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Lp(Rn) boundedness for the commutator of a
homogeneous singular integral operator

by

Guoen Hu (Zhengzhou)

Abstract. The commutator of a singular integral operator with homogeneous kernel
Ω(x)/|x|n is studied, where Ω is homogeneous of degree zero and has mean value zero on
the unit sphere. It is proved that Ω ∈ L(logL)k+1(Sn−1) is a sufficient condition for the
kth order commutator to be bounded on Lp(Rn) for all 1 < p < ∞. The corresponding
maximal operator is also considered.

1. Introduction. We will work on Rn, n ≥ 2. Let Ω be a homogeneous
function of degree zero with mean value zero on the unit sphere Sn−1. Define
the homogeneous singular integral operator T by

Tf(x) = p.v.
�

Rn

Ω(x− y)
|x− y|n f(y) dy.

For a positive integer k and b ∈ BMO(Rn), define the kth order commutator
of the operator T and b by

(1) Tb,kf(x) =
�

Rn
(b(x)− b(y))k

Ω(x− y)
|x− y|n f(y) dy, f ∈ C∞0 (Rn).

Coifman, Rochberg and Weiss [4] showed that if Ω∈Lipα(Sn−1) (0<α≤1),
then Tb,1 is bounded on Lp(Rn) with bound C(n, p)‖b‖BMO(Rn) for 1 <
p < ∞. By a well-known result of Duoandikoetxea [5] and Watson [10], if
Ω ∈ Lq(Sn−1) for some q > 1, then for p > q′ (q′ = q/(q−1)) and w ∈ Ap/q′ ,
the operator T is bounded on Lp(Rn, w(x) dx) with bound depending only
on n, p and the Ap/q′ constant of w, where Ar is the weight function class
of Muckenhoupt (see [9, Chapter V] for the definition and properties of Ar).
This together with the Alvarez–Bagby–Kurtz–Pérez boundedness theorem
for the commutators of linear operators (see [2, Theorem 2.13]) tells us
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that if Ω ∈ Lq(Sn−1) for some q > 1, then Tb,k is a bounded operator on
Lp(Rn) for q′ < p < ∞, and then by standard duality and interpolation
argument, it is bounded on Lp(Rn) for all 1 < p < ∞. On the other hand,
if Ω 6∈ ⋃q>1 L

q(Sn−1), then for any fixed 1 < p, q < ∞, we do not know
whether the operator T is bounded on Lp(Rn, w(x) dx) for all w ∈ Aq, and
the Alvarez–Bagby–Kurtz–Pérez theorem does not apply. In this case, the
Lp(Rn) boundedness for Tb,k is not known. In [7], we have proved that if Ω
satisfies the size condition

sup
ζ∈Sn−1

�

Sn−1

|Ω(θ)| logα
(

1
|θ · ζ|

)
dθ <∞

for some α > k + 1, then the commutator Tb,k is bounded on L2(Rn). The
purpose of this paper is to give a size condition on Ω which is strictly weaker
than Ω ∈ ⋃q>1 L

q(Sn−1) and implies the Lp(Rn) boundedness of Tb,k for
all 1 < p <∞. Furthermore, we will also consider the Lp(Rn) boundedness
for the corresponding maximal operator defined by

(2) T ∗b,kf(x) = sup
ε>0

∣∣∣∣
�

|x−y|>ε
(b(x)− b(y))k

Ω(x− y)
|x− y|n f(y) dy

∣∣∣∣.

Our main results can be stated as follows.

Theorem 1. Let Ω be homogeneous of degree zero and have mean value
zero on the unit sphere, k be a positive integer and b ∈ BMO(Rn). If Ω ∈
L(logL)k+1(Sn−1), that is,

�

Sn−1

|Ω(x′)| logk+1(2 + |Ω(x′)|) dx′ <∞,

then for all 1 < p < ∞, the commutator Tb,k defined by (1) is bounded on
Lp(Rn) with bound C‖b‖kBMO(Rn).

Theorem 2. Let Ω be homogeneous of degree zero and have mean value
zero on the unit sphere, k be a positive integer and b ∈ BMO(Rn). If Ω ∈
L(logL)k+1(Sn−1), then for all 1 < p <∞, the operator T ∗b,k defined by (2)
is bounded on Lp(Rn) with bound C‖b‖kBMO(Rn).

