \emptyset$, because $||w_{\sigma(1)}(0,1) - w_{\tau(1)}(0,1)|| > 5^{-1}$.

STEP 2: $\mathcal{P}(k)$ holds for all $k \geq 1$.

Take $k \geq 1$ and suppose that $\mathcal{P}(k)$ holds. Let $\sigma \in \mathbb{N}^{<\mathbb{N}}$ with $|\sigma| = k + 1$. There is $0 < \varepsilon_{\sigma} < \delta_{k+1}$ such that $[\varphi(\sigma_{-}), \varphi(\sigma)] + \varepsilon_{\sigma} B_{X^*} \subset \text{int } F$. Proposition 3.11 gives a C^1 -smooth bump g_{σ} such that $g'_{\sigma}(X) = [0, \varphi(\sigma) - \varphi(\sigma_{-})] + \varepsilon_{\sigma} \text{ int } B_{X^*}, \ \varphi(\sigma) - \varphi(\sigma_{-})$ is a stationary image of g'_{σ} and $\text{supp}(g_{\sigma}) \subset B_X$. We put

$$h_{\sigma}(x) = 12^{-1} \alpha_{\sigma} g_{\sigma}(12\alpha_{\sigma}^{-1}(x - w_{\sigma(k+1)}(x_{\sigma}, \alpha_{\sigma})))).$$

We have $\operatorname{supp}(h_{\sigma}) \subset B(w_{\sigma(k+1)}(x_{\sigma_{-}}, \alpha_{\sigma_{-}}), 12^{-1}\alpha_{\sigma_{-}}) \subset B(x_{\sigma_{-}}, \alpha_{\sigma_{-}}) \subset B_X$. If $|\sigma| = |\tau| = k + 1$ and $\sigma \neq \tau$, we can easily check that

$$B(w_{\sigma(k+1)}(x_{\sigma_}, \alpha_{\sigma_}), 12^{-1}\alpha_{\sigma_}) \cap B(w_{\tau(k+1)}(x_{\tau_}, \alpha_{\tau_}), 12^{-1}\alpha_{\tau_}) = \emptyset,$$

so $\operatorname{supp}(h_{\sigma}) \cap \operatorname{supp}(h_{\tau}) = \emptyset$. Moreover $\varphi(\sigma) - \varphi(\sigma_{-})$ is clearly a stationary image of h'_{σ} . So there are $x_{\sigma} \in B_X$ and $\alpha_{\sigma} \in [0, 2^{-k}[$ such that $h'_{\sigma}(x) = \varphi(\sigma) - \varphi(\sigma_{-})$ for all $x \in B(x_{\sigma}, \alpha_{\sigma})$. Finally, $\mathcal{P}(k+1)$ holds.

STEP 3: The function $f = \sum_{k\geq 1} \sum_{|\sigma|=k} h_{\sigma}$ is a C¹-smooth bump.

For $k \geq 1$ we define $G_k(x) = \sum_{|\sigma|=k} h_{\sigma}(x)$. Since this is a sum of C^1 smooth functions with disjoint supports, it is C^1 -smooth. We recall that for all $\sigma \in \mathbb{N}^{<\mathbb{N}}$, $h'_{\sigma}(X) = g'_{\sigma}(X) = [0, \varphi(\sigma) - \varphi(\sigma_{-})] + \varepsilon_{\sigma}$ int B_{X^*} . For all $x \in X$,

$$\begin{aligned} \|G'_k(x)\| &\leq \sup\{\|h'_{\sigma}(x)\| : |\sigma| = k\} \\ &\leq \sup\{\|\varphi(\sigma) - \varphi(\sigma_{-})\| + \varepsilon_{\sigma} : |\sigma| = k\} \leq 2\delta_k. \end{aligned}$$

By the mean value theorem we get $|G_k(x)| \leq 2\delta_k$ since $\operatorname{supp}(G_k) \subset B_X$. Therefore f is a C^1 -smooth bump.

