$L^{p}\left(\mathbb{R}^{n}\right)$ boundedness for the commutator of a homogeneous singular integral operator

by
Guoen Hu (Zhengzhou)

Abstract

The commutator of a singular integral operator with homogeneous kernel $\Omega(x) /|x|^{n}$ is studied, where Ω is homogeneous of degree zero and has mean value zero on the unit sphere. It is proved that $\Omega \in L(\log L)^{k+1}\left(S^{n-1}\right)$ is a sufficient condition for the k th order commutator to be bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for all $1<p<\infty$. The corresponding maximal operator is also considered.

1. Introduction. We will work on $\mathbb{R}^{n}, n \geq 2$. Let Ω be a homogeneous function of degree zero with mean value zero on the unit sphere S^{n-1}. Define the homogeneous singular integral operator T by

$$
T f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} \frac{\Omega(x-y)}{|x-y|^{n}} f(y) d y .
$$

For a positive integer k and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, define the k th order commutator of the operator T and b by

$$
\begin{equation*}
T_{b, k} f(x)=\int_{\mathbb{R}^{n}}(b(x)-b(y))^{k} \frac{\Omega(x-y)}{|x-y|^{n}} f(y) d y, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

Coifman, Rochberg and Weiss [4] showed that if $\Omega \in \operatorname{Lip}_{\alpha}\left(S^{n-1}\right)(0<\alpha \leq 1)$, then $T_{b, 1}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ with bound $C(n, p)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}$ for $1<$ $p<\infty$. By a well-known result of Duoandikoetxea [5] and Watson [10], if $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q>1$, then for $p>q^{\prime}\left(q^{\prime}=q /(q-1)\right)$ and $w \in A_{p / q^{\prime}}$, the operator T is bounded on $L^{p}\left(\mathbb{R}^{n}, w(x) d x\right)$ with bound depending only on n, p and the $A_{p / q^{\prime}}$ constant of w, where A_{r} is the weight function class of Muckenhoupt (see [9, Chapter V] for the definition and properties of A_{r}). This together with the Alvarez-Bagby-Kurtz-Pérez boundedness theorem for the commutators of linear operators (see [2, Theorem 2.13]) tells us

[^0]that if $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q>1$, then $T_{b, k}$ is a bounded operator on $L^{p}\left(\mathbb{R}^{n}\right)$ for $q^{\prime}<p<\infty$, and then by standard duality and interpolation argument, it is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for all $1<p<\infty$. On the other hand, if $\Omega \notin \bigcup_{q>1} L^{q}\left(S^{n-1}\right)$, then for any fixed $1<p, q<\infty$, we do not know whether the operator T is bounded on $L^{p}\left(\mathbb{R}^{n}, w(x) d x\right)$ for all $w \in A_{q}$, and the Alvarez-Bagby-Kurtz-Pérez theorem does not apply. In this case, the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness for $T_{b, k}$ is not known. In [7], we have proved that if Ω satisfies the size condition
$$
\sup _{\zeta \in S^{n-1}} \int_{S^{n-1}}|\Omega(\theta)| \log ^{\alpha}\left(\frac{1}{|\theta \cdot \zeta|}\right) d \theta<\infty
$$
for some $\alpha>k+1$, then the commutator $T_{b, k}$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$. The purpose of this paper is to give a size condition on Ω which is strictly weaker than $\Omega \in \bigcup_{q>1} L^{q}\left(S^{n-1}\right)$ and implies the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness of $T_{b, k}$ for all $1<p<\infty$. Furthermore, we will also consider the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness for the corresponding maximal operator defined by
\[

$$
\begin{equation*}
T_{b, k}^{*} f(x)=\sup _{\varepsilon>0}\left|\int_{|x-y|>\varepsilon}(b(x)-b(y))^{k} \frac{\Omega(x-y)}{|x-y|^{n}} f(y) d y\right| \tag{2}
\end{equation*}
$$

\]

Our main results can be stated as follows.
ThEOREM 1. Let Ω be homogeneous of degree zero and have mean value zero on the unit sphere, k be a positive integer and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$. If $\Omega \in$ $L(\log L)^{k+1}\left(S^{n-1}\right)$, that is,

$$
\int_{S^{n-1}}\left|\Omega\left(x^{\prime}\right)\right| \log ^{k+1}\left(2+\left|\Omega\left(x^{\prime}\right)\right|\right) d x^{\prime}<\infty
$$

then for all $1<p<\infty$, the commutator $T_{b, k}$ defined by (1) is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ with bound $C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$.

Theorem 2. Let Ω be homogeneous of degree zero and have mean value zero on the unit sphere, k be a positive integer and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$. If $\Omega \in$ $L(\log L)^{k+1}\left(S^{n-1}\right)$, then for all $1<p<\infty$, the operator $T_{b, k}^{*}$ defined by (2) is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ with bound $C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$.

Some Young functions will be useful in the proof of our theorems. For positive integer k, let

$$
a_{k}(\tau)=\log ^{k}(1+\tau), \quad \widetilde{a}_{k}(\tau)=e^{\tau^{1 / k}}-1
$$

Define the functions Φ_{k} and Ψ_{k} by

$$
\Phi_{k}(t)=\int_{0}^{t} a_{k}(\tau) d \tau, \quad \Psi_{k}(t)=\int_{0}^{t} \widetilde{a}_{k}(\tau) d \tau
$$

Then Φ_{k} and Ψ_{k} are Young functions and Ψ_{k} is the complementary Young function of Φ_{k}. Therefore, for any $0<t_{1}, t_{2}<\infty$,

$$
t_{1} t_{2} \leq \Phi_{k}\left(t_{1}\right)+\Psi_{k}\left(t_{2}\right)
$$

(see [1, Chap. 8] for details). By a straightforward computation, it follows that

$$
\Phi_{k}(t) \leq t \log ^{k}(2+t), \quad \Psi_{k}(t) \leq t e^{t^{1 / k}} \leq k^{k} e^{2 t^{1 / k}}
$$

Thus, for $0<t_{1}, t_{2}<\infty$,

$$
\begin{equation*}
t_{1} t_{2}^{k} \leq 2^{k}\left(\Phi_{k}\left(t_{1}\right)+\Psi_{k}\left(\left(t_{2} / 2\right)^{k}\right)\right) \leq C_{k}\left(t_{1} \log ^{k}\left(2+t_{1}\right)+e^{t_{2}}\right) \tag{3}
\end{equation*}
$$

Throughout this paper, C denotes constants that are independent of the main parameters involved but whose values may differ from line to line. For $p \geq 1, p^{\prime}$ denotes the dual exponent of p, that is, $p^{\prime}=p /(p-1)$. For a measurable set E, χ_{E} denotes the characteristic function of E.
2. Proof of Theorem 1. We begin with some preliminary lemmas.

