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Littlewood–Paley–Stein functions on
complete Riemannian manifolds for 1 ≤ p ≤ 2

by
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and Xiang Dong Li (Oxford)

Abstract. We study the weak type (1, 1) and the Lp-boundedness, 1 < p ≤ 2, of
the so-called vertical (i.e. involving space derivatives) Littlewood–Paley–Stein functions G
and H respectively associated with the Poisson semigroup and the heat semigroup on a
complete Riemannian manifold M . Without any assumption on M , we observe that G
and H are bounded in Lp, 1 < p ≤ 2. We also consider modified Littlewood–Paley–Stein
functions that take into account the positivity of the bottom of the spectrum. Assuming
that M satisfies the doubling volume property and an optimal on-diagonal heat kernel
estimate, we prove that G and H (as well as the corresponding horizontal functions, i.e.
involving time derivatives) are of weak type (1, 1). Finally, we apply our methods to
divergence form operators on arbitrary domains of Rn.

1. Introduction
1.1. Background. It is well known (cf. e.g. [37]) that the horizontal

Littlewood–Paley g-function defined, for f ∈ C∞0 (Rn), by

g(f)(x) =
[∞�

0

t

∣∣∣∣
∂

∂t
e−t
√
∆f(x)

∣∣∣∣
2

dt

]1/2

and the vertical Littlewood–Paley G-function defined by

G(f)(x) =
[∞�

0

t|∇e−t
√
∆f(x)|2 dt

]1/2

are bounded in Lp(Rn) for all 1 < p < ∞, i.e., for such p, there exists Cp
such that
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‖g(f)‖p + ‖G(f)‖p ≤ Cp‖f‖p, ∀f ∈ C∞0 (Rn).

For p = 1, the operators g and G are of weak type (1, 1). In classical harmonic
analysis, the Littlewood–Paley functions play an important role in the study
of non-tangential convergence of Fatou type and the boundedness of Riesz
transforms and multipliers (cf. [37]–[39]).

In [38], Stein extended the Lp-boundedness for 1 < p < ∞ of the
Littlewood–Paley G-function to the context of compact Lie groups for 1 <
p < ∞, and the Lp-boundedness for 1 < p < ∞ of the Littlewood–Paley
g-function to a general setting of symmetric Markov semigroups. For the
latter aspect, see also [31] and the references therein.

The above facts have been subsequently generalised further. One direc-
tion is the Littlewood–Paley theory on Coifman–Weiss’s spaces of homoge-
neous type; for this, we refer to Han and Sawyer [26]. Another direction is
the study of the Littlewood–Paley functions on (non-compact) complete Rie-
mannian manifolds, in connection with the study of Riesz transforms: some
results have been obtained by N. Lohoué ([29], [30]) for Cartan–Hadamard
manifolds and non-amenable Lie groups, and by Chen Jie-Cheng [11] for Rie-
mannian manifolds with non-negative Ricci curvature. Note that the work
of Bakry ([7]–[9]) on Riesz transforms on manifolds whose Ricci curvature
is non-negative or bounded below relies on a Littlewood–Paley theory of a
slightly different kind. Let us also mention the related works [36], [41], [35].

The first two authors of the present article have proved in [14] that the
Riesz transform is of weak type (1, 1) and bounded in Lp for 1 < p ≤ 2 on any
complete Riemannian manifold satisfying the doubling volume property and
an on-diagonal optimal heat kernel estimate. One of the aims of this paper
is to study the weak type (1, 1) of the Littlewood–Paley–Stein functions
under the same assumptions. The Lp-boundedness of these functions for
1 < p ≤ 2 can be treated directly, and without assumptions, via a classical
argument due to Stein. These estimates can be improved substantially, as
in [29], in the case where the bottom of the spectrum of the manifold is
positive. In the case p = 1, we have to use, as in [14], the recent singular
integral theory developed by Duong and McIntosh in [20] and Grigor’yan’s
weighted estimates of the space derivatives of the heat kernel on complete
Riemannian manifolds ([24]). Finally, we apply our methods to the case of
second order operators in divergence form on arbitrary domains of Rn.

As was already observed in [14] for Riesz transforms, the case p > 2 is of
a completely different nature and requires much stronger assumptions (see
[16], [17], [28]).

1.2. Notation, definitions. Let M be a complete non-compact Rieman-
nian manifold, d be the geodesic distance on M , and µ be the Riemannian
measure. Denote by B(x, r) the geodesic ball of center x ∈ M and radius
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r > 0 and by V (x, r) its Riemannian volume µ(B(x, r)). One says that
(M,µ) has the doubling volume property if there exists C > 0 such that

V (x, 2r) ≤ CV (x, r), ∀x ∈M, r > 0.

