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Algebras of quotients with bounded evaluation of
a normed semiprime algebra

by

M. Cabrera (Granada) and Amir A. Mohammed (Mosul)

Abstract. We deal with the algebras consisting of the quotients that produce
bounded evaluation on suitable ideals of the multiplication algebra of a normed semiprime
algebra A. These algebras of quotients, which contain A, are subalgebras of the bounded
algebras of quotients of A, and they have an algebra seminorm for which the relevant in-
clusions are continuous. We compute these algebras of quotients for some norm ideals on
a Hilbert space H: 1) the algebras of quotients with bounded evaluation of the ideal of all
compact operators on H are equal to the Banach algebra of all bounded linear operators
on H, 2) the algebras of quotients with bounded evaluation of the Schatten p-ideal on H
(for 1 ≤ p <∞) are equal to the Schatten p-ideal on H. We also prove that the algebras of
quotients with bounded evaluation on the class of totally prime algebras have an analytic
behavior similar to the one known for the bounded algebras of quotients on the class of
ultraprime algebras.

Introduction and preliminaries. Throughout this paper all algebras
considered are associative over the field K equal to R or C.

The notion of rings of quotients (in which two-sided ideals are used)
was introduced by W. S. Martindale for prime rings in [5] and extended to
semiprime rings by S. A. Amitsur in [1]. It is usual to define these rings of
quotients using partially defined centralizers on essential ideals. However,
for our purposes we prefer to give a somewhat more abstract presentation
(see for example [9] or [2]). Given a semiprime algebra A, the right algebra
of quotients of A, denoted here by Qr(A), is defined as the maximal algebra
extension Q of A which satisfies the following conditions:

(i) if q ∈ Q, then there exists an essential ideal I of A with qI ⊆ A,
(ii) if q ∈ Q, I is an essential ideal of A, and qI = 0, then q = 0.

Given q in Qr(A), and an essential ideal I of A such that qI ⊆ A, the
symbol LIq will denote the mapping from I into A given by LIq(x) = qx for
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all x in I. Following [6; Chapter 2], when A is additionally a normed algebra,
the right bounded algebra of quotients of A is defined as the subalgebra of
Qr(A) given by

Qrb(A) = {q ∈ Qr(A) : there exists an essential ideal I of A

such that qI ⊆ A and LIq is bounded}
endowed with the algebra seminorm

|||q|||r = inf{‖LIq‖ : I is an essential ideal of A

such that qI ⊆ A and LIq is bounded}.
It is clear that the inclusion of A into Qr(A) becomes a continuous em-
bedding of A into Qrb(A). In a similar fashion, using Ql(A) (the left al-
gebra of quotients of A), one defines the left bounded algebra of quotients
(Qlb(A), ||| · |||l). Also, the fact that the symmetric algebra of quotients of A
can be viewed as Qs(A) = Qr(A) ∩ Ql(A) suggests defining the symmetric
bounded algebra of quotients (Qsb(A), ||| · |||s) by

Qsb(A) = Qrb(A) ∩Qlb(A) and ||| · |||s = max{||| · |||r, ||| · |||l}.
Bounded algebras of quotients behave well on an interesting class

of normed algebras first discussed by M. Mathieu in [6]. Recall that a
normed algebra A is ultraprime if there exists a positive number K such
that K‖a‖ ‖b‖ ≤ ‖Ma,b‖ for all a, b in A, where Ma,b : A → A is the
two-sided multiplication operator defined by Ma,b(x) = axb for all x in A.
Bounded algebras of quotients provide analytic algebras of quotients on the
class of ultraprime algebras in the following sense: if A is an ultraprime
algebra, then Qrb(A) is an ultraprime algebra, and the inclusion of A into
Qrb(A) is topological. Moreover, if Q is a normed algebra such that Q is a
subalgebra of Qr(A) containing A, and the inclusion of A into Q is topolog-
ical, then Q is continuously embedded in Qrb(A) (see [7; Theorem 4.1] and
[8; Proposition 2.8]).

In Section 1, we will introduce the algebras of quotients with bounded
evaluation for a normed semiprime algebra. Our construction involves the
multiplication algebra and our treatment follows, as far as possible, the
aforementioned construction of bounded algebras of quotients. Recall that
the multiplication algebra M(A) of an algebra A is defined as the subalgebra
of L(A) (the algebra of all linear operators on A) generated by the identity
operator IdA and the set {La, Ra : a ∈ A}, where La and Ra are the
operators of left and right (respectively) multiplication by a on A. The
starting point of our construction is a result which is purely algebraic in
nature and which asserts that if A is a semiprime algebra, then M(A) is
canonically embedded in M(Qr(A)). Using this result, for each q in Qr(A)
and each essential ideal I of A such that qI ⊆ A, we will consider the ideal Ir
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of M(A) generated by the set {Rx : x ∈ I} and the A-valued mapping EI
r

q

determined by the evaluation on q of the elements of Ir. The right algebra of
quotients with bounded evaluation Qrbe(A) for a normed semiprime algebra
A arises when the operators LIq in the definition of Qrb(A) are replaced by
the evaluation operators EI

r

q .
Section 2 is devoted to the study of the algebras of quotients with

bounded evaluation of some norm ideals on a Hilbert space H, namely
the ideal KL(H) of all compact operators and the Schatten p-ideals Cp(H)
(1 ≤ p < ∞). We will begin by determining the bounded algebras of quo-
tients for arbitrary norm ideals: if A is a norm ideal on H, then the bounded
algebras of quotients of A are equal to BL(H) (the Banach algebra of all
bounded linear operators on H). Our main results assert that Cp(H) (1 ≤ p
< ∞) is closed under passing to algebras of quotients with bounded eval-
uation, while the algebras of quotients with bounded evaluation of KL(H)
are equal to BL(H).

In Section 3 we will study the behavior of the algebras of quotients with
bounded evaluation on the class of totally prime algebras introduced in [4].
Algebras of quotients with bounded evaluation provide analytic algebras of
quotients for this class. So, for example, for the symmetric algebra, we will
prove that: if A is a totally prime algebra, then Qsbe(A) is a totally prime
algebra, and the inclusions of A into Qsbe(A) and of M(A) into M(Qsbe(A))
are topological. Moreover, if Q is a normed algebra such that Q is a subal-
gebra of Qs(A) containing A and the inclusions of A into Q and of M(A)
into M(Q) are topological, then Q and M(Q) are continuously embedded
in Qsbe(A) and M(Qsbe(A)) respectively. An analogous result is also obtained
for totally multiplicatively prime algebras, which were recently introduced
by the authors in [3].

1. Algebras of quotients with bounded evaluation of a normed
semiprime algebra. For our construction we shall begin with a general
result on multiplication algebras that relies on the theory of generalized
polynomial identities (see [2]). Let A be a semiprime algebra and let C
denote the extended centroid of A (that is, the centre of Qr(A)). Let X be
a countably infinite set (of “formal variables”); denote by C〈X〉 the free
algebra over C on X, and by Qr(A)C〈X〉 the coproduct of the C-algebras
Qr(A) and C〈X〉. The elements of Qr(A)C〈X〉 are generalized polynomial
identities. A generalized polynomial identity φ is satisfied by A if s(φ) = 0
for all (substitution) C-algebra homomorphisms s : Qr(A)C〈X〉 → Qr(A)
such that s(X) ⊆ A and s(q) = q for all q in Qr(A).

Proposition 1. Let A be a semiprime algebra and Q,Q′ be subalgebras
of Qr(A) such that A ⊆ Q ⊆ Q′ ⊆ Qr(A). Then for all F in M(Q) there
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exists a unique element F̃ in M(Q′) such that

(1) F̃ (a) = F (a) for all a in A,

and the mapping F 7→ F̃ becomes an algebra monomorphism from M(Q)
into M(Q′).