Lemma 1. Let $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be a radial function such that $\operatorname{supp} \phi \subset$ $\{1 / 4 \leq|\xi| \leq 4\}$ and

$$
\sum_{l \in \mathbb{Z}} \phi^{3}\left(2^{-l} \xi\right)=1, \quad|\xi| \neq 0
$$

Define the multiplier operator S_{l} by

$$
\widehat{S_{l} f}(\xi)=\phi\left(2^{-l} \xi\right) \widehat{f}(\xi)
$$

and S_{l}^{2} by $S_{l}^{2} f(x)=S_{l}\left(S_{l} f\right)(x)$. For $b \in \mathrm{BMO}\left(\mathbb{R}^{n}\right)$ and positive integer k, denote by $S_{l ; b, k}$ (resp. $S_{l ; b, k}^{2}$) the kth order commutator of S_{l} (resp. S_{l}^{2}). Then for $1<p<\infty$,
(i) $\left\|\left(\sum_{l \in \mathbb{Z}}\left|S_{l ; b, k} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C(n, k, p)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p} ;$
(ii) $\left\|\left(\sum_{l \in \mathbb{Z}}\left|S_{l ; b, k}^{2} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C(n, k, p)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}$;
(iii) $\left\|\sum_{l \in \mathbb{Z}} S_{l ; b, k} f_{l}\right\|_{p} \leq C(n, k, p)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\left\|\left(\sum_{l \in \mathbb{Z}}\left|f_{l}\right|^{2}\right)^{1 / 2}\right\|_{p}$.

Proof. Obviously, (iii) can be deduced from (i) directly. By the weighted Littlewood-Paley theory, we see that for any $1<p<\infty$ and $w \in A_{p}$,

$$
\left\|\left(\sum_{l \in \mathbb{Z}}\left|S_{l} f\right|^{2}\right)^{1 / 2}\right\|_{p, w}+\left\|\left(\sum_{l \in \mathbb{Z}}\left|S_{l}^{2} f\right|^{2}\right)^{1 / 2}\right\|_{p, w} \leq C\|f\|_{p, w}
$$

Note that the mappings

$$
f \mapsto\left\{S_{l} f\right\}_{l \in \mathbb{Z}}, \quad f \mapsto\left\{S_{l}^{2} f\right\}_{l \in \mathbb{Z}}
$$

are linear; then (i) and (ii) follow from the last inequality and Theorem 2.13 of [2].

Lemma 2. Let $m_{\delta} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)(0<\delta<\infty)$ be a family of multipliers such that $\operatorname{supp} m_{\delta} \subset\{\delta / 4 \leq|\xi| \leq 4 \delta\}$. Suppose that for some positive constant α,

$$
\left\|m_{\delta}\right\|_{\infty} \leq C \min \left\{\delta, \delta^{-\alpha}\right\}, \quad\left\|\nabla m_{\delta}\right\|_{\infty} \leq C
$$

Let T_{δ} be the multiplier operator defined by

$$
\widehat{T_{\delta} f}(\xi)=m_{\delta}(\xi) \widehat{f}(\xi)
$$

For $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ and positive integer k, denote by $T_{\delta ; b, k}$ the k th order commutator of T_{δ}. Then for any fixed $0<\nu<1$, there exists a positive constant $C=C(n, k, \nu)$ such that

$$
\left\|T_{\delta ; b, k} f\right\|_{2} \leq C \min \left\{\delta^{\nu}, \delta^{-\alpha \nu}\right\}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{2}
$$

For the case of $\delta \leq 1$, Lemma 2 can be obtained from Lemma 2 of [7]. On the other hand, if $\delta>1$, Lemma 2 was essentially proved in the proof of Lemma 2.3 of [8].

Lemma 3. Let $\widetilde{\Omega}$ be homogeneous of degree zero and belong to the space $L^{\infty}\left(S^{n-1}\right)$. For $s \geq 1$, define $\lambda_{\widetilde{\Omega}, s}$ by

$$
\lambda_{\widetilde{\Omega}, s}=\inf \left\{\lambda>0: \frac{\|\widetilde{\Omega}\|_{1}}{\lambda} \log ^{s}\left(2+\frac{\|\widetilde{\Omega}\|_{\infty}}{\lambda}\right) \leq 1\right\}
$$

Then
(i) there exists a positive constant $C=C_{n, s}$ such that $C^{-1}\|\widetilde{\Omega}\|_{1} \leq$ $\lambda_{\widetilde{\Omega}, s} \leq C\|\widetilde{\Omega}\|_{\infty} ;$
(ii) $\lambda_{\widetilde{\Omega}, s} \leq C_{s}\left(\left(2+\|\widetilde{\Omega}\|_{\infty}\right)^{-1}+\|\widetilde{\Omega}\|_{1} \log ^{s}\left(2+\|\widetilde{\Omega}\|_{\infty}\right)\right)$;
(iii) for any $1 \leq s, t<\infty, \lambda_{\widetilde{\Omega}, s t}^{1 / t}\|\widetilde{\Omega}\|_{1}^{1 / t^{\prime}} \leq \lambda_{\widetilde{\Omega}, s}$.