STEP 4: f'(X) is equal to F.

Let $f_k(x) = \sum_{1 \le j \le k} G_j(x)$. For all $\sigma \in \mathbb{N}^{<\mathbb{N}}$, $B(x_{\sigma}, \alpha_{\sigma}) \subset B(x_{\sigma_}, \alpha_{\sigma_})$. Thus, if $k \ge 1$ and $|\sigma| = k$, then $G'_j(x_{\sigma}) = \varphi(\sigma|j) - \varphi(\sigma|j-1)$ for all $1 \le j \le k$ and hence $f'_k(x_{\sigma}) = \varphi(\sigma)$.

Let $x \in X$. Three cases can arise:

Case 1: For all $\sigma \in \mathbb{N}^{<\mathbb{N}}$, $x \notin B(x_{\sigma}, \alpha_{\sigma})$. Then f'(x) = 0.

Case 2: There is $\sigma \in \mathbb{N}^{\mathbb{N}}$ so that $x \in B(x_{\sigma|k}, \alpha_{\sigma|k})$ for all $k \geq 1$. Thus $(x_{\sigma|k})_k$ converges to x and since $(f'_k)_k$ is uniformly convergent, we have $f'(x) = \lim_k f'_k(x_{\sigma|k}) = \lim_k \varphi(\sigma|k) = \varphi(\sigma)$.

Case 3: There is $\sigma \in \mathbb{N}^{<\mathbb{N}}$ such that $x \in B(x_{\sigma}, \alpha_{\sigma})$ and $x \notin \bigcup_{j \in \mathbb{N}} B(x_{\sigma^{\uparrow}j}, \alpha_{\sigma^{\uparrow}j})$. Then $f'(x) = f'_k(x) = \varphi(\sigma)$.

It is therefore clear that $f'(X) = \varphi(\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^{\mathbb{N}}) = F$.

T. Gaspari

For closed sets we can rewrite condition (\mathcal{A}_{∞}) using sequences. Indeed, it is not hard to prove that a closed subset F of X^* satisfies (\mathcal{A}_{∞}) if and only if there are a summable sequence $(\delta_k)_{k\geq 1}$ of positive numbers and a sequence $(y_k^*)_{k\geq 1}$ of points in int F with $y_1^* = 0$ such that for all y^* in F, there is a nondecreasing function $\psi : \mathbb{N} \to \mathbb{N}$ so that $\lim_{k\to\infty} y_{\psi(k)}^* = y^*$, $\psi(1) = 1$ and for all $k \geq 1$,

$$[y_{\psi(k)}^*, y_{\psi(k+1)}^*] \subset \inf F \quad and \quad \|y_{\psi(k+1)}^* - y_{\psi(k)}^*\| < \delta_k.$$

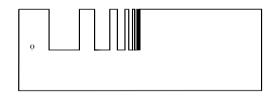
Proposition 4.2 is false in finite dimensions. Indeed, we can construct a compact subset P of \mathbb{R}^2 which satisfies condition (\mathcal{A}_{∞}) but which is not the range of the derivative of a C^1 -smooth bump. Because of its form, we call this set a *comb*. We define

$$P_1 = ([-1,2] \times [-1,0]) \cup ([1,2] \times [-1,1]),$$

$$P_2 = \left(\bigcup_{q \ge 1} [2^{-1} + \ldots + 2^{-q} - 8^{-q}, 2^{-1} + \ldots + 2^{-q} + 8^{-q}]\right) \times [0,1]$$

(comb's teeth) and

$$P = (-3/2, 0) + (P_1 \cup P_2).$$



The comb in \mathbb{R}^2

If $n \geq 2$, then $P \times B_{\mathbb{R}^{n-2}}$ is not the range of the derivative of a C^1 -smooth bump, because of the following lemma:

LEMMA 4.3. For x and y in F define $r(x, y) = \inf\{\operatorname{diam}(\gamma([0, 1])) : \gamma : [0, 1] \to F \text{ is continuous}, \gamma(0) = x \text{ and } \gamma(1) = y\}$. If $F = b'(\mathbb{R}^n)$ with $b : \mathbb{R}^n \to \mathbb{R}$ a C^1 -smooth bump, then for all $\varepsilon > 0$ there exists a finite ε -net in F for the metric r.