Proof. Let Q1 denote the unital envelope of Q in Qr(A), that is, the
subalgebra of Qr(A) generated by Q and the unit 1 of Qr(A). For p, q in Q1,
denote by MQ

p,q the multiplication operator on Q defined by MQ
p,q(r) = prq

for all r in Q. It is easy to see that

M(Q) =
{ n∑

i=1

MQ
pi,qi : n ∈ N, pi, qi ∈ Q1 (1 ≤ i ≤ n)

}
.

We shall use the same notation for Q′. For F in M(Q), if we choose n in N
and pi, qi in Q1 (1 ≤ i ≤ n) such that F =

∑n
i=1 M

Q
pi,qi , then it is obvious

that the element of M(Q′) given by F ′ :=
∑n
i=1 M

Q′
pi,qi satisfies the following

condition:

(2) F ′(q) = F (q) for all q in Q,

therefore confirming the existence of a multiplication operator F̃ which sat-
isfies (1). To prove the uniqueness of F̃ it suffices to show that for T in
M(Q′) the condition T (A) = 0 implies T = 0. Let T be an element of
M(Q′) such that T (a) = 0 for all a in A. If we choose n in N and pi, qi in
Q′1 (1 ≤ i ≤ n) such that T =

∑n
i=1 M

Q′
pi,qi , then φ(x) =

∑n
i=1 pixqi is a

generalized polynomial identity satisfied by A. By [2; Proposition 6.3.13],
T = 0. Finally, it is a straightforward verification (taking (2) into account)
that the mapping F 7→ F̃ is an algebra monomorphism from M(Q) into
M(Q′).

The above proposition allows us to conclude that if A is a semiprime
algebra and if Q,Q′ are subalgebras of Qr(A) such that A ⊆ Q ⊆ Q′ ⊆
Qr(A), then the evaluation at elements of A determines the corresponding
inclusions for the multiplication algebras:

M(A) ⊆M(Q) ⊆M(Q′) ⊆M(Qr(A)),

a fact that we will use without further mention.
For an ideal I of an algebra A we will denote by Ir the ideal of M(A)

generated by the set {Rx : x ∈ I}.

Lemma 1. Let A be an algebra. If I is an ideal of A, then Ir coincides
with the left and right ideals of M(A) generated by the set {Rx : x ∈ I}.
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Moreover ,

Ir =
{ n∑

i=1

Mai,xi : n ∈ N, ai ∈ A1, xi ∈ I (1 ≤ i ≤ n)
}
,

where A1 denotes the unital envelope of A in Qr(A).

Proof. Let I be an ideal of A and let P = {∑n
i=1 Mai,xi : n ∈ N, ai ∈ A1,

xi ∈ I (1 ≤ i ≤ n)}. Since Ma,bMc,d = Mac,db for all a, b, c, d in A1, it follows
that P is a two-sided ideal of M(A). For x in I and a in A1, taking into
account the equalities Rx = M1,x and Ma,x = LaRx = RxLa, it is clear
that P contains the set {Rx : x ∈ I} and that P is contained in the left and
right ideals of M(A) generated by {Rx : x ∈ I}. This concludes the proof.

Now we introduce the operators that support the framework of the right
algebra of quotients with bounded evaluation of a normed semiprime alge-
bra A. Given q in Qr(A), it is clear that the set D = {F ∈M(A) : F (q) ∈ A}
is a left ideal of M(A), and that the evaluation mapping Eq defined by
Eq(F ) = F (q) for all F in D is A-valued. If I is an ideal of A such that
qI ⊆ A, then the set {Rx : x ∈ I} is contained in D, hence Ir is also
contained in D as a consequence of Lemma 1. Thus, we may consider the
restriction of Eq to Ir, which will be denoted by EI

r

q .

Theorem 1. Let A be a normed semiprime algebra. Then

Qrbe(A) = {q ∈ Qr(A) : there exists an essential ideal I of A

such that qI ⊆ A and EI
r

q is bounded }
is a subalgebra of Qr(A), and · r : Qrbe(A)→ R defined by

q r = inf{‖EIrq ‖ : I is an essential ideal of A

such that qI ⊆ A and EI
r

q is bounded }
is an algebra seminorm. Moreover ,

(i) Qrbe(A) is a subalgebra of Qrb(A) containing A, and these inclusions
are continuous. Precisely , a r ≤ ‖a‖ for all a in A, and |||q|||r ≤ q r for all
q in Qrbe(A).

(ii) The inclusion of M(A) into M(Qrbe(A)) is continuous. Precisely ,
F r ≤ ‖F‖ for all F in M(A).

Proof. It is easy to prove that Qrbe(A) is a subspace of Qr(A) and · r is
a seminorm on Qrbe(A). Let p, q be in Qrbe(A), and consider essential ideals
I, J of A such that pI ⊆ A, qJ ⊆ A and EI

r

p , EJ
r

q are bounded. Note that
JI is an essential ideal of A such that pqJI ⊆ A and (JI)r ⊆ Ir ∩ Jr.
Moreover, the inclusion (JI)rRq ⊆ Ir is a consequence of the above lemma
and of the fact that Ma,yxRq = Ma,qyx ∈ Ir for all a in A1, x in I, and y
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in J . Now, for F in (JI)r we can write

E(JI)r
pq (F ) = F (pq) = FRq(p) = EI

r

p (FRq),

and so

(3) ‖E(JI)r
pq (F )‖ = ‖EIrp (FRq)‖ ≤ ‖EI

r

p ‖ ‖FRq‖.
Moreover, for a in A we have

FRq(a) = F (aq) = FLa(q) = EJ
r

q (FLa),

hence

‖FRq(a)‖ = ‖EJrq (FLa)‖ ≤ ‖EJrq ‖ ‖FLa‖ ≤ ‖EJ
r

q ‖ ‖F‖ ‖a‖,
and so

(4) ‖FRq‖ ≤ ‖EJ
r

q ‖ ‖F‖.

From (3) and (4) it follows that E(JI)r
pq is bounded and

‖E(JI)r
pq ‖ ≤ ‖EIrp ‖ ‖EJ

r

q ‖,
so pq lies in Qrbe(A) and pq r ≤ ‖EI

r

p ‖ ‖EJ
r

q ‖. Hence pq r ≤ p r q r.

(i) For a in A and F in Ar we have

‖EAra (F )‖ = ‖F (a)‖ ≤ ‖F‖ ‖a‖,
therefore EA

r

a is bounded and ‖EAra ‖ ≤ ‖a‖, and so a lies in Qrbe(A) and
a r ≤ ‖a‖. Let q in Qrbe(A), and suppose that I is an essential ideal of A

such that qI ⊆ A and EI
r

q is bounded. Then, for all x in I,

‖LIq(x)‖ = ‖qx‖ = ‖EIrq (Rx)‖ ≤ ‖EIrq ‖ ‖x‖,
hence LIq is bounded and ‖LIq‖ ≤ ‖EI

r

q ‖, therefore q lies in Qrb(A) and
|||q|||r ≤ q r.

(ii) Fix F in M(A). If q is in Qrbe(A) and I is an essential ideal of A such
that qI ⊆ A and EI

r

q is bounded, then F (q)I ⊆ IrF (q) ⊆ Ir(q) ⊆ A; there-
fore, for each G in Ir, we can write EI

r

q (GF ) = GF (q) = EI
r

F (q)(G). From

this it follows that ‖EIrF (q)(G)‖ ≤ ‖EIrq ‖ ‖G‖ ‖F‖, hence EI
r

F (q) is bounded

and ‖EIrF (q)‖ ≤ ‖EI
r

q ‖ ‖F‖. As a consequence, F (q) r ≤ ‖EI
r

q ‖ ‖F‖ and,
taking the infimum over I, we have F (q) r ≤ q r‖F‖. This implies that
F r ≤ ‖F‖.