Proof. Obviously, (i) follows directly from the fact that

$$
\frac{\|\widetilde{\Omega}\|_{1}}{\|\widetilde{\Omega}\|_{\infty}} \log ^{s}\left(2+\frac{\|\widetilde{\Omega}\|_{\infty}}{\|\widetilde{\Omega}\|_{\infty}}\right) \leq C\left|S^{n-1}\right|
$$

and

$$
\frac{\|\widetilde{\Omega}\|_{1}}{\|\widetilde{\Omega}\|_{1}} \log ^{s}\left(2+\frac{\|\widetilde{\Omega}\|_{\infty}}{\|\widetilde{\Omega}\|_{1}}\right) \geq \log ^{s}\left(2+\left|S^{n-1}\right|^{-1}\right)
$$

As for (ii), note that

$$
\begin{aligned}
\frac{\|\widetilde{\Omega}\|_{1}}{2^{s}\|\widetilde{\Omega}\|_{1} \log ^{s}\left(2+\|\widetilde{\Omega}\|_{\infty}\right)} \log ^{s}\left(2+\frac{\|\widetilde{\Omega}\|_{\infty}}{\left(2+\|\widetilde{\Omega}\|_{\infty}\right)^{-1}}\right) \\
\leq \frac{\|\widetilde{\Omega}\|_{1}}{2^{s}\|\widetilde{\Omega}\|_{1} \log ^{s}\left(2+\|\widetilde{\Omega}\|_{\infty}\right)} \log ^{s}\left(\left(2+\|\widetilde{\Omega}\|_{\infty}\right)^{2}\right) \leq 1
\end{aligned}
$$

It follows that

$$
\lambda_{\widetilde{\Omega}, s} \leq 2^{s}\left(\left(2+\|\widetilde{\Omega}\|_{\infty}\right)^{-1}+\|\widetilde{\Omega}\|_{1} \log ^{s}\left(2+\|\widetilde{\Omega}\|_{\infty}\right)\right)
$$

To prove (iii), by homogeneity, we may assume that $\lambda_{\tilde{\Omega}, s}=1$. Then

$$
\|\widetilde{\Omega}\|_{1} \log ^{s}\left(2+\|\widetilde{\Omega}\|_{\infty}\right) \leq 1
$$

and so $\|\widetilde{\Omega}\|_{1} \leq 1$. A trivial computation gives

$$
\begin{aligned}
\frac{\|\widetilde{\Omega}\|_{1}}{\|\widetilde{\Omega}\|_{1}^{-t / t^{\prime}}} \log ^{s t}\left(2+\frac{\|\widetilde{\Omega}\|_{\infty}}{\|\widetilde{\Omega}\|_{1}^{-t / t^{\prime}}}\right) & \leq\|\widetilde{\Omega}\|_{1}^{1+t / t^{\prime}} \log ^{s t}\left(2+\|\widetilde{\Omega}\|_{\infty}\right) \\
& =\left(\|\widetilde{\Omega}\|_{1} \log ^{s}\left(2+\|\widetilde{\Omega}\|_{\infty}\right)\right)^{t} \leq 1
\end{aligned}
$$

This in turn implies $\lambda_{\tilde{\Omega}, s t} \leq\|\widetilde{\Omega}\|_{1}^{-t / t^{\prime}}$, and establishes the desired result.
LEMMA 4. Let $\widetilde{\Omega}$ be homogeneous of degree zero, k be a positive integer and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$. Define the operator $M_{\tilde{\Omega} ; b, k}$ by

$$
M_{\widetilde{\Omega} ; b, k} f(x)=\sup _{r>0} r^{-n} \int_{|x-y|<r}|b(x)-b(y)|^{k}|\widetilde{\Omega}(x-y) f(y)| d y
$$

If $\widetilde{\Omega} \in L^{\infty}\left(S^{n-1}\right)$, then the operator $M_{\widetilde{\Omega} ; b, k}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ with bound $C \lambda_{\tilde{\Omega}, k}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$ for all $1<p<\infty$.

Proof. We will employ an observation of Coifman, Rochberg and Weiss (see [4, pp. 620-621]) which shows that certain weighted $L^{p}\left(\mathbb{R}^{n}\right)$ estimates for linear operators imply the $L^{p}\left(\mathbb{R}^{n}\right)$ estimates for the corresponding commutators. For each fixed $1<p<\infty$, we claim that there exist two positive constants C_{1} and C_{2} depending only on n and p such that for real-valued $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ with $\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}=C_{1}$, the operator

$$
\begin{equation*}
H(b, f)(x)=\sup _{r>0} r^{-n} \int_{|x-y|<r} e^{b(x)-b(y)}|f(y)| d y \tag{4}
\end{equation*}
$$

is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ with bound C_{2}. In fact, by the well-known JohnNirenberg inequality, we know that there exist positive constants A and B such that for any cube Q,

$$
\frac{1}{|Q|} \int_{Q} \exp \left(\frac{\left|b(x)-b_{Q}\right|}{A\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}}\right) d x \leq B
$$

where b_{Q} is the mean value of b on the cube Q. Let $C_{1}=\left(A \max \left\{p, p^{\prime}\right\}\right)^{-1}$. Straightforward computation shows that for real-valued $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ with $\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}=C_{1}$,

$$
\frac{1}{|Q|} \int_{Q} e^{p\left(b(x)-b_{Q}\right)} d x \leq B, \quad \frac{1}{|Q|} \int_{Q} e^{-p^{\prime}\left(b(x)-b_{Q}\right)} d x \leq B
$$

and so $e^{p b(x)} \in A_{p}$ with the A_{p} constant no more that $C_{2}=B^{p}$ (see also [9, Chap. V]). Therefore, by the weighted $L^{p}\left(\mathbb{R}^{n}\right)$ estimates with A_{p} weights for the Hardy-Littlewood maximal operator,

$$
\begin{aligned}
\|H(b, f)\|_{p}^{p} & =\int_{\mathbb{R}^{n}}\left(\sup _{r>0} r^{-n} \int_{|x-y|<r} e^{-b(y)}|f(y)| d y\right)^{p} e^{p b(x)} d x \\
& \leq C\left(n, p, C_{2}\right)\|f\|_{p}^{p}
\end{aligned}
$$

Now we can prove Lemma 4. Without loss of generality, we may assume that $\lambda_{\tilde{\Omega}, k}=1$. It is obvious that

$$
\|\widetilde{\Omega}\|_{1} \log ^{k}\left(2+\|\widetilde{\Omega}\|_{\infty}\right) \leq 1
$$