The proof of this lemma is clear: Since b' is uniformly continuous on $\overline{\operatorname{supp}(b)}$, we find $\delta > 0$ such that $\|b'(x) - b'(y)\| < \varepsilon$ if $\|x - y\| < \delta$. Take a finite δ -net in $\operatorname{supp}(b)$ for the norm; then its range under b' is a finite ε -net in F for the metric r. Notice that if H is an infinite-dimensional separable Hilbert space, then $P \times B_H$ is a subset of $\mathbb{R}^2 \times H$ which satisfies condition (\mathcal{A}_{∞}) , hence is the range of the derivative of a C^1 -smooth bump on $\mathbb{R}^2 \times H$.

We now give examples of subsets of X^* , neither closed nor open, which satisfy (\mathcal{A}_{∞}) .

THEOREM 4.4. Let X be an infinite-dimensional Banach space with a separable dual. Let U be a bounded open convex subset of X^* containing 0 and let $U \subset A \subset \overline{U}$ be any analytic set. Then there exists a C^1 -smooth bump $f: X \to \mathbb{R}$ such that f'(X) = A.

Proof. Let U and A be as in the theorem. We put $\alpha_k = 2^{-k}, k \in \mathbb{N}$.

STEP 1: We construct a mapping
$$\psi : \mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^{\mathbb{N}} \to X^*$$
 such that

$$\begin{cases} \psi(\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^{\mathbb{N}}) = A = \psi(\mathbb{N}^{\mathbb{N}}).\\ \sigma \in \mathbb{N}^{<\mathbb{N}} \text{ and } |\sigma| \ge 2 \Rightarrow \|\psi(\sigma) - \psi(\sigma_{-})\| < \alpha_{|\sigma|}.\\ \sigma \in \mathbb{N}^{\mathbb{N}} \Rightarrow \psi(\sigma) = \lim_{k} \psi(\sigma|k). \end{cases}$$

Let g be a bijection from \mathbb{N} onto $\mathbb{N}^{<\mathbb{N}}$. Since A is analytic, there is a continuous mapping χ_0 on $\mathbb{N}^{\mathbb{N}}$ such that $\chi_0(\mathbb{N}^{\mathbb{N}}) = A$. We define the map χ on $\mathbb{N}^{\mathbb{N}} \cup \mathbb{N}^{<\mathbb{N}}$ by $\chi(\sigma) = \chi_0(\sigma)$ if $\sigma \in \mathbb{N}^{\mathbb{N}}$, and $\chi(\sigma) \in \{\chi_0(\tau) : \tau \in \mathbb{N}^{\mathbb{N}}$ and $\sigma < \tau\}$ if $\sigma \in \mathbb{N}^{<\mathbb{N}}$. Then $\chi(\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^{\mathbb{N}}) = A$ and for all $\sigma \in \mathbb{N}^{\mathbb{N}}$, $(\chi(\sigma|k))_k$ converges and $\chi(\sigma) = \lim_k \chi(\sigma|k)$.