Definition 1. Let A be a normed semiprime algebra. The seminormed
algebra (Qrbe(A), · r) described in the previous theorem will be called the
right algebra of quotients with bounded evaluation of A. Similarly one defines
the left algebra of quotients with bounded evaluation of A through Ql(A) as
follows:
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Qlbe(A) = {q ∈ Ql(A) : there exists an essential ideal I of A
such that Iq ⊆ A and EI

l

q is bounded}
and

q l = inf{‖EIlq ‖ : I is an essential ideal of A

such that Iq ⊆ A and EI
l

q is bounded},
where EI

l

q denotes the A-valued mapping determined by the evaluation on q
of the elements of I l (the ideal of M(A) generated by the set {Lx : x ∈ I}).
Also, the symmetric algebra of quotients with bounded evaluation of A is
defined as the seminormed algebra (Qsbe(A), · s) given by

Qsbe(A) = Qrbe(A) ∩Qlbe(A) and · s = max{ · r, · l}.

2. Algebras of quotients with bounded evaluation for Schatten
ideals and compact operators on a Hilbert space. Throughout this
section, H will denote a Hilbert space over K with inner product 〈·, ·〉, L(H)
the algebra of all linear operators on H, and (BL(H), ‖ · ‖∞) the Banach
algebra of all bounded linear operators on H with the operator norm. As
usual, for x, y in H, x⊗y will denote the rank-one operator on H defined by
(x⊗ y)(z) = 〈z, y〉x for all z in H. It is well known that the subset FL(H)
of BL(H) consisting of all finite-rank operators can be expressed as follows:

FL(H) =
{ n∑

i=1

xi ⊗ yi : n ∈ N, xi, yi ∈ H (1 ≤ i ≤ n)
}
.

Moreover, FL(H) is the sum of all minimal left ideals of BL(H) (the socle of
BL(H)) and is a minimal ideal of BL(H) contained in every ideal of BL(H).
Recall also that a norm ideal on H is an ideal A of BL(H) endowed with a
norm ‖ · ‖ satisfying the following conditions:

(i) ‖x⊗ y‖ = ‖x‖ ‖y‖ for all x, y in H (cross-property),
(ii) ‖FTG‖ ≤ ‖F‖∞‖T‖ ‖G‖∞ for all T in A and F,G in BL(H).

From these conditions, for T in A and x, y in H with ‖x‖ = ‖y‖ = 1, it
follows that

‖T (x)‖ = ‖T (x)⊗ y‖ = ‖T (x⊗ y)‖ ≤ ‖T‖ ‖x⊗ y‖∞ = ‖T‖.
Hence ‖T‖∞ ≤ ‖T‖, and taking (ii) into account once again, we conclude
that A is a normed algebra.

For a bounded linear operator T on H, we will denote by T ∗ the adjoint
operator of T . Note that if A is a subalgebra (resp. left ideal, right ideal,
ideal) of BL(H), then it is clear that

A∗ := {T ∗ : T ∈ A}
is a subalgebra (resp. right ideal, left ideal, ideal) of BL(H) and ∗ : A→ A∗
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is an algebra anti-isomorphism. Moreover, if ‖ · ‖ is an algebra norm on A,
then it is clear that ‖ · ‖∗ : A∗ → R, defined by ‖S‖∗ := ‖S∗‖ for all S in A∗,
is an algebra norm on A∗. The normed algebra (A∗, ‖ · ‖∗) will be denoted
by (A, ‖ · ‖)∗. It is easy to see that if (A, ‖ · ‖) is a norm ideal on H, then
(A, ‖ · ‖)∗ is also a norm ideal on H.

Our first goal is to determine the bounded algebra of quotients of those
normed algebras that are norm ideals.

Theorem 2. Let (A, ‖ · ‖) be a norm ideal on H. Then

(Qrb(A), ||| · |||r) = (Qlb(A), ||| · |||l) = (Qsb(A), ||| · |||s) = (BL(H), ‖ · ‖∞).

Proof. Let Hc denote the conjugate Hilbert space of H. Note that
(H,Hc, 〈·, ·〉) is a pairing over K and, as a consequence of the closed graph
theorem, BL(H) is the algebra of all linear operators on H that have an
adjoint with respect to 〈·, ·〉, and so FL(H) is the ideal of all linear opera-
tors on H that have an adjoint with respect to 〈·, ·〉 and are of finite rank.
Since A is a norm ideal on H, it follows that A is a subalgebra of BL(H)
containing FL(H) and, by [2; Theorem 4.3.7], Qr(A) = L(H).

For T in BL(H) and F in FL(H) we have

‖LFL(H)
T (F )‖ = ‖TF‖ ≤ ‖T‖∞‖F‖,

therefore LFL(H)
T : (FL(H), ‖ · ‖) → (A, ‖ · ‖) is bounded and ‖LFL(H)

T ‖ ≤
‖T‖∞. Thus BL(H) ⊆ Qrb(A) and |||T |||r ≤ ‖T‖∞ for all T in BL(H). To
prove the reverse inclusion, note that FL(H) is the minimal ideal of A and
so Qrb(A) is the subalgebra of L(H) consisting of all T in L(H) such that

L
FL(H)
T : (FL(H), ‖ · ‖)→ (A, ‖ · ‖)

is bounded and |||T |||r = ‖LFL(H)
T ‖ for all T in Qrb(A). If T is in Qrb(A), then

‖T (x)‖ ‖x‖ = ‖T (x)⊗ x‖ = ‖T (x⊗ x)‖ = ‖LFL(H)
T (x⊗ x)‖

≤ ‖LFL(H)
T ‖ ‖x⊗ x‖ = ‖LFL(H)

T ‖ ‖x‖2

for all x in H, hence T lies in BL(H) and ‖T‖∞ ≤ |||T |||r. Therefore,
(Qrb(A), ||| · |||r) = (BL(H), ‖ · ‖∞).

Now, we shall show that (Qlb(A), |||·|||l) = (BL(H), ‖·‖∞). Using the same
reasoning as above, it is clear that for T in BL(H) the operator RFL(H)

T :
(FL(H), ‖ · ‖) → (A, ‖ · ‖) is bounded and ‖RFL(H)

T ‖ ≤ ‖T‖∞. Therefore
BL(H) ⊆ Qlb(A) and |||T |||l ≤ ‖T‖∞ for all T in BL(H). To prove the
converse inclusion, fix q in Qlb(A). Then % : (FL(H), ‖·‖)→ (A, ‖·‖) defined
by %(F ) = Fq is a bounded linear operator satisfying %(TF ) = T%(F ) for all
F in FL(H) and T in A. Thus, the mapping λ : (FL(H), ‖·‖∗)→ (A∗, ‖·‖∗)
defined by λ(F ) := %(F ∗)∗ for all F in FL(H) is also a bounded linear
operator satisfying λ(FT ) = λ(F )T for all F in FL(H) and T in A∗. By [2;
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Proposition 2.2.1(iv)] and the definition of Qrb(A
∗) there exists p in Qrb(A

∗)
such that λ(F ) = pF for all F in FL(H). Now, applying the first part of
the proof to the norm ideal A∗, we get the existence of S in BL(H) such
that λ(F ) = LS(F ) for all F in FL(H). Consequently, %(F ) = λ(F ∗)∗ =
(SF ∗)∗ = FS∗ = RS∗(F ) for all F in FL(H), hence % = R

FL(H)
S∗ . Thus

Qlb(A) = BL(H). Now, using the same reasoning as before we see that
‖T‖∞ ≤ ‖RFL(H)

T ‖ for all T in BL(H). Therefore ||| · |||l = ‖ · ‖∞.
Finally, from the definition of a symmetric bounded algebra of quotients

it is clear that (Qsb(A), ||| · |||s) = (BL(H), ‖ · ‖∞).

As a consequence of Theorems 1 and 2, algebras of quotients with bound-
ed evaluation of norm ideals on H are subalgebras of BL(H). Next, we will
show that there is a useful relationship between the left or right algebras of
quotients of bounded evaluation of a norm ideal and their adjoints.

Proposition 2. Let (A, ‖ · ‖) be a norm ideal on H. Then

(Qrbe(A), · r)∗ = (Qlbe(A
∗), · l).