Let ∆ be the (non-negative) Laplace–Beltrami operator on M , e−t∆ be
the heat semigroup, and pt(x, y) be the heat kernel on M . Let e−t

√
∆ be the

Poisson semigroup on M .
For f ∈ C∞0 (M), define the (so-called vertical) Littlewood–Paley–Stein

G-function and H-function by

G(f)(x) =
(∞�

0

t|∇e−t
√
∆f(x)|2 dt

)1/2
,

H(f)(x) =
(∞�

0

|∇e−t∆f(x)|2 dt
)1/2

,

as well as the (so-called horizontal) Littlewood–Paley–Stein g-function and
h-function by

g(f)(x) =
{∞�

0

t|
√
∆e−t

√
∆f(x)|2 dt

}1/2
=
{∞�
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t

∣∣∣∣
∂

∂t
e−t
√
∆f(x)
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,

h(f)(x) =
{∞�

0

t|∆e−t∆f(x)|2 dt
}1/2

=
{∞�

0

t

∣∣∣∣
∂

∂t
e−t∆f(x)

∣∣∣∣
2

dt

}1/2

.

Let R be a sublinear operator, defined on C∞0 (M), with values in mea-
surable functions on M . We shall say that R is bounded on Lp(M,µ), for
some p ∈ [1,∞], if there exists Cp such that

‖R(f)‖p ≤ Cp‖f‖p, ∀f ∈ C∞0 (M),

and that it is of weak type (1, 1) if there exists C such that

µ{x ∈M ; |R(f)(x)| ≥ λ} ≤ C‖f‖1/λ
for every f ∈ C∞0 (M) and λ > 0.

1.3. Some basic facts and remarks. (i) As we already mentioned, g and
h are always bounded on Lp(M), 1 < p < ∞; this even holds in a general
symmetric Markov semigroup setting (see [38], [31]).

(ii) The function G is pointwise dominated by H. Indeed, recall the sub-
ordination formula

e−t
√
∆ =

1√
π

∞�
0

e−
t2

4u∆e−uu−1/2 du.(1.1)
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One can write

G2(f)(x) =
∞�
0

t|∇e−t
√
∆f(x)|2 dt

≤ 1
π

∞�
0

t
(∞�

0

|∇e− t
2

4u∆f(x)|e−uu−1/2 du
)2
dt,

and, since
∞�
0

e−uu−1/2 du <∞,

we have

G2(f)(x) ≤ C
∞�
0

t
(∞�

0

|∇e− t
2

4u∆f(x)|2e−uu−1/2 du
)
dt

= C

∞�
0

(∞�
0

t|∇e− t
2

4u∆f(x)|2 dt
)
e−uu−1/2 du

= 2C
∞�
0

(∞�
0

|∇e−v∆f(x)|2 dv
)
e−uu1/2 du = C ′H2(f)(x).

(iii) The L2-boundedness of H is obvious. In fact, up to a multiplicative
constant, H is an isometry of L2(M); the same is true for G.

Proposition 1.1.

‖H(f)‖2 =
1√
2
‖f‖2, ∀f ∈ L2(M).

Proof. Since ‖∇f‖2 = ‖∆1/2f‖2, we have

‖H(f)‖22 =
∞�
0

‖∇e−t∆f‖22 dt =
∞�
0

‖∆1/2e−t∆f‖22 dt.

On the other hand,
∞�
0

‖∆1/2e−t∆f‖22 dt =
∞�
0

〈∆e−t∆f, e−t∆f〉 dt = −
∞�
0

〈
∂

∂t
e−t∆f, e−t∆f

〉
dt

= −1
2

∞�
0

∂

∂t
〈e−t∆f, e−t∆f〉 dt = −1

2
‖e−t∆f‖22

∣∣∞
0 =

1
2
‖f‖22.

This finishes the proof.

Thanks to the Marcinkiewicz interpolation theorem, it follows from
Proposition 1.1 that the weak type (1, 1) of G or H implies the boundedness
of the same operator on Lp(M), 1 < p < 2.
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(iv) Let p ∈ ]1,∞[ and q its conjugate exponent. Then it is easy to see
by duality that

‖H(f)‖p ≤ C‖f‖p, ∀f ∈ Lp(M),

implies
‖f‖q ≤ C‖H(f)‖q, ∀f ∈ Lq(M).

The same phenomenon holds for G.

1.4. Statement of the results on manifolds

Theorem 1.2. Let M be a complete Riemannian manifold. Then H and
G are bounded on Lp(M) for every 1 < p ≤ 2.

One can make Theorem 1.2 more precise when the bottom of the spec-
trum of M is positive. Following [29], define, for a ∈ R,

Ha(f)(x) =
{∞�

0

eat|∇e−t∆f(x)|2 dt
}1/2

.

Theorem 1.3. Assume that the bottom of the spectrum of M is positive,
i.e.

λ1 = λ1(M) = inf
f∈C∞0 (M)

‖∇f‖22
‖f‖22

> 0.

Then for every 1 < p ≤ 2 and every a < 2λ1(p − 1), Ha is bounded on
Lp(M); more precisely there exists Cp,λ1,a only depending on p, λ1 and a
such that

‖Ha(f)‖p ≤ Cp,λ1,a‖f‖p, ∀f ∈ Lp(M).

Theorem 1.4. Let M be a complete Riemannian manifold satisfying the
doubling volume property and such that

pt(x, x) ≤ C

V (x,
√
t)

(1.2)

for some C > 0 and all x ∈ M , t > 0. Then H, G, h and g are of weak
type (1, 1).