We will define $h : \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ by induction over $k := |\sigma|$. If $|\sigma| = 1$, then $h(\sigma) = g(\sigma(1))$. If $|\sigma| = k \ge 2$, we put

$$h(\sigma) = \begin{cases} h(\sigma_{-})^{\hat{g}}(\sigma(k)) & \text{if } \|\chi(h(\sigma_{-})^{\hat{g}}(\sigma(k))) - \chi(h(\sigma_{-}))\| < \alpha_k, \\ h(\sigma_{-}) & \text{otherwise.} \end{cases}$$

So, if $\sigma \in \mathbb{N}^{<\mathbb{N}}$, there is a unique $u(\sigma) \in \mathbb{N}^{<\mathbb{N}} \cup \{\emptyset\}$ such that $h(\sigma) = h(\sigma_{-})^{\cdot}u(\sigma)$. Let $\sigma \in \mathbb{N}^{\mathbb{N}}$. There is a unique sequence $(u(\sigma|k))_{k\geq 1}$ in $\mathbb{N}^{<\mathbb{N}} \cup \{\emptyset\}$ such that $h(\sigma|k) = u(\sigma|1)^{\cdot} \dots^{\cdot} u(\sigma|k)$ for all k. We then define

$$h(\sigma) = u(\sigma|1)^{\hat{}} \dots^{\hat{}} u(\sigma|k)^{\hat{}} \dots$$

The mapping h is a surjection from $\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^{\mathbb{N}}$ onto itself. Indeed, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$, there is $p \in \mathbb{N}$ with $g(p) = \sigma$, thus $h(p) = g(p) = \sigma$. Now let $\sigma \in \mathbb{N}^{\mathbb{N}}$. There exists a strictly increasing sequence $(q_j)_{j\geq 1}$ of positive integers such that

$$\forall j \ge 1, \ \forall k, p \ge q_j, \qquad \|\chi(\sigma|k) - \chi(\sigma|p)\| < \alpha_{j+1}.$$

We take $q_0 = 0$. For all $k \ge 1$, there is a unique $m_k \in \mathbb{N}$ so that $g(m_k) = (\sigma(q_{k-1}+1), \ldots, \sigma(q_k))$. We set $\tau = (m_k)_{k\ge 1}$. For all $k \ge 2$ and all $j \in \{2, \ldots, k\}$,

$$\|\chi(g(m_1)^{\hat{}} \dots^{\hat{}} g(m_j)) - \chi(g(m_1)^{\hat{}} \dots^{\hat{}} g(m_{j-1}))\| \\ = \|\chi(\sigma|q_j) - \chi(\sigma|q_{j-1})\| < \alpha_j$$

so $h(\tau|k) = g(m_1)^{\hat{}} \dots^{\hat{}} g(m_k) = \sigma |q_k|$ and hence $h(\tau) = \sigma$.

We define ψ on $\mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^{\mathbb{N}}$ by $\psi(\sigma) = \chi(h(\sigma))$. The range of ψ is clearly included in A. Let $a \in A$ and $\sigma \in \mathbb{N}^{\mathbb{N}}$ with $a = \chi(\sigma)$. We have proved that there exists $\tau \in \mathbb{N}^{\mathbb{N}}$ such that $h(\tau) = \sigma$. Then $\psi(\tau) = \chi(h(\tau)) = \chi(\sigma) = a$, so $A \subset \psi(\mathbb{N}^{\mathbb{N}})$. It is clear that if $\sigma \in \mathbb{N}^{<\mathbb{N}}$ and $|\sigma| \ge 2$, then $\|\psi(\sigma) - \psi(\sigma_{-})\| \le \|\chi(h(\sigma)) - \chi(h(\sigma_{-}))\| < \alpha_{|\sigma|}.$

Finally, if $\sigma \in \mathbb{N}^{\mathbb{N}}$, then $(\psi(\sigma|k))_k$ converges and

$$\lim_{k \to \infty} \psi(\sigma|k) = \lim_{k \to \infty} \chi(h(\sigma|k)) = \lim_{k \to \infty} \chi((h(\sigma))|n_k) = \chi(h(\sigma)) = \psi(\sigma).$$

STEP 2: A satisfies (\mathcal{A}_{∞}) .