Some Young functions will be useful in the proof of our theorems. For
positive integer k, let

ak(τ) = logk(1 + τ), ãk(τ) = eτ
1/k − 1.

Define the functions Φk and Ψk by

Φk(t) =
t�

0

ak(τ) dτ, Ψk(t) =
t�

0

ãk(τ) dτ.
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Then Φk and Ψk are Young functions and Ψk is the complementary Young
function of Φk. Therefore, for any 0 < t1, t2 <∞,

t1t2 ≤ Φk(t1) + Ψk(t2)

(see [1, Chap. 8] for details). By a straightforward computation, it follows
that

Φk(t) ≤ t logk(2 + t), Ψk(t) ≤ tet1/k ≤ kke2t1/k .

Thus, for 0 < t1, t2 <∞,

(3) t1t
k
2 ≤ 2k(Φk(t1) + Ψk((t2/2)k)) ≤ Ck(t1 logk(2 + t1) + et2).

Throughout this paper, C denotes constants that are independent of the
main parameters involved but whose values may differ from line to line. For
p ≥ 1, p′ denotes the dual exponent of p, that is, p′ = p/(p − 1). For a
measurable set E, χE denotes the characteristic function of E.

2. Proof of Theorem 1. We begin with some preliminary lemmas.

Lemma 1. Let φ ∈ C∞0 (Rn) be a radial function such that suppφ ⊂
{1/4 ≤ |ξ| ≤ 4} and ∑

l∈Z
φ3(2−lξ) = 1, |ξ| 6= 0.

Define the multiplier operator Sl by

Ŝlf(ξ) = φ(2−lξ)f̂(ξ),

and S2
l by S2

l f(x) = Sl(Slf)(x). For b ∈ BMO(Rn) and positive integer k,
denote by Sl;b,k (resp. S2

l;b,k) the kth order commutator of Sl (resp. S2
l ).

Then for 1 < p <∞,

(i)
∥∥∥
(∑

l∈Z
|Sl;b,kf |2

)1/2∥∥∥
p
≤ C(n, k, p)‖b‖kBMO(Rn)‖f‖p;

(ii)
∥∥∥
(∑

l∈Z
|S2
l;b,kf |2

)1/2∥∥∥
p
≤ C(n, k, p)‖b‖kBMO(Rn)‖f‖p;

(iii)
∥∥∥
∑

l∈Z
Sl;b,kfl

∥∥∥
p
≤ C(n, k, p)‖b‖kBMO(Rn)

∥∥∥
(∑

l∈Z
|fl|2

)1/2∥∥∥
p
.

Proof. Obviously, (iii) can be deduced from (i) directly. By the weighted
Littlewood–Paley theory, we see that for any 1 < p <∞ and w ∈ Ap,

∥∥∥
(∑

l∈Z
|Slf |2

)1/2∥∥∥
p,w

+
∥∥∥
(∑

l∈Z
|S2
l f |2

)1/2∥∥∥
p,w
≤ C‖f‖p,w.

Note that the mappings

f 7→ {Slf}l∈Z, f 7→ {S2
l f}l∈Z
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are linear; then (i) and (ii) follow from the last inequality and Theorem 2.13
of [2].

Lemma 2. Let mδ ∈ C∞0 (Rn) (0 < δ < ∞) be a family of multipliers
such that suppmδ ⊂ {δ/4 ≤ |ξ| ≤ 4δ}. Suppose that for some positive
constant α,

‖mδ‖∞ ≤ C min{δ, δ−α}, ‖∇mδ‖∞ ≤ C.
Let Tδ be the multiplier operator defined by

T̂δf(ξ) = mδ(ξ)f̂(ξ).

For b ∈ BMO(Rn) and positive integer k, denote by Tδ;b,k the kth order
commutator of Tδ. Then for any fixed 0 < ν < 1, there exists a positive
constant C = C(n, k, ν) such that

‖Tδ;b,kf‖2 ≤ C min{δν , δ−αν}‖b‖kBMO(Rn)‖f‖2.
For the case of δ ≤ 1, Lemma 2 can be obtained from Lemma 2 of [7].

On the other hand, if δ > 1, Lemma 2 was essentially proved in the proof
of Lemma 2.3 of [8].