Proof. Note that the algebra anti-isomorphism ∗ : A → A∗ leads to an
isometric isomorphism

∗ : (M(A), ‖ · ‖)→ (M(A∗), ‖ · ‖∗)
defined by T ∗(S) = T (S∗)∗ for all T in M(A) and S in A∗. For a nonzero
ideal I of A it is clear that the equality (Ir)∗ = (I∗)l holds. Furthermore,
for F in BL(H) we have: FI ⊆ A if, and only if, I∗F ∗ ⊆ A∗. In that case

EI
r

F (T ) = E
(I∗)l

F ∗ (T ∗)∗ for all T in Ir. Therefore, ‖EIrF (T )‖ = ‖E(I∗)l

F ∗ (T ∗)‖∗
for all T in Ir, and so EI

r

F is bounded if, and only if, E(I∗)l

F ∗ is bounded.

Moreover, in this case ‖EIrF ‖ = ‖E(I∗)l

F ∗ ‖∗. Consequently, F lies in Qrbe(A) if,
and only if, F ∗ lies in Qlbe(A

∗), and in that case F r = F ∗ l.

The above proposition makes it clear that the study of algebras of quo-
tients with bounded evaluation of self-adjoint norm ideals focuses on right
algebras.

Proposition 3. Let (A, ‖ · ‖) be a norm ideal on H. Then Qrbe(A) is a
right ideal of BL(H) and · r is an algebra norm satisfying the following
assertions:

(i) T r ≤ ‖T‖ for all T in A,
(ii) ‖T‖∞ ≤ T r for all T in Qrbe(A),
(iii) x⊗ y r = ‖x‖ ‖y‖ for all x, y in H,
(iv) ‖TF‖ ≤ T r‖F‖∞ for all T in Qrbe(A) and F in FL(H),
(v) TF r ≤ T r‖F‖∞ for all T in Qrbe(A) and F in BL(H).
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Proof. By Theorems 1 and 2, Qrbe(A) is a subalgebra of BL(H) contain-
ing A and · r is an algebra seminorm on Qrbe(A) satisfying (i) and (ii). As
a consequence of (ii), · r is in fact a norm on Qrbe(A).

(iii) Using (ii) and (i) we see that for x, y in H,

‖x‖ ‖y‖ = ‖x⊗ y‖∞ ≤ x⊗ y r ≤ ‖x⊗ y‖ = ‖x‖ ‖y‖,
hence x⊗ y r = ‖x‖ ‖y‖.

(iv) For T in Qrbe(A) and F in FL(H) we have

‖TF‖ = ‖EFL(H)r

T (RF )‖ ≤ ‖EFL(H)r

T ‖ ‖RF ‖
≤ ‖EFL(H)r

T ‖ ‖F‖∞ = T r‖F‖∞.
Finally, we shall prove that Qrbe(A) is a right ideal of BL(H) and that

(v) is satisfied. Since FL(H) is a nonzero ideal of BL(H) it follows that the
inclusion FL(H)rRF ⊆ FL(H)r holds for every F in BL(H). Furthermore,
for T in FL(H)r and F in BL(H) we see that

‖(T RF )(T )‖ = ‖T (TF )‖ ≤ ‖T ‖ ‖TF‖ ≤ ‖T ‖ ‖T‖ ‖F‖∞
for all T in A, hence ‖T RF ‖ ≤ ‖T ‖ ‖F‖∞.

Now, for T in Qrbe(A), F in BL(H), and T in FL(H)r we have

‖EFL(H)r

TF (T )‖ = ‖T (TF )‖ = ‖T RF (T )‖ = ‖EFL(H)r

T (T RF )‖
≤ ‖EFL(H)r

T ‖ ‖T RF ‖ ≤ ‖EFL(H)r

T ‖ ‖T ‖ ‖F‖∞,
hence EFL(H)r

TF is bounded and ‖EFL(H)r

TF ‖ ≤ ‖EFL(H)r

T ‖ ‖F‖∞, and so TF
lies in Qrbe(A) and TF r ≤ T r‖F‖∞.

We now study the algebras of quotients with bounded evaluation of the
ideal of all compact operators on H. Recall that an operator F on H is called
compact if F (BH) is relatively compact in the norm topology, where BH is
the closed unit ball of H. The set KL(H) of all compact operators on H is
a self-adjoint closed ideal of BL(H) and FL(H) is dense in (KL(H), ‖·‖∞).
Also we recall that the strong operator topology on BL(H) is the topol-
ogy of pointwise convergence, and that for this topology the left and right
multiplications by a fixed operator are bounded.

Theorem 3. Let KL(H) be the ideal of all compact operators on H.
Then

(Qrbe(KL(H)), · r) = (Qlbe(KL(H)), · l) = (Qsbe(KL(H)), · s)
= (BL(H), ‖ · ‖∞).

Proof. We begin by proving that (Qrbe(KL(H)), · r) = (BL(H), ‖·‖∞).
By Proposition 3(ii), Qrbe(KL(H)) is a right ideal of BL(H) and ‖T‖∞ ≤
T r for all T in Qrbe(KL(H)). We claim that if T is in M(BL(H)) and
T KL(H) denotes the restriction of T to KL(H), then ‖T ‖∞ = ‖T KL(H)‖∞.
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Let T be in M(BL(H)). For each positive number ε we can take F in the
closed unit ball BBL(H) of BL(H) and x in BH such that ‖T ‖∞ − ε <
‖T (F )(x)‖. It is well known that the closed unit ball BKL(H) of KL(H)
is strongly dense in BBL(H) (see [10; Lemma 3.3.2]). Therefore we can as-
sume the existence of a net {Fλ}λ∈Λ in BKL(H) which is strongly conver-
gent to F . By the separate strong continuity of the product of BL(H),
it follows that {T (Fλ)}λ∈Λ is strongly convergent to T (F ). Consequently,
{‖T (Fλ)(x)‖}λ∈Λ converges to ‖T (F )(x)‖. Therefore, there is λ0 in Λ such
that ‖T ‖∞ − ε < ‖T (Fλ)(x)‖ for all λ ≥ λ0. Thus,

‖T ‖∞ − ε < ‖T (Fλ0)(x)‖ ≤ ‖T (Fλ0)‖∞ ≤ ‖T KL(H)‖∞.
Since ε is an arbitrary positive number, we obtain ‖T ‖∞ = ‖T KL(H)‖∞.

Now, taking into account the inclusions

FL(H)r ⊆M(KL(H)) ⊆M(BL(H)) ⊆ BL(BL(H))

(where FL(H)r is the ideal of M(KL(H)) generated by the set {RF : F ∈
FL(H)}) and the claim which was proven above, it follows that for T in
BL(H) and T in FL(H)r,

‖EFL(H)r

T (T )‖∞ = ‖T (T )‖∞ ≤ ‖T ‖∞‖T‖∞ = ‖T KL(H)‖∞‖T‖∞,

hence E
FL(H)r

T is bounded and ‖EFL(H)r

T ‖∞ ≤ ‖T‖∞, and so T lies in
Qrbe(KL(H)) and T r ≤ ‖T‖∞.

Finally, by Proposition 2, (Qlbe(KL(H)), · l) = (BL(H), ‖·‖∞) because
(KL(H), ‖ · ‖∞)∗ = (KL(H), ‖ · ‖∞). Thus also (Qsbe(KL(H)), · s) =
(BL(H), ‖ · ‖∞).