We define $\varphi : \mathbb{N}^{\mathbb{N}} \cup \mathbb{N}^{<\mathbb{N}} \to X^*$ by $\varphi(\sigma) = (1 - \alpha_{|\sigma|})\psi(\sigma)$ if $\sigma \in \mathbb{N}^{<\mathbb{N}}$, and $\varphi(\sigma) = \psi(\sigma)$ if $\sigma \in \mathbb{N}^{\mathbb{N}}$. We can easily verify that (\mathcal{A}_{∞}) holds with $\delta_k = 2\alpha_k$. Then Proposition 4.2 completes the proof.

We now introduce a sufficient condition in finite dimensions which is not far from condition (\mathcal{C}_{∞}) .

DEFINITION 4.5. Let F be a subset of \mathbb{R}^n . We say that F satisfies condition (\mathcal{C}) if F is closed, there are a summable sequence $(\delta_k)_{k\geq 2}$, a sequence $(q_k)_{k\geq 1}$ of positive integers with $q_1 = 1$ and a mapping $\varphi : D \cup \bigcup_{k\geq 1} D_k \to F$ (where $D = \prod_{j\geq 1} \{1, \ldots, q_j\}$ and $D_k = \prod_{1\leq j\leq k} \{1, \ldots, q_j\}$) such that

$$\begin{cases} \varphi(D \cup \bigcup_{k \ge 1} D_k) = F, \ \varphi(1) = 0 \text{ and, for all } k \ge 2, \\ \sigma \in D_k \Rightarrow [\varphi(\sigma_{-}), \varphi(\sigma)] \subset \inf F \text{ and } \|\varphi(\sigma) - \varphi(\sigma_{-})\| < \delta_k, \\ \sigma \in D \Rightarrow \varphi(\sigma) = \lim_k \varphi(\sigma|k). \end{cases}$$

Again, we can rewrite this condition in terms of sequences: F satisfies condition (C) if and only if F is closed, there are a sequence $(y_k^*)_{k\geq 1}$ of points in int F with $y_1^* = 0$, a nondecreasing sequence $(I_k)_{k\geq 1}$ of finite subsets of \mathbb{N} with $I_1 = \{1\}$ and a summable sequence $(\delta_k)_{k\geq 1}$ of positive numbers such that for all y^* in F, there is a function $\psi : \mathbb{N} \to \mathbb{N}$ so that $\lim_k y_{\psi(k)}^* = y^*$ and for all $k \geq 1$, $\psi(k) \in I_k$, $[y_{\psi(k)}^*, y_{\psi(k+1)}^*] \subset \inf F$ and $\|y_{\psi(k+1)}^* - y_{\psi(k)}^*\| < \delta_k$.

Using the same ideas as in the proof of Proposition 4.2, we get

THEOREM 4.6. Let $n \ge 1$ and F be a subset of \mathbb{R}^n . If F satisfies condition (C), then there is a C^1 -smooth bump $f : \mathbb{R}^n \to \mathbb{R}$ such that $f'(\mathbb{R}^n) = F$.

Let us now recall the condition introduced in [3]:

A subset F of X^* is said to satisfy *condition* (*) if there are a summable sequence $(\delta_k)_{k\geq 1}$ of positive numbers and a sequence $(C_k)_{k\geq 1}$ of bounded closed subsets of X^* such that $F = \bigcup_{k\geq 1} C_k$, C_1 is convex and contains 0, for all $k \geq 1$, $C_k \subset \operatorname{int} C_{k+1}$ and for all y in $C_{k+1} \setminus \operatorname{int} C_k$, there is z in C_k such that $[z, y] \subset C_{k+1}$ and $||y - z|| < \delta_k$.

The authors of [3] prove that any subset of \mathbb{R}^n satisfying (*) is the range of the derivative of a C^1 -smooth bump. We are going to show that condition (*) is equivalent to condition (\mathcal{C}). Consequently, Theorem 4.6 is nothing but Theorem 12 of [3]. Later we will explain the advantages of condition (\mathcal{C}).

PROPOSITION 4.7. If $X = \mathbb{R}^n$, then condition (*) is equivalent to (\mathcal{C}) .