Lemma 3. Let Ω̃ be homogeneous of degree zero and belong to the space
L∞(Sn−1). For s ≥ 1, define λΩ̃,s by

λΩ̃,s = inf
{
λ > 0 :

‖Ω̃‖1
λ

logs
(

2 +
‖Ω̃‖∞
λ

)
≤ 1
}
.

Then

(i) there exists a positive constant C = Cn,s such that C−1‖Ω̃‖1 ≤
λΩ̃,s ≤ C‖Ω̃‖∞;

(ii) λΩ̃,s ≤ Cs((2 + ‖Ω̃‖∞)−1 + ‖Ω̃‖1 logs(2 + ‖Ω̃‖∞));

(iii) for any 1 ≤ s, t <∞, λ1/t
Ω̃,st
‖Ω̃‖1/t

′

1 ≤ λΩ̃,s.
Proof. Obviously, (i) follows directly from the fact that

‖Ω̃‖1
‖Ω̃‖∞

logs
(

2 +
‖Ω̃‖∞
‖Ω̃‖∞

)
≤ C|Sn−1|

and
‖Ω̃‖1
‖Ω̃‖1

logs
(

2 +
‖Ω̃‖∞
‖Ω̃‖1

)
≥ logs(2 + |Sn−1|−1).

As for (ii), note that

‖Ω̃‖1
2s‖Ω̃‖1 logs(2 + ‖Ω̃‖∞)

logs
(

2 +
‖Ω̃‖∞

(2 + ‖Ω̃‖∞)−1

)

≤ ‖Ω̃‖1
2s‖Ω̃‖1 logs(2 + ‖Ω̃‖∞)

logs((2 + ‖Ω̃‖∞)2) ≤ 1.
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It follows that

λΩ̃,s ≤ 2s((2 + ‖Ω̃‖∞)−1 + ‖Ω̃‖1 logs(2 + ‖Ω̃‖∞)).

To prove (iii), by homogeneity, we may assume that λΩ̃,s = 1. Then

‖Ω̃‖1 logs(2 + ‖Ω̃‖∞) ≤ 1

and so ‖Ω̃‖1 ≤ 1. A trivial computation gives

‖Ω̃‖1
‖Ω̃‖−t/t′1

logst
(

2 +
‖Ω̃‖∞
‖Ω̃‖−t/t′1

)
≤ ‖Ω̃‖1+t/t′

1 logst(2 + ‖Ω̃‖∞)

= (‖Ω̃‖1 logs(2 + ‖Ω̃‖∞))t ≤ 1.

This in turn implies λΩ̃,st ≤ ‖Ω̃‖
−t/t′
1 , and establishes the desired result.

Lemma 4. Let Ω̃ be homogeneous of degree zero, k be a positive integer
and b ∈ BMO(Rn). Define the operator MΩ̃;b,k by

MΩ̃;b,kf(x) = sup
r>0

r−n
�

|x−y|<r
|b(x)− b(y)|k|Ω̃(x− y)f(y)| dy.

If Ω̃ ∈ L∞(Sn−1), then the operator MΩ̃;b,k is bounded on Lp(Rn) with
bound CλΩ̃,k‖b‖kBMO(Rn) for all 1 < p <∞.

Proof. We will employ an observation of Coifman, Rochberg and Weiss
(see [4, pp. 620–621]) which shows that certain weighted Lp(Rn) estimates
for linear operators imply the Lp(Rn) estimates for the corresponding com-
mutators. For each fixed 1 < p <∞, we claim that there exist two positive
constants C1 and C2 depending only on n and p such that for real-valued
b ∈ BMO(Rn) with ‖b‖BMO(Rn) = C1, the operator

(4) H(b, f)(x) = sup
r>0

r−n
�

|x−y|<r
eb(x)−b(y)|f(y)| dy

is bounded on Lp(Rn) with bound C2. In fact, by the well-known John–
Nirenberg inequality, we know that there exist positive constants A and B
such that for any cube Q,

1
|Q|

�

Q

exp
( |b(x)− bQ|
A‖b‖BMO(Rn)

)
dx ≤ B,

where bQ is the mean value of b on the cube Q. Let C1 = (Amax{p, p′})−1.
Straightforward computation shows that for real-valued b ∈ BMO(Rn) with
‖b‖BMO(Rn) = C1,