Remark. The above two assumptions on M , namely the doubling vol-
ume property and the on-diagonal heat kernel upper estimate, are known to
be together equivalent to a more geometric condition, the so-called relative
Faber–Krahn inequality (see [23, Prop. 5.2]).

1.5. Examples, comparison with known results. We have not found The-
orem 1.2 in the literature, but it is probably known, and implicit for instance
in [29], that Stein’s argument works on manifolds, at least for G (see also
[8], where a version of this argument appears). Note that Stein’s argument
can also be used in an infinite-dimensional context (see [40], [13]).
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If one replaces G by G̃, where

G̃(f)(x) =
{∞�

0

(e−t
√
∆|∇e−t

√
∆f |(x))2t dt

}1/2
,

then the Lp-boundedness of G̃, for 1 < p < ∞, follows from probabilistic
Littlewood–Paley theory (see [32], [33]; a slightly stronger inequality is even
true when p > 2). Lucien Chevalier ([12]) explained to us that in the case
1 < p < 2 this also follows from Stein’s argument.

Theorem 1.3 should be considered as a partial generalisation of the re-
sults in [29] for Cartan–Hadamard manifolds with a positive bottom of the
spectrum and of the corresponding ones in [30] for non-amenable Lie groups
endowed with a family of Hörmander vector fields, since our method also
works in this setting. Our assumptions are much weaker, and our proof much
simpler. In [29], [30], the function under consideration is rather

Ga(f)(x) =
{∞�

0

teat|∇e−t
√
∆f(x)|2 dt

}1/2
.

Stein’s argument also works for this function, and yields a statement anal-
ogous to Theorem 1.3, with the parameter range a < 2

√
λ1(p− 1), which is

slightly worse than the range in [29], [30]: a < 4
√
λ1(p− 1)/p. On the other

hand, recall that, in their more restrictive settings, [29], [30] also yield some
results for p > 2.

Theorem 1.4 is our main result. It contains the case of manifolds with
non-negative Ricci curvature, which was treated in [11] (see also [8] for re-
lated results), but it covers a much larger class of manifolds: e.g. manifolds
with doubling volume property and suitable Poincaré inequalities (including
Lie groups with polynomial volume growth and manifolds that are roughly
isometric to a manifold with non-negative Ricci curvature), cocompact cov-
ering manifolds with polynomial volume growth. For details we refer to [14].
On the other hand, recall that, in his particular case, [11] is also able to
treat the case p > 2.

If one assumes in addition a pointwise upper bound for the gradient of
the heat kernel, then the conclusion of Theorem 1.4 follows from [3]. If one
assumes Poincaré inequalities, one can obtain an Hp theory, 0 < p < 1
(see [34]). Under even stronger assumptions, one can also treat the case
where 2 < p <∞ ([16], [17], [28]).

An analogue of Theorem 1.4 should hold when instead of (1.2), M sat-
isfies so-called subgaussian estimates (see [10]).

Theorems 1.2–1.4 could be formulated in an abstract diffusion semigroup
setting (see [14, p. 1153]).
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2. The case 1 < p < 2. In this section, we prove Theorems 1.2 and 1.3.

2.1. Boundedness of LPS functions. In this section we will follow Stein’s
approach in [38] to prove Theorem 1.2. We recall the Hardy–Littlewood
maximal inequality for semigroups ([38, p. 73]).

Lemma 2.1. Let Tt be a symmetric submarkovian semigroup on some
measure space (X,µ). For a suitable function f on X, define f ∗(x) =
supt>0 |Ttf(x)|, x ∈ X. Then for every 1 < p ≤ ∞, there exists Cp such that

‖f∗‖p ≤ Cp‖f‖p, ∀f ∈ Lp(X,µ).

Proof of Theorem 1.2. According to Section 1.3(ii), we need only con-
sider H. Let f ∈ C∞0 (M), and set u(x, t) = e−t∆f(x). One can assume that
f is non-negative and not identically zero, and then by standard estimates
u is smooth and positive everywhere. For any 1 < p ≤ 2, we have(

∂

∂t
+∆

)
up(x, t) = p up−1(x, t)

(
∂

∂t
+∆

)
u(x, t)

− p(p− 1)up−2(x, t)|∇u(x, t)|2

= − p(p− 1)up−2(x, t)|∇u(x, t)|2,
which yields

|∇u(x, t)|2 = − 1
p(p− 1)

u2−p(x, t)
(
∂

∂t
+∆

)
up(x, t),

therefore

H2(f)(x) =
∞�
0

|∇u(x, t)|2 dt = −Cp
∞�
0

u2−p(x, t)
(
∂

∂t
+∆

)
up(x, t) dt

≤ Cp sup
t>0

u2−p(x, t)J(x),

where

J(x) = −
∞�
0

(
∂

∂t
+∆

)
up(x, t) dt.