For the remainder of this section, we will turn our attention to the study
of the algebras of quotients with bounded evaluation of the Schatten p-
ideals. We will include some aspects of these ideals that are pertinent to
the development of this paper and that can be found for example in [10],
[11], [13], and [14]. Recall that an operator T in BL(H) has a Schmidt
representation if there are orthonormal families {xi}i∈I , {yi}i∈I of vectors
of H and a scalar family {σi}i∈I such that T =

∑
i∈I σixi⊗yi. The Schatten

ideal Cp(H) (1 ≤ p < ∞) is defined as the set of all operators T in BL(H)
which have a Schmidt representation T =

∑
i∈I σixi ⊗ yi such that

∑

i∈I
|σi|p <∞,

and the Schatten norm ‖ · ‖p of T is defined by

‖T‖p =
(∑

i∈I
|σi|p

)1/p
.
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This definition does not depend on the Schmidt representation chosen.
(Cp(H), ‖·‖p) is a Banach algebra which is a self-adjoint norm ideal on H and
the involution ∗ is ‖·‖p-isometric. Moreover, FL(H) ⊆ Cp(H) ⊆ KL(H) and
FL(H) is dense in (Cp(H), ‖ · ‖p). Also, Cp(H) ⊆ Cq(H) for 1 ≤ p ≤ q <∞
and ‖T‖q ≤ ‖T‖p for all T in Cp(H). The Schatten ideal C1(H) is called the
ideal of trace class operators, which is justified by the fact that C1(H) is the
domain of the trace function tr, defined by

tr(T ) =
∑

λ∈Λ
〈T (eλ), eλ〉

for all T in C1(H), where {eλ}λ∈Λ is an arbitrary orthonormal basis in H
(again, this definition does not depend on the basis selected). Furthermore,
the mapping tr : C1(H) → K is a continuous commutative linear form
satisfying |tr(T )| ≤ ‖T‖1 for all T in C1(H).

Recall that a bounded linear operator T on H is called positive if T ∗ = T
and 〈T (x), x〉 ≥ 0 for all x in H. If T is a positive operator, then T has a
unique positive square root, which will be denoted by T 1/2. The absolute
value of a bounded linear operator F is defined as the positive square root
of F ∗F and will be denoted by [F ], that is, [F ] = (F ∗F )1/2. Finally, recall
that an operator W on H is said to be partially isometric if WW ∗W = W .

Theorem 4. Let Cp(H) (1 ≤ p <∞) be the Schatten p-ideal. Then

(Qrbe(Cp(H)), · r) = (Qlbe(Cp(H)), · l) = (Qsbe(Cp(H)), · s)
= (Cp(H), ‖ · ‖p).

Proof. We first prove that

(Qrbe(Cp(H)), · r) = (Cp(H), ‖ · ‖p).
By Proposition 3, Qrbe(Cp(H)) is a right ideal of BL(H). Let T be a positive
operator inQrbe(Cp(H)). We claim that T belongs to Cp(H) and ‖T‖p ≤ T r.
Again by Proposition 3(iv) we have

(5) ‖FT‖p = ‖TF ∗‖p ≤ T r‖F‖∞
for all F in FL(H). Choose a natural number n such that p ≤ 2n. We shall
prove that

(6) ‖FT 2k‖2n−k ≤ T
2k

r ‖F‖∞
for all F in FL(H) and k ∈ {0, 1, . . . , n}. The proof is by induction on k. For
k = 0 the result follows directly from (5) and from the fact that ‖·‖2n ≤ ‖·‖p.
Now suppose that (6) holds for some k ∈ {0, 1, . . . , n − 1}. If for a fixed
F in FL(H) we denote by P the orthogonal projection from H onto the
finite-dimensional subspace T 2k+1

F ∗(H), then

FT 2k+1
= (T 2k+1

F ∗)∗ = (PT 2k+1
F ∗)∗ = FT 2k+1

P,
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and so
‖FT 2k+1‖2n−k−1 = ‖FT 2k+1

P‖2n−k−1 .

By [11; Theorem 15.5.9], RS belongs to C2n−k−1(H) whenever R and S are
in C2n−k(H), and in that case ‖RS‖2n−k−1 ≤ ‖R‖2n−k‖S‖2n−k . Thus,

‖FT 2k+1‖2n−k−1 ≤ ‖FT 2k‖2n−k‖T 2kP‖2n−k ≤ T
2k

r ‖F‖∞ T
2k

r ‖P‖∞
= T

2k+1

r ‖F‖∞,
proving (6) for k + 1, and concluding the induction. Now, taking k = n

in (6), we have ‖FT 2n‖1 ≤ T
2n

r ‖F‖∞ for all F in FL(H), and conse-
quently |tr(FT 2n)| ≤ T

2n

r ‖F‖∞ for all F in FL(H). By [11; 6.4.1 and
Theorem 22.1.9], T 2n is a trace class operator and so T 2n is compact. Con-
sequently, T is also compact and so can be diagonalized. Thus, there is an
orthonormal family {ei}i∈I and a nonnegative family {λi}i∈I which van-
ishes at infinity such that T =

∑
i∈I λiei ⊗ ei. Now, consider the projection

PΓ =
∑n
k=1 eik⊗eik for every finite subset Γ = {i1, . . . , in} of I. Then, from

(5), we have
∑n
k=1 λ

p
ik

= ‖PΓT‖pp ≤ T
p
r‖PΓ ‖p∞ = T

p
r . Therefore, T lies

in Cp(H) and ‖T‖p ≤ T r.
Now, let T be an arbitrary operator in Qrbe(Cp(H)). Due to the polar

decomposition of T ∗, there exists a unique partial isometry W such that
T ∗ = W [T ∗]; furthermore, [T ∗] = W ∗T ∗. Since Qrbe(Cp(H)) is a right ideal
of BL(H), it follows that [T ∗] = TW belongs to Qrbe(Cp(H)). By Proposi-
tion 3(v) we also see that

[T ∗] r = TW r ≤ T r‖W‖∞ = T r.

Since [T ∗] is positive, from the first part of the proof we conclude that
[T ∗] belongs to Cp(H) and ‖[T ∗]‖p ≤ T r. Now, taking into account the
equality T ∗ = W [T ∗], we can conclude that T ∗ (hence T ) belongs to Cp(H).
Furthermore, since

‖T‖p = ‖T ∗‖p = ‖W [T ∗]‖p ≤ ‖[T ∗]‖p ≤ T r,

it follows that ‖T‖p ≤ T r. The converse inequality is valid, as stated in
Proposition 3(i).

Finally, according to Proposition 2, (Qlbe(Cp(H)), · l) = (Cp(H), ‖ · ‖p)
since (Cp(H), ‖ · ‖p)∗ = (Cp(H), ‖ · ‖p). Thus, (Qsbe(Cp(H)), · s) = (Cp(H),
‖ · ‖p) as well.

3. Algebras of quotients with bounded evaluation for totally
prime algebras. Totally prime algebras were introduced in [4] to provide
the nonassociative extension of the determination of the extended centroid
for ultraprime algebras given in [7]. We recall that a normed algebra A is to-
tally prime if there exists a positive number K such that K‖a‖ ‖b‖ ≤ ‖Na,b‖
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for all a, b in A, where Na,b denotes the bilinear mapping from M(A)×M(A)
into A defined by Na,b(F,G) = F (a)G(b) for all F,G in M(A).

Lemma 2. Let A be a totally prime algebra, and assume that K is a
positive number such that

K‖a‖ ‖b‖ ≤ ‖Na,b‖
for all a, b in A. Let q be in Qrbe(A) and let I be a nonzero ideal of A such
that qI ⊆ A and EI

r

q is bounded. If J is a nonzero ideal of A such that
qJ ⊆ A, then EJ

r

q is bounded and K‖EJrq ‖ ≤ ‖EI
r

q ‖.
Proof. Let J be a nonzero ideal of A such that qJ ⊆ A. For x in I with

‖x‖ = 1, F in Jr, and S, T in M(A) we have

NF (q),x(S, T ) = SF (q)T (x) = RT (x)SF (q) = EI
r

q (RT (x)SF ),

hence

‖NF (q),x(S, T )‖ = ‖EIrq (RT (x)SF )‖ ≤ ‖EIrq ‖ ‖T‖ ‖S‖ ‖F‖,
and so

‖NF (q),x‖ ≤ ‖EI
r

q ‖ ‖F‖·
Since A is a totally prime algebra, it follows that

K‖F (q)‖ ≤ ‖EIrq ‖ ‖F‖,
and so K‖EJrq (F )‖ ≤ ‖EIrq ‖ ‖F‖. Therefore EJ

r

q is bounded and K‖EJrq ‖ ≤
‖EIrq ‖.