1
|Q|

�

Q

ep(b(x)−bQ) dx ≤ B, 1
|Q|

�

Q

e−p
′(b(x)−bQ) dx ≤ B,
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and so epb(x) ∈ Ap with the Ap constant no more that C2 = Bp (see also
[9, Chap. V]). Therefore, by the weighted Lp(Rn) estimates with Ap weights
for the Hardy–Littlewood maximal operator,

‖H(b, f)‖pp =
�

Rn

(
sup
r>0

r−n
�

|x−y|<r
e−b(y)|f(y)| dy

)p
epb(x) dx

≤ C(n, p, C2)‖f‖pp.
Now we can prove Lemma 4. Without loss of generality, we may assume

that λΩ̃,k = 1. It is obvious that

‖Ω̃‖1 logk(2 + ‖Ω̃‖∞) ≤ 1.

Let Φ̃k(t) = t logk(2 + t) for t > 0. Then

‖Φ̃k(|Ω̃|)‖1 ≤ 1.

We may also assume that b is real-valued and ‖b‖BMO(Rn) = C1. By the
inequality (3), we have

MΩ̃;b,kf(x) ≤ sup
r>0

r−n
�

|x−y|<r
Φ̃k(|Ω̃(x− y)|)|f(y)| dy

+ C sup
r>0

r−n
�

|x−y|<r
e|b(x)−b(y)||f(y)| dy

≤ sup
r>0

r−n
�

|x−y|<r
Φ̃k(|Ω̃(x− y)|)|f(y)| dy

+ C sup
r>0

r−n
�

|x−y|<r
eb(x)−b(y)|f(y)| dy

+ C sup
r>0

r−n
�

|x−y|<r
eb(y)−b(x)|f(y)| dy

= I(f)(x) + II(f)(x) + III(f)(x).

Our claim says that

‖II(f)‖p ≤ C‖f‖p, ‖III(f)‖p ≤ C‖f‖p.
On the other hand, the method of rotation of Calderón and Zygmund [3]
states that

‖I(f)‖p ≤ C‖Φ̃k(|Ω̃|)‖1‖f‖p ≤ C‖f‖p.
Therefore,

‖MΩ̃;b,kf‖p ≤ C‖f‖p.
This completes the proof of Lemma 4.

Lemma 5. Let k be a positive integer and b ∈ BMO(Rn), Ω̃ be homo-
geneous of degree zero and belong to L∞(Sn−1). For j ∈ Z, let σj(x) =
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|x|−nΩ̃(x)χ{2j<|x|≤2j+1}(x). Denote by Uj the convolution operator whose
kernel is σj , and Uj;b,k the kth order commutator of Uj. Then

(5)
∥∥∥
(∑

j∈Z
|Uj;b,kfj |2

)1/2∥∥∥
p
≤ Ck,pλΩ̃,k‖b‖kBMO(Rn)

∥∥∥
(∑

j∈Z
|fj |2

)1/2∥∥∥
p

for any 1 < p <∞.

Proof. By standard duality and interpolation argument, it suffices to
consider the case 2 < p <∞. Let

Ũj;b,2kf(x) =
�

Rn
|b(x)− b(y)|2k|σj(x− y)| |f(y)| dy.

Note that
|Uj,b,kf(x)|2 ≤ C‖Ω̃‖1Ũj;b,2k(|f |2)(x).

It follows from (iii) of Lemma 3 that for 2 < p <∞,
∥∥∥
(∑

j∈Z
|Uj;b,kfj |2

)1/2∥∥∥
2

p
= sup
‖h‖(p/2)′≤1

∣∣∣
�

Rn

∑

j∈Z
|Uj,b,kfj(x)|2h(x) dx

∣∣∣

≤ C‖Ω̃‖1 sup
‖h‖(p/2)′≤1

�

Rn

∑

j∈Z
Ũj;b,2k(|fj |2)(x)|h(x)| dx

≤ ‖Ω̃‖1 sup
‖h‖(p/2)′≤1

�

Rn

∑

j∈Z
|fj(x)|2MΩ̃;b,2kh(x) dx

≤ C‖Ω̃‖1 sup
‖h‖(p/2)′≤1

∥∥∥
(∑

j∈Z
|fj |2

)1/2∥∥∥
2

p
‖MΩ̃;b,2kh‖(p/2)′

≤ C‖b‖2kBMO(Rn)‖Ω̃‖1λΩ̃,2k
∥∥∥
(∑

j∈Z
|fj |2

)1/2∥∥∥
2

p
.