One may write, applying the Hölder inequality with exponents 2/(2 − p)
and 2/p,�

M

Hp(f)(x) dµ(x) ≤ Cp
�
M

sup
t>0

u(2−p)p/2(x, t)Jp/2(x) dµ(x)

≤ Cp
[ �
M

sup
t>0

up(x, t) dµ(x)
](2−p)/2[ �

M

J(x) dµ(x)
]p/2

≤ C ′p‖f‖(2−p)p/2p

[ �
M

J(x) dµ(x)
]p/2

,

where in the last step we have used Lemma 2.1.
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On the other hand,
�
M

J(x) dµ(x) = −
�
M

∞�
0

(
∂

∂t
+∆

)
up(x, t) dt dµ(x)

= −
�
M

up(x, t)|∞0 dµ(x) +
∞�
0

�
M

∆up(x, t) dµ(x) dt

=
�
M

up(x, 0) dµ(x) = ‖f‖pp,

since � M ∆up(x, t) dµ(x) = 0. Hence

‖H(f)‖p ≤ C ′p‖f‖(2−p)/2p ‖f‖p/2p ≤ C ′p‖f‖p.
This finishes the proof.

2.2. Manifolds with a positive λ1. This section is inspired by [29], where
N. Lohoué introduced a new class of Littlewood–Paley functions on Cartan–
Hadamard manifolds (i.e., complete and simply connected Riemannian man-
ifolds with non-positive curvature) that took into account the positivity of
the bottom of the spectrum.

Let λ1 > 0 be the bottom of the spectrum of ∆ on L2(M), i.e., the norm
of e−t∆ on L2(M) is e−λ1t. Recall the definition

Ha(f)(x) =
{∞�

0

eat|∇e−t∆f(x)|2 dt
}1/2

.

The case p = 2 in Theorem 1.3 is nothing but a variation on Section 1.3(iii).

Proposition 2.2. For any a < 2λ1, there exists C such that

‖Ha(f)‖2 ≤ C‖f‖2, ∀f ∈ L2(M).

Proof. Since ‖∇f‖2 = ‖∆1/2f‖2,

‖Ha(f)‖22 =
∞�
0

eat‖∇e−t∆f‖22 dt

≤
∞�
0

eat‖e−t(1−η)∆f‖22→2‖∆1/2e−tη∆f‖22 dt

≤
∞�
0

e(a−2λ1(1−η))t‖∆1/2e−tη∆f‖22 dt

≤ Ca,λ1,η‖f‖22,
as soon as η ∈ ]0, 1[ is chosen so that

a < 2λ1(1− η),

which is possible if a < 2λ1. The proof is complete.
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Proof of Theorem 1.3. Let f ∈ C∞0 (M) be non-negative and not identi-
cally zero, and u(x, t) = e−t∆f(x). Then, as above,

|∇u(x, t)|2 = − 1
p(p− 1)

u2−p(x, t)
(
∂

∂t
+∆

)
u(x, t)p.

Let

Ja(x) = −
∞�
0

eat
(
∂

∂t
+∆

)
up(x, t) dt.

One has
H2
a(f)(x) ≤ Cp sup

t>0
u2−p(x, t)Ja(x).

It follows that�
M

Hpa(f)(x) dµ(x) ≤ C ′p‖f‖(2−p)p/2p

[ �
M

Ja(x) dµ(x)
]p/2

.

Now write
�
M

Ja(x) dµ(x) = −
�
M

∞�
0

eat
(
∂

∂t
+∆

)
up(x, t) dt dµ(x)

= −
�
M

∞�
0

eat
∂

∂t
up(x, t) dt dµ(x)

= −
�
M

eatup(x, t)
∣∣∞
0 dµ(x) + a

�
M

∞�
0

eatup(x, t) dµ(x) dt

≤
�
M

up(x, 0) dµ(x) + a
�
M

∞�
0

eatup(x, t) dµ(x) dt

= ‖f‖pp + a

∞�
0

eat‖e−t∆f‖pp dt

≤ ‖f‖pp
(

1 + a

∞�
0

eat‖e−t∆‖pp→p dt
)
.

Now by definition ‖e−t∆‖2→2 = e−λ1t. On the other hand, e−t∆ is a symmet-
ric submarkovian semigroup, therefore ‖e−t∆‖1→1 ≤ 1. By the Riesz–Thorin
interpolation theorem, for any 1 < p < 2, we have

‖e−t∆‖p→p ≤ ‖e−t∆‖1−θ1→1‖e−t∆‖θ2→2,

where θ ∈ (0, 1) is taken so that 1/p = θ/2 + (1− θ)/1, i.e., θ = 2(p− 1)/p.
Hence ‖e−t∆‖pp→p ≤ e−2λ1(p−1)t. This implies that, if a < 2(p− 1)λ1,

∞�
0

eat‖e−t∆‖pp→p dt ≤
∞�
0

e(a−2(p−1)λ1)t dt =
1

2(p− 1)λ1 − a
is finite. The claim follows.



46 T. Coulhon et al.

3. The case p = 1. In this section, we prove Theorem 1.4.

3.1. A criterion of weak type (1, 1). The following statement is the main
technical tool in [14]. It will be instrumental in the proof of Theorem 1.4.