Let $\widetilde{\Phi}_{k}(t)=t \log ^{k}(2+t)$ for $t>0$. Then

$$
\left\|\widetilde{\Phi}_{k}(|\widetilde{\Omega}|)\right\|_{1} \leq 1
$$

We may also assume that b is real-valued and $\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}=C_{1}$. By the inequality (3), we have

$$
\begin{aligned}
M_{\widetilde{\Omega} ; b, k} f(x) \leq & \sup _{r>0} r^{-n} \int_{|x-y|<r} \widetilde{\Phi}_{k}(|\widetilde{\Omega}(x-y)|)|f(y)| d y \\
& +C \sup _{r>0} r^{-n} \int_{|x-y|<r} e^{|b(x)-b(y)|}|f(y)| d y \\
\leq & \sup _{r>0} r^{-n} \int_{|x-y|<r} \widetilde{\Phi}_{k}(|\widetilde{\Omega}(x-y)|)|f(y)| d y \\
& +C \sup _{r>0} r^{-n} \int_{|x-y|<r} e^{b(x)-b(y)}|f(y)| d y \\
& +C \sup _{r>0} r^{-n} \int_{|x-y|<r} e^{b(y)-b(x)}|f(y)| d y \\
= & \mathrm{I}(f)(x)+\operatorname{II}(f)(x)+\operatorname{III}(f)(x) .
\end{aligned}
$$

Our claim says that

$$
\|\operatorname{II}(f)\|_{p} \leq C\|f\|_{p}, \quad\|\operatorname{III}(f)\|_{p} \leq C\|f\|_{p}
$$

On the other hand, the method of rotation of Calderón and Zygmund [3] states that

$$
\|\mathrm{I}(f)\|_{p} \leq C\left\|\widetilde{\Phi}_{k}(|\widetilde{\Omega}|)\right\|_{1}\|f\|_{p} \leq C\|f\|_{p}
$$

Therefore,

$$
\left\|M_{\widetilde{\Omega} ; b, k} f\right\|_{p} \leq C\|f\|_{p}
$$

This completes the proof of Lemma 4.
Lemma 5. Let k be a positive integer and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right), \widetilde{\Omega}$ be homogeneous of degree zero and belong to $L^{\infty}\left(S^{n-1}\right)$. For $j \in \mathbb{Z}$, let $\sigma_{j}(x)=$
$|x|^{-n} \widetilde{\Omega}(x) \chi_{\left\{2^{j}<|x| \leq 2^{j+1}\right\}}(x)$. Denote by U_{j} the convolution operator whose kernel is σ_{j}, and $U_{j ; b, k}$ the k th order commutator of U_{j}. Then

$$
\begin{equation*}
\left\|\left(\sum_{j \in \mathbb{Z}}\left|U_{j ; b, k} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C_{k, p} \lambda_{\widetilde{\Omega}, k}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\left\|\left(\sum_{j \in \mathbb{Z}}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p} \tag{5}
\end{equation*}
$$

for any $1<p<\infty$.
Proof. By standard duality and interpolation argument, it suffices to consider the case $2<p<\infty$. Let

$$
\widetilde{U}_{j ; b, 2 k} f(x)=\int_{\mathbb{R}^{n}}|b(x)-b(y)|^{2 k}\left|\sigma_{j}(x-y)\right||f(y)| d y
$$

Note that

$$
\left|U_{j, b, k} f(x)\right|^{2} \leq C\|\widetilde{\Omega}\|_{1} \widetilde{U}_{j ; b, 2 k}\left(|f|^{2}\right)(x)
$$

It follows from (iii) of Lemma 3 that for $2<p<\infty$,

$$
\begin{aligned}
\left\|\left(\sum_{j \in \mathbb{Z}}\left|U_{j ; b, k} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}^{2}=\left.\sup _{\|h\|_{(p / 2)^{\prime} \leq 1}}\left|\int_{\mathbb{R}^{n}} \sum_{j \in \mathbb{Z}}\right| U_{j, b, k} f_{j}(x)\right|^{2} h(x) d x \mid \\
\leq C\|\widetilde{\Omega}\|_{1} \sup _{\|h\|_{(p / 2)^{\prime}} \leq 1} \int_{\mathbb{R}^{n}} \sum_{j \in \mathbb{Z}} \widetilde{U}_{j ; b, 2 k}\left(\left|f_{j}\right|^{2}\right)(x)|h(x)| d x \\
\leq\|\widetilde{\Omega}\|_{1} \sup _{\|h\|_{(p / 2)^{\prime}} \leq 1} \int_{\mathbb{R}^{n}} \sum_{j \in \mathbb{Z}}\left|f_{j}(x)\right|^{2} M_{\widetilde{\Omega} ; b, 2 k} h(x) d x \\
\leq C\|\widetilde{\Omega}\|_{1} \sup _{\|h\|_{(p / 2)^{\prime}} \leq 1}\left\|\left(\sum_{j \in \mathbb{Z}}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}^{2}\left\|M_{\widetilde{\Omega} ; b, 2 k} h\right\|_{(p / 2)^{\prime}} \\
\leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{2 k}\|\widetilde{\Omega}\|_{1} \lambda_{\widetilde{\Omega}, 2 k}\left\|\left(\sum_{j \in \mathbb{Z}}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}^{2} \\
\leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{2 k} \lambda_{\widetilde{\Omega}, k}^{2}\left\|\left(\sum_{j \in \mathbb{Z}}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}^{2}
\end{aligned}
$$

Proof of Theorem 1. Let $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be a radial function such that $0 \leq \phi \leq 1, \operatorname{supp} \phi \subset\{1 / 4 \leq|\xi| \leq 4\}$ and

$$
\sum_{l \in \mathbb{Z}} \phi^{3}\left(2^{-l} \xi\right)=1, \quad|\xi| \neq 0
$$

Define the multiplier operator S_{l} by

$$
\widehat{S_{l} f}(\xi)=\phi\left(2^{-l} \xi\right) \widehat{f}(\xi)
$$

Write

$$
K_{j}(x)=\frac{\Omega(x)}{|x|^{n}} \chi_{\left\{2^{j}<|x| \leq 2^{j+1}\right\}}(x)
$$

Set

$$
m_{j}(\xi)=\widehat{K}_{j}(\xi), \quad m_{j}^{l}(\xi)=m_{j}(\xi) \phi\left(2^{j-l} \xi\right)
$$