Theorem 5. Let A be a totally prime algebra, and assume that K is a
positive number such that

K‖a‖ ‖b‖ ≤ ‖Na,b‖
for all a, b in A. Then

(i) (Qrbe(A), · r) is a normed algebra, and the inclusions of A into
Qrbe(A) and of M(A) into M(Qrbe(A)) are topological. Precisely , K‖a‖ ≤
a r ≤ ‖a‖ for all a in A, and K‖F‖ ≤ F r ≤ ‖F‖ for all F in M(A).

(ii) (Qrbe(A), · r) is a totally prime algebra. Precisely ,

K2 p r q r ≤ N Ir×Jr
p,q r

for all p, q in Qrbe(A) and nonzero ideals I, J of A such that pI ⊆ A and
qJ ⊆ A, where N Ir×Jr

p,q denotes the restriction of Np,q to Ir × Jr.
(iii) If (Q, [] · []) is a normed algebra such that Q is a subalgebra of Qr(A)

containing A and the inclusions of A into Q and of M(A) into M(Q) are
topological , then Q is contained in Qrbe(A) and this inclusion is continuous.

Proof. (i) By Theorem 1, Qrbe(A) is an algebra extension of A and · r
is an algebra seminorm on Qrbe(A) such that a r ≤ ‖a‖ for all a in A. Let
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q in Qrbe(A) satisfy q r = 0. By Lemma 2, EI
r

q = 0 (hence qI = 0) for all
nonzero ideals I of A such that qI ⊆ A, and so q = 0. Therefore, · r is a
norm on Qrbe(A). Let a be in A and let I be a nonzero ideal of A. For x in
I with ‖x‖ = 1 and F,G in M(A) we have

Na,x(F,G) = F (a)G(x) = RG(x)F (a) = EI
r

a (RG(x)F ),

hence
‖Na,x(F,G)‖ = ‖EIra (RG(x)F )‖ ≤ ‖EIra ‖ ‖G‖ ‖F‖,

and so
‖Na,x‖ ≤ ‖EI

r

a ‖.
Since A is a totally prime algebra it follows that K‖a‖ ≤ ‖EIra ‖. Now, taking
the infimum over I we obtain K‖a‖ ≤ a r.

By Theorem 1, M(A) is continuously embedded in M(Qrbe(A)) and
F r ≤ ‖F‖ for all F in M(A). Our objective now is to show that this

inclusion is topological. Let F be in M(A). Then

K‖F (a)‖ ≤ F (a) r ≤ F r a r ≤ F r‖a‖
for all a in A. Therefore K‖F‖ ≤ F r.

(ii) We fix p, q in Qrbe(A) and we consider nonzero ideals I, J of A such
that pI ⊆ A and qJ ⊆ A. For F in Ir, G in Jr, and S, T in M(A) we have

NF (p),G(q)(S, T ) = SF (p)TG(q) = N Ir×Jr
p,q (SF, TG).

Hence

K‖NF (p),G(q)(S, T )‖ = K‖N Ir×Jr
p,q (SF, TG)‖ ≤ N Ir×Jr

p,q (SF, TG) r

≤ N Ir×Jr
p,q r S r F r T r G r ≤ N Ir×Jr

p,q r‖S‖ ‖F‖ ‖T‖ ‖G‖,
and so

K‖NF (p),G(q)‖ ≤ N Ir×Jr
p,q r‖F‖ ‖G‖.

Therefore,
K2‖F (p)‖ ‖G(q)‖ ≤ N Ir×Jr

p,q r‖F‖ ‖G‖,
since A is a totally prime algebra. From the last inequality it follows that

K2‖EIrp ‖ ‖EJ
r

q ‖ ≤ N Ir×Jr
p,q r,

and so
K2 p r q r ≤ N Ir×Jr

p,q r.

(iii) Let (Q, [] · []) be a normed algebra such that Q is a subalgebra of
Qr(A) containing A and assume the existence of positive numbers α, β, γ, δ
such that α‖a‖ ≤ []a[] ≤ β‖a‖ for all a in A, and γ‖F‖ ≤ []F [] ≤ δ‖F‖ for all
F in M(A). Let q be in Q, and assume that I is a nonzero ideal of A such
that qI ⊆ A. Then for all F in Ir we have

‖EIrq (F )‖ = ‖F (q)‖ ≤ α−1[]F (q)[] ≤ α−1[]F [] []q[] ≤ α−1δ‖F‖ []q[],
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hence EI
r

q is bounded and ‖EIrq ‖ ≤ α−1δ[]q[], and so q lies in Qrbe(A) and
q r ≤ α−1δ[]q[]. Therefore Q is continuously embedded in Qrbe(A).

As a consequence of the above theorem, we can obtain a topological
characterization of the subalgebras of (Qrbe(A), · r) whenever A is a totally
prime algebra.

Corollary 1. Let A be a totally prime algebra.

(i) If Q is a normed subalgebra of Qrbe(A) containing A, then the inclu-
sions of A into Q and of M(A) into M(Q) are topological , and there exists
a positive number K ′ such that

K ′ p r q r ≤ N Ir×Jr
p,q r

for all p, q in Q and nonzero ideals I, J of A such that pI ⊆ A and qJ ⊆ A.
(ii) If (Q, [] · []) is a normed algebra such that Q is a subalgebra of Qr(A)

containing A and the inclusions of A into Q and of M(A) into M(Q) are
topological , and there exists a positive number K ′ such that

K ′[]p[] []q[] ≤ []N Ir×Jr
p,q []

for all p, q in Q and nonzero ideals I, J of A such that pI ⊆ A and qJ ⊆ A,
then Q is contained in Qrbe(A) and this inclusion is topological.

Proof. (i) Assume that K is a positive number such that K‖a‖ ‖b‖ ≤
‖Na,b‖ for all a, b in A. According to Theorem 5(i), K‖a‖ ≤ a r ≤ ‖a‖
for all a in A and K‖F‖ ≤ F r ≤ ‖F‖ for all F in M(A). Consequently,
the inclusion of A into Q is topological. Next, we show that the inclusion
of M(A) into M(Q) is also topological. For F in M(A), if FQ denotes the
operator F considered in M(Q), then FQ r ≤ F r ≤ ‖F‖. On the other
hand,

K‖F (a)‖ ≤ F (a) r = FQ(a) r ≤ FQ r a r ≤ FQ r‖a‖
for all a in A and so K‖F‖ ≤ FQ r. Finally, Theorem 5(ii) concludes the
proof of (i).

(ii) Let (Q, [] · []) be a normed algebra as in part (ii) of the statement.
By Theorem 5, Q is continuously embedded in Qrbe(A). Consider α, β, γ, δ
as at the end of the proof of Theorem 5. Fix q in Q, and assume that I is
a nonzero ideal of A such that qI ⊆ A. For each a in A with []a[] = 1 and
0 < ε < 1 we can choose F in Ir with []F [] = 1 and G in M(A) with []G[] = 1
such that εK ′[]q[] ≤ []Nq,a(F,G)[]. Therefore,

εK ′[]q[] ≤ []F (q)G(a)[] ≤ []F (q)[] []G(a)[] ≤ β‖F (q)‖
≤ β‖EIrq ‖ ‖F‖ ≤ βγ−1‖EIrq ‖.

This shows that K ′[]q[] ≤ βγ−1‖EIrq ‖. Consequently, K ′[]q[] ≤ βγ−1 q r, as
required.
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Recall that the extended centroid C(A) of a prime algebra A is a field
extension of K via the canonical homomorphism λ 7→ λ

�
of K into C(A).