Proposition 3.1. Let M be a complete Riemannian manifold , with
Riemannian measure µ, satisfying the doubling volume property and the
heat kernel upper bound

pt(x, x) ≤ C

V (x,
√
t)

(3.3)

for some C > 0 and all x ∈ M , t > 0. Let R : L2(M) → L2(M) be a
bounded sublinear operator. Assume that there exists a kernel kt(x, y) ≥ 0
such that

|R[(I − e−t∆)f ](x)| ≤
�
M

kt(x, y)|f(y)| dµ(y),

∀t > 0, f ∈ C∞0 (M), for a.e. x ∈M.

If

sup
y∈M, t>0

�
d(x,y)≥

√
t

kt(x, y) dµ(x) <∞,(3.4)

then R is of weak type (1, 1).

3.2. Weighted estimates of derivatives of the heat kernel. In the next
two sections, we shall work under the assumptions of Theorem 1.4. Our first
lemma is standard; for a proof, see [14, Lemma 2.1].

Lemma 3.2. For all γ > 0,�
d(x,y)≥

√
t

e−2γd2(x,y)/s dµ(x) ≤ CγV (y,
√
s)e−γt/s, ∀y ∈M, s, t > 0.

Our next lemma is a simple consequence of [24, Lemma 3.2] and our
assumption on the heat kernel. Recall that assumption (3.3), together with
the doubling volume property, self-improves to

ps(x, y) ≤ Cα
e−αd

2(x,y)/s

V (y,
√
s)

, ∀x ∈M, s > 0,(3.5)

for any α ∈ ]0, 1/4[ (cf. [25, Thm. 1.1]).

Lemma 3.3. For ε > 0 small enough,
�

d(x,y)≥
√
t

|∇x∆xps(x, y)|2eεd2(x,y)/s dµ(x) ≤ Cε
s3V (y,

√
s)
e−εt/s,

∀y ∈M, s, t > 0.
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Sketch of proof. Set

E0(y, s) =
�
M

|ps(x, y)|2e2εd2(x,y)/s dµ(x),

E3(y, s) =
�
M

|∇x∆xps(x, y)|2e2εd2(x,y)/s dµ(x).

It follows from [24, Corollary 1.3] that, for ε < 1/4,

E3(y, s) ≤ Cε
s3 E0(y, s/2).(3.6)

Now (3.5) together with Lemma 3.2 easily implies that

E0(y, s) ≤ Cε
V (y,

√
s)
, ∀y ∈M, s > 0

(see [14, Lemma 2.2]). It then follows from (3.6) and doubling that

E3(y, s) ≤ Cε
s3V (y,

√
s)
, ∀y ∈M, s > 0.

Now write �
d(x,y)≥

√
t

|∇x∆xps(x, y)|2eεd2(x,y)/s dµ(x) ≤ E3(y, s)e−εt/s.

The lemma follows.

3.3. Weak type (1, 1) of H and G. One has

H[(I − e−t∆)f ](x) =
(∞�

0

|∇(e−s∆ − e−(s+t)∆)f(x)|2 ds
)1/2

=
(∞�

0

∣∣∣
�
M

(∇xps(x, y)−∇xps+t(x, y))f(y) dµ(y)
∣∣∣
2
ds
)1/2

≤
�
M

(∞�
0

|∇xps(x, y)−∇xps+t(x, y)|2 ds
)1/2
|f(y)| dµ(y).

According to Proposition 3.1, it is enough to prove the existence of C > 0
such that

�
d(x,y)≥

√
t

(∞�
0

|∇xps(x, y)−∇xps+t(x, y)|2 ds
)1/2

dµ(x) ≤ C(3.7)

for all y ∈M , t > 0.
Set

A = A(y, t) =
�

d(x,y)≥
√
t

(∞�
0

|∇xps(x, y)−∇xps+t(x, y)|2 ds
)1/2

dµ(x),
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and, for k ∈ N,

Ak = Ak(y, t) =
�

d(x,y)≥
√
t

( (k+1)t�
kt

|∇xps(x, y)−∇xps+t(x, y)|2 ds
)1/2

dµ(x).

For k ≥ 1, write

Ak =
�

d(x,y)≥
√
t

( (k+1)t�
kt

|∇xps(x, y)−∇xps+t(x, y)|2e2εd2(x,y)/kt ds
)1/2

× e−εd2(x,y)/kt dµ(x)

≤
( �
M

(k+1)t�
kt

|∇xps(x, y)−∇xps+t(x, y)|2e2εd2(x,y)/kt ds dµ(x)
)1/2

×
( �
d(x,y)≥

√
t

e−2εd2(x,y)/kt dµ(x)
)1/2

.

According to Lemma 3.2, we have�
d(x,y)≥

√
t

e−2εd2(x,y)/kt dµ(x) ≤ CεV (y,
√
kt),

therefore

Ak ≤ C
√
BkV (y,

√
kt)(3.8)

with

Bk = Bk(y, t) =
�
M

(k+1)t�
kt

|∇xps(x, y)−∇xps+t(x, y)|2e2εd2(x,y)/kt ds dµ(x).