Define the operator T_{j}^{l} by

$$
\widehat{T_{j}^{l}} f(\xi)=m_{j}^{l}(\xi) \widehat{f}(\xi)
$$

Let

$$
V_{l} f(x)=\sum_{j \in \mathbb{Z}}\left(\left(S_{l-j} T_{j}^{l} S_{l-j}\right)_{b, k} f\right)(x)
$$

We know from $\left[7\right.$, p. 65] that for $f, h \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} h(x) T_{b, k} f(x) d x=\int_{\mathbb{R}^{n}} h(x) \sum_{l \in \mathbb{Z}} V_{l} f(x) d x
$$

Therefore,

$$
\left\|T_{b, k} f\right\|_{p} \leq \sum_{l \leq 0}\left\|V_{l} f\right\|_{p}+\sum_{l>0}\left\|V_{l} f\right\|_{p}
$$

We first consider the term $\sum_{l \leq 0}\left\|V_{l} f\right\|_{p}$. We claim that V_{l} satisfies the crude estimate

$$
\begin{equation*}
\left\|V_{l} f\right\|_{p} \leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}, \quad l \in \mathbb{Z}, 2<p<\infty \tag{6}
\end{equation*}
$$

In fact, let $E_{0}=\left\{x^{\prime} \in S^{n-1}:\left|\Omega\left(x^{\prime}\right)\right| \leq 2\right\}$ and $E_{d}=\left\{x^{\prime} \in S^{n-1}: 2^{d}<\right.$ $\left.\left|\Omega\left(x^{\prime}\right)\right| \leq 2^{d+1}\right\}$ for positive integer d. Denote by Ω_{d} the restriction of Ω to E_{d}, that is, $\Omega_{d}\left(x^{\prime}\right)=\Omega\left(x^{\prime}\right) \chi_{E_{d}}\left(x^{\prime}\right)$. Our hypothesis on Ω now shows that $\sum_{d \geq 1} d^{k+1}\left\|\Omega_{d}\right\|_{1}<\infty$. Let

$$
K_{j, d}(x)=\frac{\Omega_{d}(x)}{|x|^{n}} \chi_{\left\{2^{j}<|x| \leq 2^{j+1}\right\}}(x)
$$

and

$$
m_{j, d}(\xi)=\widehat{K}_{j, d}(\xi), \quad m_{j, d}^{l}(\xi)=m_{j, d}(\xi) \phi\left(2^{j-l} \xi\right)
$$

Define the operator $T_{j, d}^{l}$ by

$$
\widehat{T_{j, d}^{l}} f(\xi)=m_{j, d}^{l}(\xi) \widehat{f}(\xi)
$$

and the operator $V_{l, d}$ by

$$
V_{l, d} f(x)=\sum_{j \in \mathbb{Z}}\left(\left(S_{l-j} T_{j, d}^{l} S_{l-j}\right)_{b, k} f\right)(x)
$$

With the aid of the formula

$$
(b(x)-b(y))^{k}=\sum_{m=0}^{k} C_{k}^{m}(b(x)-b(z))^{m}(b(z)-b(y))^{k-m}, \quad x, y, z \in \mathbb{R}^{n}
$$

straightforward computation shows that for $f, h \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} h(x) V_{l, d} f(x) d x=\sum_{m=0}^{k} C_{k}^{m} \int_{\mathbb{R}^{n}} h(x) \sum_{j \in \mathbb{Z}} S_{l-j ; b, k-m}\left(\left(T_{j, d}^{l} S_{l-j}\right)_{b, m} f\right)(x) d x
$$

Lemma 1 now tells us that
$\left\|V_{l, d} f\right\|_{p} \leq C \sum_{m=0}^{k}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k-m}\left\|\left(\sum_{j \in \mathbb{Z}}\left|\left(T_{j, d}^{l} S_{l-j}\right)_{b, m} f\right|^{2}\right)^{1 / 2}\right\|_{p}, \quad 1<p<\infty$.
Set

$$
T_{j, d} h(x)=K_{j, d} * h(x)
$$

For each m with $0 \leq m \leq k$, write

$$
\left(T_{j, d}^{l} S_{l-j}\right)_{b, m} f(x)=\sum_{i=0}^{m} C_{m}^{i} T_{j, d ; b, i}\left(S_{l-j ; b, m-i}^{2} f\right)(x)
$$

By Lemmas 1 and 5, we have

$$
\begin{aligned}
& \left\|\left(\sum_{j \in \mathbb{Z}}\left|\left(T_{j, d}^{l} S_{l-j} f\right)_{b, m}\right|^{2}\right)^{1 / 2}\right\|_{p} \\
& \leq C \sum_{i=0}^{m} \lambda_{\Omega_{d}, i}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{i}\left\|\left(\sum_{j \in \mathbb{Z}}\left|S_{l-j ; b, m-i}^{2} f\right|^{2}\right)^{1 / 2}\right\|_{p} \\
& \leq C \lambda_{\Omega_{d}, m}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{m}\|f\|_{p}, \quad 1<p<\infty
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\left\|V_{l, d} f\right\|_{p} \leq C \lambda_{\Omega_{d}, k}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}, \quad 1<p<\infty \tag{7}
\end{equation*}
$$

This together with (ii) of Lemma 3 shows that

$$
\left\|V_{l} f\right\|_{p} \leq \sum_{d=0}^{\infty}\left\|V_{l, d} f\right\|_{p} \leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}, \quad 1<p<\infty
$$

and establishes our claim (6). Now our goal is to obtain a refined $L^{2}\left(\mathbb{R}^{n}\right)$ estimate for V_{l}, i.e., we want to show that there exists a positive constant $\nu=\nu_{n}>0$ such that

$$
\begin{equation*}
\left\|V_{l} f\right\|_{2} \leq C 2^{\nu l}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{2}, \quad l \leq 0 \tag{8}
\end{equation*}
$$

If we can do this, interpolating the inequalities (6) and (8) yields

$$
\begin{equation*}
\left\|V_{l} f\right\|_{p} \leq C 2^{\widetilde{l} l}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}, \quad l \leq 0,1<p<\infty \tag{9}
\end{equation*}
$$

where $\widetilde{\nu}=\widetilde{\nu}_{n, p}>0$. So,

$$
\sum_{l \leq 0}\left\|V_{l} f\right\|_{p} \leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}
$$