Proof. Let F be a subset of \mathbb{R}^n .

STEP 1: Condition $(*) \Rightarrow$ Condition (C).

We suppose that F satisfies (*). We put $S_1 = \{0\}$. For $k \ge 1$ we define $\varepsilon_k = 2^{-1} \min(\delta_k, \operatorname{dist}(C_{k+1}, \partial F)),$

$$S_{k+1} = S_k \cup \{ \text{a finite } \varepsilon_k \text{-net of } C_k \},\$$

 $q_k = \operatorname{Card} S_k, \ D = \prod_{j\geq 1} \{1, \ldots, q_j\}$ and $D_k = \prod_{1\leq j\leq k} \{1, \ldots, q_j\}$. We define $\varphi : \bigcup_{k\geq 1} D_k \to \mathbb{R}^n$ by induction. First we set $\delta_0 = \operatorname{diam}(C_1)$ and $\varphi(1) = 0$. We fix $k \geq 1$ and assume that φ is defined on $D_k, \varphi(D_k) = S_k$ and for all $\sigma \in D_k, \ [\varphi(\sigma_-), \varphi(\sigma)] \subset \operatorname{int} F$ and $\|\varphi(\sigma) - \varphi(\sigma_-)\| < 2\delta_{k-1}$. We remark that if $y \in C_k$, then there is $z \in S_k$ such that $\|y - z\| < 2\delta_{k-1}$ and $[z, y] \subset \operatorname{int} F$. If $\sigma \in D_k$ we set $T_\sigma = \{y \in S_{k+1} : \|y - \varphi(\sigma)\| < 2\delta_{k-1}$ and $[\varphi(\sigma), y] \subset \operatorname{int} F\}$. We can write $T_\sigma = \{z_1, \ldots, z_r\}$ with $r \leq q_{k+1}$. We define $\varphi(\sigma^{\hat{j}}) = z_j$ if $1 \leq j \leq r$ and $\varphi(\sigma^{\hat{j}}) = \varphi(\sigma)$ if $r < j \leq q_{k+1}$. Then φ is defined on D_{k+1} and has all the required properties. The fact that $\varphi(D_{k+1}) = S_{k+1}$ follows from the remark. In this way we define φ on $\bigcup_{k\geq 1} D_k$. If $\sigma \in D$, then the sequence $(\varphi(\sigma|k))_k$ is convergent and we define $\varphi(\sigma) = \lim_k \varphi(\sigma|k)$.

Let $y \in F$. There is a sequence $(z_k)_{k\geq 1}$ such that $\lim_k z_k = y$ and $z_k \in C_k$ for all $k \geq 1$. For all $k \geq 1$, there is $\sigma_k \in D_{k+1}$ with $||z_k - \varphi(\sigma_k)|| < \delta_k$ and $|\varphi(\sigma_k), z_k| \subset \text{int } F$. The sequence $(\sigma_k(1))_k$ takes a finite number of values in $\{1, \ldots, q_1\}$. Thus there is r_1 in $\{1, \ldots, q_1\}$ so that $\{k : \sigma_k(1) = r_1\}$ is infinite. By induction we build a sequence $(r_j)_{j\geq 1}$ in D such that for all j, $\{k : \sigma_k(i) = r_i \text{ for } 1 \leq i \leq j\}$ is infinite. Then $\tau = (r_1, \ldots, r_j, \ldots)$ is in Dand $\varphi(\tau) = y$. Therefore (*) implies (\mathcal{C}) .

STEP 2: Condition $(\mathcal{C}) \Rightarrow$ Condition (*).