Since
∂

∂u
∇xpu(x, y) = ∇x

∂

∂u
pu(x, y) = −∇x∆xpu(x, y),

one may write

Bk =
�
M

(k+1)t�
kt

∣∣∣
s+t�
s

∇x∆xpu(x, y) du
∣∣∣
2
e2εd2(x,y)/kt ds dµ(x)

≤
�
M

(k+1)t�
kt

(
t

s+t�
s

|∇x∆xpu(x, y)|2 du
)
e2εd2(x,y)/kt ds dµ(x)

= t

(k+1)t�
kt

s+t�
s

( �
M

|∇x∆xpu(x, y)|2e2εd2(x,y)/kt dµ(x)
)
du ds.
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In the above expression, u ∈ [s, s + t], and s ∈ [kt, (k + 1)t], thus u ∈
[kt, (k + 2)t], and

e2εd2(x,y)/kt ≤ e2ε(k+2)d2(x,y)/ku ≤ e6εd2(x,y)/u.

Hence

Bk ≤ t
(k+1)t�
kt

s+t�
s

( �
M

|∇x∆xpu(x, y)|2e6εd2(x,y)/u dµ(x)
)
du ds.

Now, according to Lemma 3.3, for ε > 0 small enough,
�
M

|∇x∆xpu(x, y)|2e6εd2(x,y)/u dµ(x) ≤ C

u3V (y,
√
u)
.

This yields

Bk ≤ Ct
(k+1)t�
kt

s+t�
s

du

u3V (y,
√
u)
ds ≤ Ct2

(k+1)t�
kt

ds

s3V (y,
√
s)

≤ C ′t3 1

(kt)3V (y,
√
kt)

,

therefore, by (3.8),

Ak ≤ Ck−3/2, k ≥ 1.

Let us now turn to the case k = 0. Write

A0 ≤
( �
d(x,y)≥

√
t

t�
0

|∇xps(x, y)−∇xps+t(x, y)|2e2εd2(x,y)/t ds dµ(x)
)1/2

×
( �
d(x,y)≥

√
t

e−2εd2(x,y)/t dµ(x)
)1/2

.

Lemma 3.2 yields
�

d(x,y)≥
√
t

e−2εd2(x,y)/t dµ(x) ≤ CεV (y,
√
t),

therefore

A0 ≤ C
√
B′0V (y,

√
t),(3.9)

with

B′0 =
�

d(x,y)≥
√
t

t�
0

|∇xps(x, y)−∇xps+t(x, y)|2e2εd2(x,y)/t ds dµ(x).
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Following the above argument, one obtains

B′0 ≤ t
t�
0

s+t�
s

( �
d(x,y)≥

√
t

|∇x∆xpu(x, y)|2e4εd2(x,y)/u dµ(x)
)
du ds.

Lemma 3.3 now gives, for ε small enough,
�

d(x,y)≥
√
t

|∇x∆xpu(x, y)|2e4εd2(x,y)/u dµ(x) ≤ C

u3V (y,
√
u)
e−ct/u,

hence

B′0 ≤ Ct
t�
0

s+t�
s

e−ct/u

u3V (y,
√
u)
du ds

=
C

t2V (y,
√
t)

t�
0

s+t�
s

(
t

u

)3 V (y,
√
t)

V (y,
√
u)
e−ct/u du ds.

Using doubling, one sees easily that the quantity
(
t

u

)3 V (y,
√
t)

V (y,
√
u)
e−ct/u

is uniformly bounded from above. Thus

B′0 ≤
C ′

V (y,
√
t)
,

and it follows from (3.9) that A0 is uniformly bounded.
Finally, since

A ≤
∑

k≥0

Ak,

the estimate (3.7), and therefore the weak type (1, 1) of H, is proved. Ac-
cording to Section 1.3(ii), G also has weak type (1, 1).

3.4. Weak type (1, 1) of h and g. It is well known ([19, Thm. 4], [25,
Cor. 3.3]) that (3.5), together with the doubling volume property, implies,
for every m ∈ N∗ and α ∈ ]0, 1/4[,

(3.10)
∣∣∣∣
∂m

∂sm
ps(x, y)

∣∣∣∣ = |∆m
x ps(x, y)| ≤ Cm,α

e−αd
2(x,y)/s

sm V (y,
√
s)
,

∀x, y ∈M, s > 0.

By applying Lemma 3.2, one then easily obtains the following.

Lemma 3.4. For m ∈ N∗ and ε > 0 small enough,
�

d(x,y)≥
√
t

|∆m
x ps(x, y)|2 eεd2(x,y)/s dµ(x) ≤ Cε,m

s2mV (y,
√
s)
e−εt/s,

∀y ∈M, s, t > 0.
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Let us start by studying h. Write

h[(I − e−t∆)f ](x) =
(∞�

0

s

∣∣∣∣
∂

∂s
(e−s∆ − e−(s+t)∆)f(x)

∣∣∣∣
2

ds

)1/2

.

According to Proposition 3.1, it is enough to prove

(3.11)
�

d(x,y)≥
√
t

(∞�
0

s|∆xps(x, y)−∆xps+t(x, y)|2 ds
)1/2

dµ(x) ≤ C.

Set, for k ∈ N,

ak = ak(y, t) =
�

d(x,y)≥
√
t

( (k+1)t�
kt

s|∆xps(x, y)−∆xps+t(x, y)|2 ds
)1/2

dµ(x).