To prove (9), let \widetilde{T}_{j}^{l} be the operator defined by

$$
\widehat{\widetilde{T}_{j}^{l} f}(\xi)=m_{j}^{l}\left(2^{-j} \xi\right) \widehat{f}(\xi)
$$

By the vanishing moment and integrability of Ω, we have

$$
\left|\widehat{K}_{j}(\xi)\right| \leq C\left|2^{j} \xi\right|, \quad\left\|\nabla \widehat{K}_{j}\right\|_{\infty} \leq C 2^{j}
$$

Thus,

$$
\left\|m_{j}^{l}\left(2^{-j}\right)\right\|_{\infty} \leq C 2^{l}, \quad\left\|\nabla m_{j}^{l}\left(2^{-j}\right)\right\|_{\infty} \leq C
$$

This via Lemma 2 says that for any fixed $l \leq 0,0<\nu<1$ and positive integer i,

$$
\left\|\widetilde{T}_{j ; b, i}^{l} f\right\|_{2} \leq C 2^{\nu l}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{i}\|f\|_{2},
$$

which by dilation-invariance implies

$$
\begin{equation*}
\left\|T_{j ; b, i}^{l} f\right\|_{2} \leq C 2^{\nu l}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{i}\|f\|_{2} \tag{10}
\end{equation*}
$$

On the other hand, the Plancherel theorem tells us that

$$
\begin{equation*}
\left\|T_{j}^{l} f\right\|_{2} \leq C 2^{l}\|f\|_{2} \tag{11}
\end{equation*}
$$

Write

$$
\left(T_{j}^{l} S_{l-j} f\right)_{b, m} f(x)=\sum_{i=0}^{m} C_{m}^{i} T_{j ; b, i}^{l}\left(S_{l-j ; b, m-i} f\right)(x)
$$

It follows from (10), (11) and Lemma 1 that

$$
\begin{aligned}
\left\|\left(\sum_{j \in \mathbb{Z}}\left|\left(T_{j}^{l} S_{l-j} f\right)_{b, m}\right|^{2}\right)^{1 / 2}\right\|_{2}^{2} & \leq C 2^{2 \nu l} \sum_{i=0}^{m}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{2 i} \sum_{j \in \mathbb{Z}}\left\|S_{l-j ; b, m-i} f\right\|_{2}^{2} \\
& \leq C 2^{2 \nu l}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{2 m}\|f\|_{2}^{2}, \quad l \leq 0 .
\end{aligned}
$$

Therefore, by a familiar argument involving Lemma 1, we can obtain

$$
\begin{aligned}
\left\|V_{l} f\right\|_{2} & \leq C \sum_{m=0}^{k}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k-m}\left\|\left(\sum_{j \in \mathbb{Z}}\left|\left(T_{j}^{l} S_{l-j}\right)_{b, m} f\right|^{2}\right)^{1 / 2}\right\|_{2} \\
& \leq C 2^{\nu l}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{2}, \quad l \leq 0 .
\end{aligned}
$$

Now we turn our attention to the term $\sum_{l>0}\left\|V_{l} f\right\|_{p}$. By the well-known estimate of Duoandikoetxea and Rubio de Francia [6], we know that there exists a positive constant β such that

$$
\left|\widehat{K}_{j, d}(\xi)\right| \leq C\left\|\Omega_{d}\right\|_{\infty} \min \left\{1,\left|2^{j} \xi\right|^{-\beta}\right\}, \quad\left\|\nabla \widehat{K}_{j, d}\right\|_{\infty} \leq C 2^{j}\left\|\Omega_{d}\right\|_{1}
$$

This gives

$$
\left\|m_{j, d}^{l}\right\|_{\infty} \leq C 2^{-\beta l}\left\|\Omega_{d}\right\|_{\infty}, \quad\left\|\nabla m_{j, d}^{l}\right\|_{\infty} \leq 2^{j}\left\|\Omega_{d}\right\|_{\infty}
$$

Invoking Lemma 2 again, as in the proof of (10) and (11), we see that there exists some constant $0<\gamma<1$ such that for non-negative integer m,

$$
\left\|T_{j, d ; b, m}^{l}\right\|_{2} \leq C\left\|\Omega_{d}\right\|_{\infty} 2^{-\gamma l}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{m}\|f\|_{2}
$$

Similarly to (8), we can obtain

$$
\begin{align*}
\left\|V_{l, d} f\right\|_{2} & \leq C \sum_{m=0}^{k}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k-m}\left\|\left(\sum_{j \in \mathbb{Z}}\left|\left(T_{j, d}^{l} S_{l-j} f\right)_{b, m}\right|^{2}\right)^{1 / 2}\right\|_{2} \tag{12}\\
& \leq C\left\|\Omega_{d}\right\|_{\infty} 2^{-\gamma l}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{2}
\end{align*}
$$

Interpolating (7) and (12) shows that for $\widetilde{\gamma}=\widetilde{\gamma}_{n, p}>0$,

$$
\begin{equation*}
\left\|V_{l, d} f\right\|_{p} \leq C\left\|\Omega_{d}\right\|_{\infty} 2^{-\widetilde{\gamma} l}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}, \quad 1<p<\infty \tag{13}
\end{equation*}
$$

Let N be a large positive integer such that $N>2 \widetilde{\gamma}^{-1}$. Combining (7) and (13) gives

$$
\begin{aligned}
\sum_{l>0}\left\|V_{l} f\right\|_{p} \leq & \sum_{l>0}\left\|V_{l, 0} f\right\|_{p}+\sum_{d>0} \sum_{0<l \leq N d}\left\|V_{l, d} f\right\|_{p}+\sum_{d>0} \sum_{l>N d}\left\|V_{l, d} f\right\|_{p} \\
\leq & C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k} \sum_{l>0} 2^{-\mu l}\|f\|_{p}+C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k} \sum_{d>0} d \lambda_{\Omega_{d}, k}\|f\|_{p} \\
& +C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k} \sum_{d>0} 2^{d} \sum_{l>N d} 2^{-\mu l}\|f\|_{p} \\
\leq & C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}+C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k} \sum_{d>0} d \lambda_{\Omega_{d}, k}\|f\|_{p} \\
\leq & C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}
\end{aligned}
$$