≤ C‖b‖2kBMO(Rn)λ
2
Ω̃,k

∥∥∥
(∑

j∈Z
|fj |2

)1/2∥∥∥
2

p
.

Proof of Theorem 1. Let φ ∈ C∞0 (Rn) be a radial function such that
0 ≤ φ ≤ 1, suppφ ⊂ {1/4 ≤ |ξ| ≤ 4} and

∑

l∈Z
φ3(2−lξ) = 1, |ξ| 6= 0.

Define the multiplier operator Sl by

Ŝlf(ξ) = φ(2−lξ)f̂(ξ).

Write

Kj(x) =
Ω(x)
|x|n χ{2j<|x|≤2j+1}(x).
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Set
mj(ξ) = K̂j(ξ), ml

j(ξ) = mj(ξ)φ(2j−lξ).

Define the operator T lj by

T̂ ljf(ξ) = ml
j(ξ)f̂(ξ).

Let
Vlf(x) =

∑

j∈Z
((Sl−jT ljSl−j)b,kf)(x).

We know from [7, p. 65] that for f, h ∈ C∞0 (Rn),
�

Rn
h(x)Tb,kf(x) dx =

�

Rn
h(x)

∑

l∈Z
Vlf(x) dx.

Therefore,

‖Tb,kf‖p ≤
∑

l≤0

‖Vlf‖p +
∑

l>0

‖Vlf‖p.

We first consider the term
∑
l≤0 ‖Vlf‖p. We claim that Vl satisfies the

crude estimate

(6) ‖Vlf‖p ≤ C‖b‖kBMO(Rn)‖f‖p, l ∈ Z, 2 < p <∞.

In fact, let E0 = {x′ ∈ Sn−1 : |Ω(x′)| ≤ 2} and Ed = {x′ ∈ Sn−1 : 2d <
|Ω(x′)| ≤ 2d+1} for positive integer d. Denote by Ωd the restriction of Ω to
Ed, that is, Ωd(x′) = Ω(x′)χEd(x′). Our hypothesis on Ω now shows that∑
d≥1 d

k+1‖Ωd‖1 <∞. Let

Kj,d(x) =
Ωd(x)
|x|n χ{2j<|x|≤2j+1}(x)

and
mj,d(ξ) = K̂j,d(ξ), ml

j,d(ξ) = mj,d(ξ)φ(2j−lξ).

Define the operator T lj,d by

T̂ lj,df(ξ) = ml
j,d(ξ)f̂(ξ),

and the operator Vl,d by

Vl,df(x) =
∑

j∈Z
((Sl−jT lj,dSl−j)b,kf)(x).

With the aid of the formula

(b(x)− b(y))k =
k∑

m=0

Cmk (b(x)− b(z))m(b(z)− b(y))k−m, x, y, z ∈ Rn,
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straightforward computation shows that for f, h ∈ C∞0 (Rn),

�

Rn
h(x)Vl,df(x) dx =

k∑

m=0

Cmk
�

Rn
h(x)

∑

j∈Z
Sl−j;b,k−m((T lj,dSl−j)b,mf)(x) dx.

Lemma 1 now tells us that

‖Vl,df‖p ≤ C
k∑

m=0

‖b‖k−mBMO(Rn)

∥∥∥
(∑

j∈Z
|(T lj,dSl−j)b,mf |2

)1/2∥∥∥
p
, 1 < p <∞.

Set
Tj,dh(x) = Kj,d ∗ h(x).

For each m with 0 ≤ m ≤ k, write

(T lj,dSl−j)b,mf(x) =
m∑

i=0

CimTj,d;b,i(S2
l−j;b,m−if)(x).