The same calculations as in Section 3.3 show that, for k ≥ 1,

ak ≤ C
√
bkV (y,

√
kt),(3.12)

where

bk = bk(y, t) =
�
M

(k+1)t�
kt

s|∆xps(x, y)−∆xps+t(x, y)|2e2εd2(x,y)/kt ds dµ(x)

=
�
M

(k+1)t�
kt

s
∣∣∣
s+t�
s

∆2
xpu(x, y) du

∣∣∣
2
e2εd2(x,y)/kt ds dµ(x)

≤
�
M

(k+1)t�
kt

s
(
t

s+t�
s

|∆2
xpu(x, y)|2 du

)
e2εd2(x,y)/kt ds dµ(x)

= t

(k+1)t�
kt

s

s+t�
s

( �
M

|∆2
xpu(x, y)|2e2εd2(x,y)/kt dµ(x)

)
du ds

≤ t
(k+1)t�
kt

s

s+t�
s

( �
M

|∆2
xpu(x, y)|2e6εd2(x,y)/u dµ(x)

)
du ds.

Thus, using Lemma 3.4 for m = 2 and t = 0, we get

bk ≤ Ct
(k+1)t�
kt

s

s+t�
s

du

u4V (y,
√
u)
ds ≤ Ct2

(k+1)t�
kt

ds

s3V (y,
√
s)

≤ C ′t3 1

(kt)3V (y,
√
kt)

,

and
ak ≤ Ck−3/2, k ≥ 1.
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One estimates a0 in a similar way, using Lemma 3.4 for t > 0, and one can
conclude that h has weak type (1, 1).

Now for g. Consider

g2
2(f)(x) =

∞�
0

t3|∆e−t
√
∆f(x)|2 dt.

Using (1.1), one can write

g2
2(f)(x) ≤ 1

π

∞�
0

t3
(∞�

0

|∆e− t
2

4u∆f(x)|e−uu−1/2 du
)2
dt,

≤ C
∞�
0

t3
(∞�

0

|∆e− t
2

4u∆f(x)|2e−uu−1/2 du
)
dt

= C

∞�
0

(∞�
0

t3|∆e− t
2

4u∆f(x)|2 dt
)
e−uu−1/2 du

= 8C
∞�
0

(∞�
0

v|∆e−v∆f(x)|2 dv
)
e−uu3/2 du

= C ′ h2(f)(x).

Finally it is well known that g ≤ g2 (see [38, p. 59]), thus the proof of
Theorem 1.4 is complete.

4. Divergence form operators on bad domains of Rn. In this
section, we consider a divergence form operator acting on a bad domain as
in [21].

Let Ω be the Euclidean space Rn or a domain of Rn. In the latter case, no
smoothness condition is assumed on the boundary of Ω unless it is implied
by other assumptions. Consequently, Ω may not satisfy the doubling volume
property, hence it is not necessarily a space of homogeneous type. However,
we can always find a subset X of Rn such that X contains Ω and X satisfies
the doubling volume property. One such space X is Rn itself, but for our
purpose, we will keep X as small as possible (see assumption (i) below).

Let Q be the sesquilinear form on the product space V × V , where V is
a dense subspace of the Sobolev space H1 = W 1

2 (Ω), given by

Q(f, g) =
�
Ω

∑

i,j

aij(x)
∂f

∂xi

∂g

∂xj
dx

for f, g ∈ V , and aij are bounded, measurable, complex-valued coefficients
which satisfy

|=m
∑

i,j

aij(x)ζiζj | ≤ C<e
∑

i,j

aij(x)ζiζj
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for some constant C, for all ζ ∈ Cn, x ∈ Ω. We also assume the uniformly
elliptic conditions

δ|ζ|2 ≤ <e
∑

i,j

aij(x)ζiζj ≤ κ|ζ|2

for x ∈ Ω and ζ ∈ Cn, where δ and κ are positive constants.
Let A be the divergence form operator associated with the form Q in

the sense that A is the operator in L2(Ω) with largest domain D(A) which
satisfies

〈Af, g〉 = Q(f, g)

for all f ∈ D(A) and all test functions g ∈ V . Different choices of the space V
give the operator A different corresponding boundary value conditions when
Ω is a domain in Rn. For example, when V is W 1,2

0 (Ω) and W 1,2(Ω), this
corresponds to the Dirichlet boundary conditions and Neumann boundary
conditions, respectively.

The operator A generates a bounded holomorphic semigroup e−zA,
|arg z| < µ for some µ < π/2. See [27, Chapter 9].

We aim to prove the Lp-boundedness of the Littlewood–Paley–Stein
function associated with A for 1 < p < 2 under the assumptions that A has
heat kernel bounds and the LPS function is bounded on L2. More specifi-
cally, we assume the following:

(i) The analytic semigroup e−tA generated by A has kernel pt(x, y) with
Gaussian upper bounds, that is,

|pt(x, y)| ≤ Cht(x, y)

for all t > 0, and all x, y ∈ Ω, with ht(x, y) defined on X ×X by

ht(x, y) =
1

|BX(x,
√
t)|

e−α|x−y|
2/t,

where C and α are positive constants.
(ii) The LPS function associated with A is bounded on L2(Ω), i.e. the

operator

H(f) =
{∞�

0

|∇e−tAf |2 dt
}1/2

satisfies
‖H(f)‖2 ≤ C‖f‖2, ∀f ∈ D(A).