If C(A) is equal to K, then A is said to be centrally closed. Totally prime
real algebras have extended centroid equal to R or C, and therefore totally
prime complex algebras are centrally closed [4; Theorem 2 and Remark 2].
For non-centrally closed real algebras, the above theorem may be completed
with the following result:

Proposition 2. If A is a totally prime real algebra with extended cen-
troid C, then Qrbe(A) is a complex subalgebra of Qr(A) and there exists a
complex algebra norm on Qrbe(A) equivalent to · r.

Proof. Let A be a totally prime real algebra with extended centroid C.
Suppose that K is a positive number such that K‖a‖ ‖b‖ ≤ ‖Na,b‖ for all
a, b in A, and denote by i the imaginary unit of C(A). Fix a nonzero ideal I
of A such that iI ⊆ A, and note that F (ix) = iF (x) for all F in M(A) and
x in I. As a consequence, Nix,y = Nx,iy for all x, y in I, and therefore

K‖ix‖ ‖y‖ ≤ ‖Nix,y‖ = ‖Nx,iy‖ ≤ ‖x‖ ‖iy‖
for all x, y in I. It follows that the mapping ι : I → A defined by ι(x) := ix
is continuous. Now, given q in Qrbe(A), consider a nonzero ideal J of A such
that qJ ⊆ A, and note that iqIJ ⊆ A and E

(IJ)r

iq (F ) = F (iq) = iF (q) =

iE
(IJ)r
q (F ) for all F in (IJ)r. Therefore E(IJ)r

iq = ιE
(IJ)r
q . From this, taking

into account the continuity of ι and of E(IJ)r
q (by Lemma 2), it follows that

E
(IJ)r

iq is bounded and ‖E(IJ)r

iq ‖ ≤ ‖ι‖ ‖E(IJ)r
q ‖. Consequently, iq lies in

Qrbe(A) and iq r ≤ ‖ι‖ q r. Thus, Qrbe(A) is a complex subalgebra of Qr(A)
and · r is a real algebra norm on Qrbe(A) which makes the multiplication
by i continuous. The proof is completed by applying [12; Theorem 1.3.3].

The central closure Q(A) of a prime algebra A is defined as the C(A)-
subalgebra of Qr(A) generated by A. The central closure of a totally prime
algebra may be normed in a suitable way as a consequence of Proposition 2
and Corollary 1(i).

Corollary 2. If A is a totally prime real algebra with extended cen-
troid C, then there exists a complex algebra norm on Q(A) such that the
inclusions of A into Q(A) and of M(A) into M(Q(A)) are topological and
Q(A) is a totally prime algebra.

Clearly, the reversal of sides allows us to state similar results for left
algebras of quotients with bounded evaluation. The remainder of the paper
is devoted to the study of symmetric algebras of quotients with bounded
evaluation of totally prime algebras. We shall give a procedure that allows
us to directly obtain the symmetric algebra of quotients with bounded eval-
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uation of a totally prime algebra, thus bypassing the one-sided algebras of
quotients. For an ideal I of an algebra A we denote by Im the ideal of M(A)
generated by the set {Mx,y : x, y ∈ I}. It is clear that

Im =
{ n∑

i=1

Mxi,yi : n ∈ N, xi, yi ∈ I (1 ≤ i ≤ n)
}
.

Furthermore, from the descriptions of Ir, I l and Im, it follows that Im ⊆
Ir ∩ I l and IrI l = I lIr = Im.

Lemma 3. Let A be a totally prime algebra, and assume that K is a
positive number such that

K‖a‖ ‖b‖ ≤ ‖Na,b‖
for all a, b in A. Then, for q in Qr(A) and a nonzero ideal I of A such that
qI ⊆ A we have:

EI
r

q is bounded if , and only if , EI
m

q is bounded ,

and in that case
K‖EIrq ‖ ≤ ‖EI

m

q ‖ ≤ ‖EI
r

q ‖.
This statement remains valid if “right” is replaced by “left”.

Proof. Let q be in Qr(A) and I be a nonzero ideal of A such that qI ⊆ A.
Since Im ⊆ Ir, it follows that EI

m

q is bounded whenever EI
r

q is bounded,
and in that case ‖EImq ‖ ≤ ‖EI

r

q ‖. Suppose now that EI
m

q is bounded. For x
in I, F in Ir and S, T in M(A) we see that LS(x)TF belongs to Im and

Nx,F (q)(S, T ) = S(x)TF (q) = LS(x)TF (q) = EI
m

q (LS(x)TF ).

If additionally we assume that ‖x‖ = 1 and ‖F‖ = ‖S‖ = ‖T‖ = 1, it follows
that

‖Nx,F (q)(S, T )‖ = ‖EImq (LS(x)TF )‖ ≤ ‖EImq ‖,
and so ‖Nx,F (q)‖ ≤ ‖EI

m

q ‖. Since A is totally prime we have K‖F (q)‖ ≤
‖EImq ‖, hence K‖EIrq (F )‖ ≤ ‖EImq ‖. Therefore EI

r

q is bounded and K‖EIrq ‖
≤ ‖EImq ‖.

Theorem 6. Let A be a totally prime algebra, and assume that K is a
positive number such that

K‖a‖ ‖b‖ ≤ ‖Na,b‖
for all a, b in A. Then

Qsbe(A) = {q ∈ Qs(A) : there exists a nonzero ideal I of A

such that qI + Iq ⊆ A and EI
m

q is bounded },
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and · : Qsbe(A)→ R defined by

q = inf{‖EImq ‖ : I is a nonzero ideal of A

such that qI + Iq ⊆ A and EI
m

q is bounded }
is an algebra norm, which is equivalent to · r and to · l (hence also to
· s). Moreover :

(i) The inclusions of A into Qsbe(A) and of M(A) into M(Qsbe(A)) are
topological. Precisely , K2‖a‖ ≤ a ≤ ‖a‖ for all a in A, and K2‖F‖ ≤
F ≤ ‖F‖ for all F in M(A).

(ii) (Qsbe(A), · ) is a totally prime algebra. Precisely ,

K3 p q ≤ N Im×Jm
p,q

for all p, q in Qsbe(A) and nonzero ideals I, J of A such that pI + Ip ⊆ A
and qJ + Jq ⊆ A.

(iii) If (Q, [] · []) is a normed algebra such that Q is a subalgebra of Qs(A)
containing A and the inclusions of A into Q and of M(A) into M(Q) are
topological , then Q is contained in Qsbe(A) and the inclusions of Q into
Qsbe(A) and of M(Q) into M(Qsbe(A)) are continuous.

Proof. We will first prove the validity of the description of Qsbe(A) given
in the statement. If q is in Qsbe(A) and I, J are nonzero ideals of A such that
qI ⊆ A, Jq ⊆ A and EI

r

q , E
Jl

q are bounded, then I ∩ J is a nonzero ideal
of A such that q(I ∩ J) + (I ∩ J)q ⊆ A and, as a consequence of Lemma 3,
E

(I∩J)m
q is bounded and

(7) ‖E(I∩J)m
q ‖ ≤ ‖EIrq ‖ and ‖E(I∩J)m

q ‖ ≤ ‖EJlq ‖.
Conversely, suppose that for an element q in Qs(A) there is a nonzero ideal
I of A such that qI + Iq ⊆ A and EI

m

q is bounded. Then using Lemma 3

once again we see that EI
r

q , E
Il

q are bounded and

(8) K‖EIrq ‖ ≤ ‖EI
m

q ‖ and K‖EIlq ‖ ≤ ‖EI
m

q ‖.
As a consequence, q lies in Qrbe(A) ∩Qlbe(A) = Qsbe(A).

Making minor changes in the proof of Theorem 1 we conclude that ·
is an algebra seminorm on Qsbe(A) satisfying the inequalities a ≤ ‖a‖ for
all a in A and F ≤ ‖F‖ for all F in M(A). Moreover, from (7) and (8) we
deduce that · is equivalent to · r and to · l. To be more precise,

(9) K · r ≤ · ≤ · r and K · l ≤ · ≤ · l.
Now, by Theorem 5, K‖a‖ ≤ a r for all a in A, and therefore K2‖a‖ ≤ a
for all a in A as a consequence of (9). From this, for each F in M(A)
we have K2‖F (a)‖ ≤ F (a) ≤ F a ≤ F ‖a‖ for all a in A, and so
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K2‖F‖ ≤ F . At this point, making the necessary modifications in the
proof of part (ii) of Theorem 5 we obtain part (ii) of our statement.