By Lemmas 1 and 5, we have
∥∥∥
(∑

j∈Z
|(T lj,dSl−jf)b,m|2

)1/2∥∥∥
p

≤ C
m∑

i=0

λΩd,i‖b‖iBMO(Rn)

∥∥∥
(∑

j∈Z
|S2
l−j;b,m−if |2

)1/2∥∥∥
p

≤ CλΩd,m‖b‖mBMO(Rn)‖f‖p, 1 < p <∞.
Consequently,

(7) ‖Vl,df‖p ≤ CλΩd,k‖b‖kBMO(Rn)‖f‖p, 1 < p <∞.
This together with (ii) of Lemma 3 shows that

‖Vlf‖p ≤
∞∑

d=0

‖Vl,df‖p ≤ C‖b‖kBMO(Rn)‖f‖p, 1 < p <∞,

and establishes our claim (6). Now our goal is to obtain a refined L2(Rn)
estimate for Vl, i.e., we want to show that there exists a positive constant
ν = νn > 0 such that

(8) ‖Vlf‖2 ≤ C2νl‖b‖kBMO(Rn)‖f‖2, l ≤ 0.

If we can do this, interpolating the inequalities (6) and (8) yields

(9) ‖Vlf‖p ≤ C2ν̃l‖b‖kBMO(Rn)‖f‖p, l ≤ 0, 1 < p <∞,
where ν̃ = ν̃n,p > 0. So,

∑

l≤0

‖Vlf‖p ≤ C‖b‖kBMO(Rn)‖f‖p.
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To prove (9), let T̃ lj be the operator defined by

̂̃
T ljf(ξ) = ml

j(2
−jξ)f̂(ξ).

By the vanishing moment and integrability of Ω, we have

|K̂j(ξ)| ≤ C|2jξ|, ‖∇K̂j‖∞ ≤ C2j .

Thus,
‖ml

j(2
−j·)‖∞ ≤ C2l, ‖∇ml

j(2
−j·)‖∞ ≤ C.

This via Lemma 2 says that for any fixed l ≤ 0, 0 < ν < 1 and positive
integer i,

‖T̃ lj;b,if‖2 ≤ C2νl‖b‖iBMO(Rn)‖f‖2,
which by dilation-invariance implies

(10) ‖T lj;b,if‖2 ≤ C2νl‖b‖iBMO(Rn)‖f‖2.
On the other hand, the Plancherel theorem tells us that

(11) ‖T ljf‖2 ≤ C2l‖f‖2.
Write

(T ljSl−jf)b,mf(x) =
m∑

i=0

CimT
l
j;b,i(Sl−j;b,m−if)(x).

It follows from (10), (11) and Lemma 1 that
∥∥∥
(∑

j∈Z
|(T ljSl−jf)b,m|2

)1/2∥∥∥
2

2
≤ C22νl

m∑

i=0

‖b‖2iBMO(Rn)

∑

j∈Z
‖Sl−j;b,m−if‖22

≤ C22νl‖b‖2mBMO(Rn)‖f‖22, l ≤ 0.

Therefore, by a familiar argument involving Lemma 1, we can obtain

‖Vlf‖2 ≤ C
k∑

m=0

‖b‖k−mBMO(Rn)

∥∥∥
(∑

j∈Z
|(T ljSl−j)b,mf |2

)1/2∥∥∥
2

≤ C2νl‖b‖kBMO(Rn)‖f‖2, l ≤ 0.

Now we turn our attention to the term
∑
l>0 ‖Vlf‖p. By the well-known

estimate of Duoandikoetxea and Rubio de Francia [6], we know that there
exists a positive constant β such that

|K̂j,d(ξ)| ≤ C‖Ωd‖∞min{1, |2jξ|−β}, ‖∇K̂j,d‖∞ ≤ C2j‖Ωd‖1.
This gives

‖ml
j,d‖∞ ≤ C2−βl‖Ωd‖∞, ‖∇ml

j,d‖∞ ≤ 2j‖Ωd‖∞.
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Invoking Lemma 2 again, as in the proof of (10) and (11), we see that there
exists some constant 0 < γ < 1 such that for non-negative integer m,

‖T lj,d;b,m‖2 ≤ C‖Ωd‖∞2−γl‖b‖mBMO(Rn)‖f‖2.
Similarly to (8), we can obtain

‖Vl,df‖2 ≤ C
k∑

m=0

‖b‖k−mBMO(Rn)

∥∥∥
(∑

j∈Z
|(T lj,dSl−jf)b,m|2

)1/2∥∥∥
2

(12)