(iii) The space V , the domain of the sesquilinear form, is invariant under
multiplication by bounded functions with bounded, continuous first deriva-
tives. This condition is satisfied by Dirichlet, Neumann and mixed boundary
conditions.



54 T. Coulhon et al.

Remark. (a) In assumption (i), BX means the ball in X where Ω ⊆
X ⊆ Rn as explained above, and |BX | its Lebesgue measure. It is also suf-
ficient to assume that A satisfies a Poisson type heat kernel upper bound
instead of (i), i.e. the exponential decay is replaced by a fast enough poly-
nomial decay. The proof of the main result of this section then needs only a
minor modification.

(b) Assumption (ii) is satisfied if the generalised Riesz transform asso-
ciated with A is bounded on L2(Ω), i.e. ‖∇A−1/2‖2→2 ≤ C. This holds if
and only if the domain D(A1/2) ⊆ V with ‖∇f‖2 ≤ C‖A1/2f‖2 for every
f ∈ D(A1/2). In this case, ∇ in the LPS function can be replaced by A1/2,
and the resulting square function norm is equivalent to the L2-norm on Ω
as a consequence of the fact that the operator A is maximal accretive, hence
has a bounded holomorphic functional calculus on L2(Ω).

(c) The main problem of this case is that Ω no longer satisfies the dou-
bling volume property, hence it is not a space of homogeneous type, and
the usual Calderón–Zygmund operator theory is not directly applicable. We
overcome this problem by using the results in [20].

Condition (i) implies that the semigroup e−tA has estimates on time
derivatives of its kernels. More specifically, we have the following lemma.

Lemma 4.1. Let Tt be a uniformly bounded analytic semigroup on L2(Ω)
and assume that Tt, t > 0, has a kernel pt(x, y) satisfying

|pt(x, y)| ≤ C

|BX(x,
√
t)|

e−α|x−y|
2/t, ∀x, y ∈ Ω, t > 0.

Then the time derivatives dk

dtk
Tt, k ∈ N, have kernels ∂k

∂tk
pt which satisfy

∣∣∣∣
∂k

∂tk
pt(x, y)

∣∣∣∣ ≤
Ck

tk|BX(x,
√
t)|

e−αk|x−y|
2/t, ∀x, y ∈ Ω, t > 0.

For a proof, see [21]. See also [15, Section 2.1], [22] and their references
for details.

It follows from boundedness of the operators dk

dtk
e−tA = Ake−tA on the

L2-space that the heat kernels pt(·, y) and their time derivatives ∂
∂tpt(·, y)

belong to the domain of the operator A.
Lemma 2 in [21] shows that the space derivative of pt(x, y) satisfies a

weighted L2-estimate. In that proof, if we replace the heat kernel pt(x, y) by
its time derivative ∂

∂tpt(·, y) and replace the weight wt(x, y) by the weight
eε|x−y|

2
for sufficiently small ε, then we obtain the estimate in Lemma 3.3

above with the divergence form operator A in place of the Laplace–Beltrami
operator. By repeating the proof of Theorem 1.4, we obtain the follow-
ing.
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Theorem 4.2. Under the above assumptions (i)–(iii), the operator

H(f) =
{∞�

0

|∇e−tAf |2 dt
}1/2

is of weak type (1, 1). Hence it can be extended to a bounded operator on
Lp(Ω) for 1 < p ≤ 2.

Notes. (a) Assumption (i) on heat kernel bounds is satisfied by large
classes of divergence form operators on Rn or a domain of Rn. In the case
of Dirichlet boundary conditions, we can have Gaussian heat kernel bounds
without any conditions on smoothness of the boundary of Ω. In the case
of Neumann boundary conditions, one needs the domain Ω to have the
extension property to ensure heat kernel bounds even with the Laplacian.
For example, see [18], [1] for divergence form operators with real coefficients,
and [5], [2] for certain operators with complex coefficients.

(b) Let A be a second order divergence form elliptic operator with
bounded, complex coefficients. It has been shown recently in [4] for A acting
on the Euclidean space Rn, and in [6] for A acting on a strongly Lipschitz
domain, that

‖∇f‖2 ≤ C‖A1/2f‖2, ∀f ∈ D(A).

As in Remark (b) of this section, this implies that assumption (ii) is satisfied
for these operators.

(c) Under assumptions (i) and (iii), the (horizontal) operator

h(f) =
{∞�

0

t

∣∣∣∣
∂

∂t
e−tAf

∣∣∣∣
2

dt

}1/2

is of weak type (1, 1). In this case, the analogue of assumption (ii) is satisfied
as a consequence of A being maximal accretive (see Remark (b) of this
section). The proof is then along the lines of Section 3.4.

(d) As in the case of manifolds, one can also consider vertical and hori-
zontal Littlewood–Paley–Stein functions defined with the help of the Poisson
semigroup e−t

√
A; the results are similar.
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