Finally, let (Q, [] · []) be a normed algebra such that Q is a subalgebra of
Qs(A) containing A, and assume the existence of positive numbers α, β, γ, δ
such that α‖a‖ ≤ []a[] ≤ β‖a‖ for all a in A, and γ‖F‖ ≤ []F [] ≤ δ‖F‖ for
all F in M(A). Following the reasoning presented in the final part of the
proof of Theorem 5, we see that Q is continuously embedded in Qsbe(A).
Let T be in M(Q) and pick n in N and p1, . . . , pn, q1, . . . , qn in Q1 (the
unital envelope of Q in Qs(A)) such that T =

∑n
i=1 Mpi,qi . Given q in

Qsbe(A), we can take a nonzero ideal I of A such that qI + Iq ⊆ A, EI
m

q

is bounded, and piI + Ipi ⊆ A, qiI + Iqi ⊆ A for all i ∈ {1, . . . , n}. Since
T (q) =

∑n
i=1 piqqi, it is clear that T (q)I3 + I3T (q) ⊆ A. Moreover, from

the equality Ma,bT =
∑n
i=1 Mapi,qib, which holds for all a, b in A, it follows

that (I3)mT ⊆ Im. Consequently, for every F in (I3)m, we can write

E
(I3)m

T (q) (F ) = FT (q) = EI
m

q (FT ),

and so

‖E(I3)m

T (q) (F )‖ = ‖EImq (FT )‖ ≤ ‖EImq ‖ ‖FT‖ ≤ γ−1‖EImq ‖ []FT []

≤ γ−1‖EImq ‖ []F [] []T [] ≤ δγ−1‖EImq ‖ ‖F‖ []T [].

Therefore, E(I3)m

T (q) is bounded and ‖E(I3)m

T (q) ‖ ≤ δγ−1‖EImq ‖ []T []. From this we
deduce that T (q) ≤ δγ−1 q []T [], and as a consequence T ≤ δγ−1[]T [].

Finally, we examine the symmetric algebra of quotients with bounded
evaluation of totally multiplicatively prime algebras, which were recently
introduced by the authors in [3]. These algebras are totally prime and may
not be ultraprime. Recall that a normed algebra A with nonzero product
is totally multiplicatively prime (t.m.p. for short) if there exists a positive
number K such that K‖F‖ ‖a‖ ≤ ‖WF,a‖ for all F in M(A) and a in
A, where WF,a denotes the linear operator from M(A) into A defined by
WF,a(T ) = FT (a) for all T in M(A).

Theorem 7. Let A be a t.m.p. algebra, and assume that K is a positive
number such that

K‖F‖ ‖a‖ ≤ ‖WF,a‖
for all F in M(A) and a in A. Then

(i) The inclusions of A into Qsbe(A) and of M(A) into M(Qsbe(A)) are
topological. Precisely , K‖a‖ ≤ a ≤ ‖a‖ for all a in A, and K‖F‖ ≤ F ≤
‖F‖ for all F in M(A).

(ii) (Qsbe(A), · ) is a t.m.p. algebra. Precisely ,

K4 F q ≤ W Im

F,q
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for all F in M(Qsbe(A)), q in Qsbe(A) and nonzero ideals I of A such that
FIm + ImF ⊆ M(A) and qI + Iq ⊆ A, where W Im

F,q denotes the restriction
of WF,q to Im.

(iii) If (Q, [] · []) is a normed algebra such that Q is a subalgebra of Qs(A)
containing A and the inclusions of A into Q and of M(A) into M(Q) are
topological , then Q is contained in Qsbe(A) and the inclusions of Q into
Qsbe(A) and of M(Q) into M(Qsbe(A)) are continuous.

Proof. Taking Theorem 6 into account, all that remains to be proven is
that K‖a‖ ≤ a for all a in A, K‖F‖ ≤ F for all F in M(A), and that
(Qsbe(A), · ) is a t.m.p. algebra. Fix an element a in A and a nonzero ideal
I of A. For F in Im and G in M(A) with ‖F‖ = ‖G‖ = 1 we have

‖WF,a(G)‖ = ‖FG(a)‖ = ‖EIma (FG)‖ ≤ ‖EIma ‖,
hence

‖WF,a‖ ≤ ‖EI
m

a ‖,
and so K‖a‖ ≤ ‖EIma ‖. Taking the infimum over I we conclude that K‖a‖
≤ a . Now, note that for F in M(A) we have

K‖F (a)‖ ≤ F (a) ≤ F a ≤ F ‖a‖
for all a in A, and therefore K‖F‖ ≤ F .

To show that (Qsbe(A), · ) is a t.m.p. algebra we first observe that if F is
in M(Qsbe(A)) and if I is a nonzero ideal of A such that FIm + ImF ⊆ Am,
and if

RI
m

F : (Im, ‖ · ‖)→ (Am, ‖ · ‖)
is the mapping defined by RI

m

F (T ) = TF for all T in Im, then RI
m

F is
bounded and

K2 F ≤ ‖RImF ‖ ≤ K−1 F ·
Indeed, given F in M(Qsbe(A)) and a nonzero ideal I of A such that FIm +
ImF ⊆ Am we see that

K‖RImF (T )‖ = K‖TF‖ ≤ TF ≤ T F ≤ ‖T‖ F

for all T in Im, therefore RI
m

F is bounded and ‖RImF ‖ ≤ K−1 F . On the
other hand, for each q in Qsbe(A) take a nonzero ideal J of A such that
F (q)J + JF (q) ⊆ A, and note that for all T in (I ∩ J)m and G in M(A)
with ‖T‖ = ‖G‖ = 1 it follows that

K‖WIdA,TF (q)(G)‖ = K‖GTF (q)‖ ≤ GTF (q) ≤ GTF q

≤ ‖GTF‖ q = ‖RImF (GT )‖ q ≤ ‖RImF ‖ ‖GT‖ q

≤ ‖RImF ‖ q ,
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therefore K‖WIdA,TF (q)‖ ≤ ‖RI
m

F ‖ q , and so K2‖TF (q)‖ ≤ ‖RImF ‖ q .
Rewriting this inequality in the form K2‖EJmF (q)(T )‖ ≤ ‖RImF ‖ q , it follows

that K2‖EJmF (q)‖ ≤ ‖RI
m

F ‖ q . Hence

K2 F (q) ≤ ‖RImF ‖ q ,

and so K2 F ≤ ‖RImF ‖.
Now, let F be in M(Qsbe(A)), q be in Qsbe(A) and I be a nonzero ideal

of A such that FIm + ImF ⊆M(A) and qI + Iq ⊆ A. For G,H in Im and
T in M(A) with ‖G‖ = ‖H‖ = ‖T‖ = 1 we have

K‖WGF,H(q)(T )‖ = K‖GFTH(q)‖ ≤ K‖FTH(q)‖ ≤ FTH(q)

= W Im

F,q (TH) ≤ W Im

F,q TH ≤ W Im

F,q ‖TH‖
≤ W Im

F,q ,

and therefore K‖WGF,H(q)‖ ≤ W Im

F,q . Since A is t.m.p. it follows that
K2‖GF‖ ‖H(q)‖ ≤ W Im

F,q . Rewriting this inequality in the form

K2‖RImF (G)‖ ‖EImq (H)‖ ≤ W Im

F,q

we can deduce that

K2‖RImF ‖ ‖EI
m

q ‖ ≤ W Im

F,q .

Now, applying our previous statement, we obtain K4 F ‖EImq ‖ ≤ W Im

F,q ,
and as a consequence

K4 F q ≤ W Im

F,q .
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