≤ C‖Ωd‖∞2−γl‖b‖kBMO(Rn)‖f‖2.
Interpolating (7) and (12) shows that for γ̃ = γ̃n,p > 0,

(13) ‖Vl,df‖p ≤ C‖Ωd‖∞2−γ̃l‖b‖kBMO(Rn)‖f‖p, 1 < p <∞.
Let N be a large positive integer such that N > 2γ̃−1. Combining (7)
and (13) gives
∑

l>0

‖Vlf‖p ≤
∑

l>0

‖Vl,0f‖p +
∑

d>0

∑

0<l≤Nd
‖Vl,df‖p +

∑

d>0

∑

l>Nd

‖Vl,df‖p

≤ C‖b‖kBMO(Rn)

∑

l>0

2−µl‖f‖p + C‖b‖kBMO(Rn)

∑

d>0

dλΩd,k‖f‖p

+ C‖b‖kBMO(Rn)

∑

d>0

2d
∑

l>Nd

2−µl‖f‖p

≤ C‖b‖kBMO(Rn)‖f‖p + C‖b‖kBMO(Rn)

∑

d>0

dλΩd,k‖f‖p

≤ C‖b‖kBMO(Rn)‖f‖p.
This completes the proof of Theorem 1.

Proof of Theorem 2. We shall carry out the argument by induction on
the order k. If k = 0, Theorem 2 is the remarkable result of Calderón and
Zygmund [3]. Now let k be a positive integer, and assume that the assertion
is true for all integers m with 0 ≤ m ≤ k − 1. Let Kj , Kj,d, Ωd and the
operator Tj,d be the same as in the proof of Theorem 1. Define

Tj;b,mf(x) =
�

2j<|x−y|≤2j+1

(b(x)− b(y))m
Ω(x− y)
|x− y|n f(y) dy.

Write

MΩ;b,kf(x) = sup
r>0

r−n
�

|x−y|<r
|b(x)− b(y)|k|Ω(x− y)| |f(y)| dy

≤
∞∑

d=0

MΩd;b,kf(x).
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Lemma 4 now tells us that for all 1 < p <∞,

‖MΩ;b,kf‖p ≤ ‖b‖kBMO(Rn)

∞∑

d=0

λΩd,k‖f‖p ≤ C‖b‖kBMO(Rn)‖f‖p.

Thus, it suffices to consider the Lp(Rn) norm of supl∈Z |
∑∞
j=l Tj;b,kf(x)|.

Take η ∈ S(Rn) such that η(x) ≡ 1 when |x| ≤ 1. Let Φl ∈ S(Rn) be such
that Φ̂l(ξ) = η(2lξ). Denote by Gl the convolution operator whose kernel is
Φl and Gjl the convolution operator whose kernel is Kj − Φl ∗Kj . Write

∞∑

j=l

Tj;b,kf(x) = Φl ∗
(
Tb,kf −

l−1∑

j=−∞
Tj;b,kf

)
(x)

+
( ∞∑

j=l

Tj;b,kf(x)− Φl ∗
( ∞∑

j=l

Tj;b,kf
)

(x)
)

= Il(f)(x) + IIl(f)(x).

Define the operator

Mb,kh(x) = sup
r>0

r−n
�

|x−y|<r
|b(x)− b(y)|k|h(y)| dy.

Observe that

∣∣∣Φl ∗
l−1∑

j=∞
Kl(x)

∣∣∣ ≤ C2−nl/(1 + |2−lx|)n+1

(see [6]) and

Φl ∗
( l−1∑

j=−∞
Tj;b,kf

)
(x)

=
(
Φl ∗

l−1∑

j=−∞
Kj

)
b,k
f(x)−

k−1∑

m=0

Cmk Gl;b,k−m
( l−1∑

j=−∞
Tj;b,mf

)
(x).

It follows that

sup
l∈Z
|Il(f)(x)| ≤

k−1∑

m=0

(Mb,k−m(Tb,mf)(x) +Mb,k−m(T ∗b,mf)(x))

+ CMb,kf(x) + CM(Tb,kf)(x).