We assume that F satisfies (C). There is $\varepsilon_1 > 0$ such that $B(0, \varepsilon_1) \subset \text{int } F$. We define $C_1 = B(0, \varepsilon_1)$. For $k \ge 1$, if $\sigma \in D_k$, then there is $0 < \varepsilon_\sigma < \delta_k$ with $[\varphi(\sigma_-), \varphi(\sigma)] + B(0, \varepsilon_\sigma) \subset \text{int } F$. The set

$$B_k = C_k \cup \left(\bigcup_{\sigma \in D_k} [\varphi(\sigma_{-}), \varphi(\sigma)] + B(0, \varepsilon_{\sigma})\right)$$

is compact and is in int F. So $\alpha_k = \frac{1}{2}\min(\delta_k, \operatorname{dist}(B_k, \partial F)) > 0$. Finally, we define $C_{k+1} = B_k + B(0, \alpha_k)$. The sequence $(C_k)_{k \ge 1}$ satisfies all the required conditions, thus F satisfies condition (*).

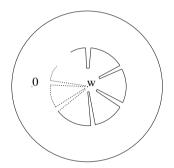
We have proved that condition (\mathcal{C}) can be extended to infinite dimensions. Indeed, Proposition 4.2 shows that (\mathcal{A}_{∞}) is a sufficient condition in smooth infinite-dimensional Banach spaces and (\mathcal{A}_{∞}) can be considered as an extension of (\mathcal{C}) . The situation is different with condition (*). In fact, if Xis an infinite-dimensional Banach space, we can construct a subset R of X^*

T. Gaspari

which satisfies condition (*) but which is not the range of the derivative of a C^1 -smooth bump. Let us describe R. Since X is infinite-dimensional, there is $\varepsilon > 0$ and a 3ε -separated sequence $(e_k)_{k\geq 1}$ in S_{X^*} . We fix a point w in X^* with ||w|| = 3/2. We define

$$D_k = \{tx : x \in S_{X^*} \cap B(e_k, \varepsilon), \ 1/k \le t \le 1\}, \qquad D = \bigcup_{k \ge 1} D_k,$$
$$R = \overline{w + (\{x \in X^* : 1 \le \|x\| \le 2\} \cup D)}$$
$$= (w + (\{x \in X^* : 1 \le \|x\| \le 2\} \cup D)) \cup \{w\}.$$

We remark that the construction of R is only possible in an infinitedimensional Banach space. Here is a 2-dimensional representation of R:



The wheel with broken spokes

Because of its form, R is called the "wheel with broken spokes". In fact, in infinite dimensions, we can imagine that each spoke is in a new direction and comes closer to w, the centre of the wheel. Then R satisfies condition (*) but R is not the range of the derivative of a C^1 -smooth bump, because wcannot be joined to 0 by a continuous path in R. Thus condition (*) is not sufficient in infinite dimensions.

Acknowledgments. I wish to thank Robert Deville for his valuable help and the referee for his valuable suggestions and comments.

References

- D. Azagra and R. Deville, James' theorem fails for starlike bodies, J. Funct. Anal. 180 (2001), 328–346.
- D. Azagra and M. Jiménez-Sevilla, The failure of Rolle's theorem in infinite-dimensional Banach spaces, ibid. 182 (2001), 207–226.
- [3] J. M. Borwein, M. Fabian, I. Kortezov and P. D. Loewen, The range of the gradient of a continuously differentiable bump, J. Nonlinear Convex Anal. 2 (2001), 1–19.
- R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman, 1993.

- [5] M. Jiménez-Sevilla and J. P. Moreno, A note on norm attaining functionals, Proc. Amer. Math. Soc. 126 (1998), 1989–1997.
- [6] C. Kuratowski, *Topologie II*, PWN, Warszawa, 1961.
- J. Malý, The Darboux property for gradients, Real Anal. Exchange 22 (1996/1997), 167–173.
- [8] G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill, 1963.

Mathématiques Pures de Bordeaux (MPB), UMR 5467 CNRS Université Bordeaux 1 351, cours de la Libération 33400 Talence, France E-mail: gaspari@math.u-bordeaux.fr

Received July 5, 2001	
Revised version April 15, 2002	(4771)