This completes the proof of Theorem 1.
Proof of Theorem 2. We shall carry out the argument by induction on the order k. If $k=0$, Theorem 2 is the remarkable result of Calderón and Zygmund [3]. Now let k be a positive integer, and assume that the assertion is true for all integers m with $0 \leq m \leq k-1$. Let $K_{j}, K_{j, d}, \Omega_{d}$ and the operator $T_{j, d}$ be the same as in the proof of Theorem 1. Define

$$
T_{j ; b, m} f(x)=\int_{2^{j}<|x-y| \leq 2^{j+1}}(b(x)-b(y))^{m} \frac{\Omega(x-y)}{|x-y|^{n}} f(y) d y
$$

Write

$$
\begin{aligned}
M_{\Omega ; b, k} f(x) & =\sup _{r>0} r^{-n} \int_{|x-y|<r}|b(x)-b(y)|^{k}|\Omega(x-y)||f(y)| d y \\
& \leq \sum_{d=0}^{\infty} M_{\Omega_{d} ; b, k} f(x)
\end{aligned}
$$

Lemma 4 now tells us that for all $1<p<\infty$,

$$
\left\|M_{\Omega ; b, k} f\right\|_{p} \leq\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k} \sum_{d=0}^{\infty} \lambda_{\Omega_{d}, k}\|f\|_{p} \leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}
$$

Thus, it suffices to consider the $L^{p}\left(\mathbb{R}^{n}\right)$ norm of $\sup _{l \in \mathbb{Z}}\left|\sum_{j=l}^{\infty} T_{j ; b, k} f(x)\right|$. Take $\eta \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ such that $\eta(x) \equiv 1$ when $|x| \leq 1$. Let $\Phi_{l} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ be such that $\widehat{\Phi}_{l}(\xi)=\eta\left(2^{l} \xi\right)$. Denote by G_{l} the convolution operator whose kernel is Φ_{l} and G_{l}^{j} the convolution operator whose kernel is $K_{j}-\Phi_{l} * K_{j}$. Write

$$
\begin{aligned}
\sum_{j=l}^{\infty} T_{j ; b, k} f(x) & =\Phi_{l} *\left(T_{b, k} f-\sum_{j=-\infty}^{l-1} T_{j ; b, k} f\right)(x) \\
& +\left(\sum_{j=l}^{\infty} T_{j ; b, k} f(x)-\Phi_{l} *\left(\sum_{j=l}^{\infty} T_{j ; b, k} f\right)(x)\right) \\
& =\mathrm{I}_{l}(f)(x)+\mathrm{I}_{l}(f)(x)
\end{aligned}
$$

Define the operator

$$
M_{b, k} h(x)=\sup _{r>0} r^{-n} \int_{|x-y|<r}|b(x)-b(y)|^{k}|h(y)| d y
$$

Observe that

$$
\left|\Phi_{l} * \sum_{j=\infty}^{l-1} K_{l}(x)\right| \leq C 2^{-n l} /\left(1+\left|2^{-l} x\right|\right)^{n+1}
$$

(see [6]) and

$$
\begin{aligned}
\Phi_{l} * & \left(\sum_{j=-\infty}^{l-1} T_{j ; b, k} f\right)(x) \\
& =\left(\Phi_{l} * \sum_{j=-\infty}^{l-1} K_{j}\right)_{b, k} f(x)-\sum_{m=0}^{k-1} C_{k}^{m} G_{l ; b, k-m}\left(\sum_{j=-\infty}^{l-1} T_{j ; b, m} f\right)(x)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sup _{l \in \mathbb{Z}}\left|\mathrm{I}_{l}(f)(x)\right| \leq & \sum_{m=0}^{k-1}\left(M_{b, k-m}\left(T_{b, m} f\right)(x)+M_{b, k-m}\left(T_{b, m}^{*} f\right)(x)\right) \\
& +C M_{b, k} f(x)+C M\left(T_{b, k} f\right)(x)
\end{aligned}
$$

This shows that $\sup _{l \in \mathbb{Z}}\left|\mathrm{I}_{l}(f)(x)\right|$ is pointwise bounded by a function whose $L^{p}\left(\mathbb{R}^{n}\right)$ norm is no more than $C_{n, p}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$ for all $1<p<\infty$. To estimate
$\sup _{l \in \mathbb{Z}}\left|\Psi_{l}(f)(x)\right|$, write

$$
\begin{aligned}
\mathrm{I}_{l} f(x)= & \sum_{j=l}^{\infty} T_{j ; b, k} f(x)-\left(\Phi_{l} * \sum_{j=l}^{\infty} T_{j}\right)_{b, k} f(x) \\
& -\sum_{m=0}^{k-1} C_{k}^{m} G_{l ; b, k-m}\left(\sum_{j=l}^{\infty} T_{j ; b, m} f\right)(x) \\
= & \sum_{j=l}^{\infty} G_{l ; b, k}^{j} f(x)-\sum_{m=0}^{k-1} C_{k}^{m} G_{l ; b, k-m}\left(\sum_{j=l}^{\infty} T_{j ; b, m} f\right)(x)
\end{aligned}
$$

For each $0 \leq m \leq k-1$, it is easy to see that

$$
\sup _{l \in \mathbb{Z}}\left|G_{l ; b, k-m}\left(\sum_{j=l}^{\infty} T_{j ; b, m} f\right)(x)\right| \leq C M_{b, k-m}\left(T_{b, m}^{*} f\right)(x) .
$$