This shows that supl∈Z |Il(f)(x)| is pointwise bounded by a function whose
Lp(Rn) norm is no more than Cn,p‖b‖kBMO(Rn) for all 1 < p <∞. To estimate
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supl∈Z |IIl(f)(x)|, write

IIlf(x) =
∞∑

j=l

Tj;b,kf(x)−
(
Φl ∗

∞∑

j=l

Tj

)
b,k
f(x)

−
k−1∑

m=0

Cmk Gl;b,k−m
( ∞∑

j=l

Tj;b,mf
)

(x)

=
∞∑

j=l

Gjl;b,kf(x)−
k−1∑

m=0

Cmk Gl;b,k−m
( ∞∑

j=l

Tj;b,mf
)

(x)

For each 0 ≤ m ≤ k − 1, it is easy to see that

sup
l∈Z

∣∣∣Gl;b,k−m
( ∞∑

j=l

Tj;b,mf
)

(x)
∣∣∣ ≤ CMb,k−m(T ∗b,mf)(x).

Thus, the proof of Theorem 2 can be reduced to estimating the Lp(Rn)
norm for the term supl∈Z |

∑∞
j=lG

j
l;b,kf(x)|. Denote by Gj,dl the convolution

operator whose kernel is Kj,d−Φl ∗Kj,d. Let N1 be a positive integer which
will be chosen later. Write

sup
l∈Z

∣∣∣
∞∑

j=l

Gjl;b,kf(x)
∣∣∣ ≤

∞∑

j=0

sup
l∈Z
|Gll−j;b,kf(x)|

≤
∑

d>0

∑

0<j≤N1d

sup
l∈Z
|Gl,dl−j;b,kf(x)|+

∞∑

j=0

sup
l∈Z
|Gl,0l−j;b,kf(x)|

+
∑

d>0

∑

j>N1d

sup
l∈Z
|Gl,dl−j;b,kf(x)|.

Employing Lemma 4, we have
∑

d>0

∑

0<j≤N1d

‖ sup
l∈Z
|Gl,dl−j;b,kf | ‖p

≤ C
∑

d>0

∑

0<j≤N1d

‖MΩd;b,kf‖p

+
k∑

m=0

∑

d>0

∑

0<j≤N1d

‖Mb,m(MΩd;b,k−mf)‖p

≤ C
∑

d>0

dλΩd,k‖f‖p ≤ C‖f‖p.

Now trivial computation gives

|K̂l,d(ξ)− ̂Φl−j ∗Kl,d(ξ)| ≤ C‖Ωd‖∞min{2−j |2lξ|, |2lξ|−µ},
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with µ = µn > 0. This via the Plancherel theorem shows that for some
µ̃ > 0,

(14) ‖ sup
l∈Z
|Gl,dl−jh| ‖2 ≤

∥∥∥
(∑

l∈Z
|Gl,dl−jh|2

)1/2∥∥∥
2
≤ C2−µ̃j‖Ωd‖∞‖h‖2.

On the other hand, it is easy to see that for each fixed 1 < p < ∞ and
w ∈ Ap,
(15) ‖ sup

l∈Z
|Gl,dl−jh| ‖p,w ≤ C‖Ωd‖∞‖h‖p,w,

and the constant C depending only on n, p and the Ap constant of w.
Interpolating the inequalities (14) and (15) with change of measures implies
that for each 1 < p <∞ and w ∈ Ap,
(15) ‖ sup

l∈Z
|Gl,dl−jh| ‖p,w ≤ C2−δj‖Ωd‖∞‖h‖p,w.

Since the mapping f 7→ {Gl,dl−jf}l∈Z is linear, applying Theorem 2.13 of [2],
we can obtain

‖ sup
l∈Z
|Gl,dl−j,b,kh| ‖p ≤ C‖b‖kBMO(Rn)2

−δj‖Ωd‖∞‖h‖p.

Let N1 > 2δ−1. We conclude the proof of Theorem 2 by noting that
∞∑

j=0

‖ sup
l∈Z
|Gl,0l−j;b,kf | ‖p ≤ C‖b‖kBMO(Rn)

∞∑

j=0

2−δj‖f‖p ≤ C‖b‖kBMO(Rn)‖f‖p

and
∑

d>0

∑

j>N1d

sup
l∈Z
‖ |Gl,dl−j;b,kf | ‖p ≤ C‖b‖kBMO(Rn)

∑

d>0

2d
∞∑

j>N1d

2−δj‖f‖p

≤ C‖b‖kBMO(Rn)‖f‖p.
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