Thus, the proof of Theorem 2 can be reduced to estimating the $L^{p}\left(\mathbb{R}^{n}\right)$ norm for the term $\sup _{l \in \mathbb{Z}}\left|\sum_{j=l}^{\infty} G_{l ; b, k}^{j} f(x)\right|$. Denote by $G_{l}^{j, d}$ the convolution operator whose kernel is $K_{j, d}-\Phi_{l} * K_{j, d}$. Let N_{1} be a positive integer which will be chosen later. Write

$$
\begin{aligned}
& \sup _{l \in \mathbb{Z}}\left|\sum_{j=l}^{\infty} G_{l ; b, k}^{j} f(x)\right| \leq \sum_{j=0}^{\infty} \sup _{l \in \mathbb{Z}}\left|G_{l-j ; b, k}^{l} f(x)\right| \\
& \quad \leq \sum_{d>0} \sum_{0<j \leq N_{1} d} \sup _{l \in \mathbb{Z}}\left|G_{l-j ; b, k}^{l, d} f(x)\right|+\sum_{j=0}^{\infty} \sup _{l \in \mathbb{Z}}\left|G_{l-j ; b, k}^{l, 0} f(x)\right| \\
& \quad \quad+\sum_{d>0} \sum_{j>N_{1} d} \sup _{l \in \mathbb{Z}}\left|G_{l-j ; b, k}^{l, d} f(x)\right| .
\end{aligned}
$$

Employing Lemma 4, we have

$$
\begin{aligned}
\sum_{d>0} \sum_{0<j \leq N_{1} d} \| \sup _{l \in \mathbb{Z}}\left|G_{l-j ; b, k}^{l, d} f\right| & \|_{p} \\
\leq & C \sum_{d>0} \sum_{0<j \leq N_{1} d}\left\|M_{\Omega_{d} ; b, k} f\right\|_{p} \\
& +\sum_{m=0}^{k} \sum_{d>0} \sum_{0<j \leq N_{1} d}\left\|M_{b, m}\left(M_{\Omega_{d} ; b, k-m} f\right)\right\|_{p} \\
\leq & C \sum_{d>0} d \lambda_{\Omega_{d}, k}\|f\|_{p} \leq C\|f\|_{p}
\end{aligned}
$$

Now trivial computation gives

$$
\left|\widehat{K}_{l, d}(\xi)-\Phi_{l-j *}^{*} K_{l, d}(\xi)\right| \leq C\left\|\Omega_{d}\right\|_{\infty} \min \left\{2^{-j}\left|2^{l} \xi\right|,\left|2^{l} \xi\right|^{-\mu}\right\},
$$

with $\mu=\mu_{n}>0$. This via the Plancherel theorem shows that for some $\widetilde{\mu}>0$,

$$
\begin{equation*}
\left\|\sup _{l \in \mathbb{Z}}\left|G_{l-j}^{l, d} h\right|\right\|_{2} \leq\left\|\left(\sum_{l \in \mathbb{Z}}\left|G_{l-j}^{l, d} h\right|^{2}\right)^{1 / 2}\right\|_{2} \leq C 2^{-\widetilde{\mu} j}\left\|\Omega_{d}\right\|_{\infty}\|h\|_{2} \tag{14}
\end{equation*}
$$

On the other hand, it is easy to see that for each fixed $1<p<\infty$ and $w \in A_{p}$,

$$
\begin{equation*}
\left\|\sup _{l \in \mathbb{Z}}\left|G_{l-j}^{l, d} h\right|\right\|_{p, w} \leq C\left\|\Omega_{d}\right\|_{\infty}\|h\|_{p, w} \tag{15}
\end{equation*}
$$

and the constant C depending only on n, p and the A_{p} constant of w. Interpolating the inequalities (14) and (15) with change of measures implies that for each $1<p<\infty$ and $w \in A_{p}$,

$$
\begin{equation*}
\left\|\sup _{l \in \mathbb{Z}}\left|G_{l-j}^{l, d} h\right|\right\|_{p, w} \leq C 2^{-\delta j}\left\|\Omega_{d}\right\|_{\infty}\|h\|_{p, w} \tag{15}
\end{equation*}
$$

Since the mapping $f \mapsto\left\{G_{l-j}^{l, d} f\right\}_{l \in \mathbb{Z}}$ is linear, applying Theorem 2.13 of [2], we can obtain

$$
\left\|\sup _{l \in \mathbb{Z}}\left|G_{l-j, b, k}^{l, d} h\right|\right\|_{p} \leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k} 2^{-\delta j}\left\|\Omega_{d}\right\|_{\infty}\|h\|_{p}
$$

Let $N_{1}>2 \delta^{-1}$. We conclude the proof of Theorem 2 by noting that

$$
\sum_{j=0}^{\infty}\left\|\sup _{l \in \mathbb{Z}}\left|G_{l-j ; b, k}^{l, 0} f\right|\right\|_{p} \leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k} \sum_{j=0}^{\infty} 2^{-\delta j}\|f\|_{p} \leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}
$$

and

$$
\begin{aligned}
\sum_{d>0} \sum_{j>N_{1} d} \sup _{l \in \mathbb{Z}}\left\|\left|G_{l-j ; b, k}^{l, d} f\right|\right\|_{p} & \leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k} \sum_{d>0} 2^{d} \sum_{j>N_{1} d}^{\infty} 2^{-\delta j}\|f\|_{p} \\
& \leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}
\end{aligned}
$$

Acknowledgements. The author would like to thank the referee for some valuable suggestions and corrections.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] J. Alvarez, R. Bagby, D. Kurtz and C. Pérez, Weighted estimates for commutators of linear operators, Studia Math. 104 (1993), 195-209.
[3] A. P. Calderón and A. Zygmund, On singular integral operators, Amer. J. Math. 18 (1956), 289-309.
[4] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-636.
[5] J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. 336 (1990), 869-880.
[6] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integrals via Fourier transform estimates, Invent. Math. 84 (1986), 541-561.
[7] G. $\mathrm{Hu}, L^{2}\left(\mathbb{R}^{n}\right)$ boundedness for the commutators of convolution operators, Nagoya Math. J. 163 (2001), 55-70.
[8] B. Ma and G. Hu, Maximal operators associated with the commutators of spherical means, Tohoku Math. J. 50 (1998), 349-363.
[9] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
[10] D. K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), 389-399.

Department of Applied Mathematics
University of Information Engineering
P.O. Box 1001-747, Zhengzhou 450002
People's Republic of China
E-mail: huguoen@371.net

Received May 30, 2001
Revised version May 20, 2002

[^0]: 2000 Mathematics Subject Classification: 42B20, 42B25.
 Key words and phrases: commutator, singular integral operator, $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$, Fourier transform estimate.

 The research was supported by the NSF of Henan Province.

