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On completely bounded bimodule maps over W∗-algebras

by

Bojan Magajna (Ljubljana)

Abstract. It is proved that for a von Neumann algebra A ⊆ B(H) the subspace of
normal maps is dense in the space of all completely bounded A-bimodule homomorphisms
of B(H) in the point norm topology if and only if the same holds for the corresponding
unit balls, which is the case if and only if A is atomic with no central summands of type
I∞,∞. Then a duality result for normal operator modules is presented and applied to the
following problem. Given an operator space X and a von Neumann algebra A, is the map

q : A
eh
⊗ X

eh
⊗ A→ X

np
⊗ A, induced by q(a⊗ x⊗ b) = x⊗ ab, from the extended Haagerup

tensor product to the normal version of the Pisier delta tensor product a quotient map?
We give a reformulation of this problem in terms of normal extension of some completely
bounded maps and answer it affirmatively in the case A is of type I and X belongs to a
certain class which includes all finite-dimensional operator spaces.

1. Introduction. If A is a von Neumann algebra on a Hilbert space H,
it is known (see [7]) that the unit ball U of the space NCBA(B(H))A of all
normal completely bounded (abbreviated CB) A-bimodule homomorphisms
of B(H) is dense in the point weak∗ topology in the unit ball V of the
space CBA(B(H))A of all CB A-bimodule homomorphisms of B(H). We
show in Section 3 that U is dense in V in the point norm (abbreviated p.n.)
topology if and only if A is atomic with no central summands of type I∞,∞.
The proof is based on an extension of Arveson’s version [1] of Voiculescu’s
theorem [32] to bimodule mappings over atomic von Neumann algebras and
on a recent commutation theorem of Hofmeier and Wittstock [14]. Such a
density result implies in particular that, given a finite-dimensional subspace
X ⊆ B(H), each φ ∈ CB(X,B(K)) with ‖φ‖cb < 1 extends to a normal map
ψ : B(H)→ B(K) with ‖ψ‖cb < 1.

In Section 4 we observe that every dual operator space X can be embed-
ded into some B(H) so that each weak∗ continuous CB map φ from X into
any B(K) with ‖φ‖cb < 1 can be extended to a normal map ψ from B(H)
into B(K) with ‖ψ‖cb < 1.
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An operator A-bimodule X over a von Neumann algebra A ⊆ B(HA)
is called normal if there exist a Hilbert space H, a complete isometry Φ :
X → B(H) and a (faithful) normal representation π : A → B(H) such
that Φ(axb) = π(a)Φ(x)π(b) for all a, b ∈ A and x ∈ X. If in addition
for each b ∈ B(H) and each orthogonal family {ei}i∈I of projections with
sum 1 the condition bπ(ei) ∈ Φ(X) implies that b ∈ Φ(X) and similarly
for the condition π(ei)b ∈ Φ(X), then X is called a strong A-bimodule.
It follows from [21]–[23] that this definition is independent of the choice
of Φ and π and that strong submodules of B(H) can be characterised as
closed in a certain topology and in various other ways. The bimodule dual
X\ of a normal operator A-bimodule X is the space CBA(X,B(HA))A of all
completely bounded A-bimodule homomorphisms from X to B(HA) (where,
for definiteness, we assume that HA is the Hilbert space on which A is
represented in the standard form). Then X \ is naturally a normal dual
operator bimodule (in the sense of [9]) over the commutantA′ of A in B(HA).
Given a normal dual operator bimodule Y , we can define its bimodule predual
Y\ as the subspace of its bimodule dual consisting of all weak∗ continuous
mappings. In Section 5 we show that the identity (X \)\ = X holds for a
normal operator A-bimodule X if and only if X is strong. (In the special
case A = C this reduces to the well known classical fact.) Then we use this
result to study the problem described below.

Pisier [28] proved that for each operator space X and any C∗-algebra A
the linear map

q0 : A
h
⊗X

h
⊗ A→ X

p
⊗ A, q0(a⊗ x⊗ b) = x⊗ ab,

is a quotient map, where A
h
⊗ X

h
⊗ A is the Haagerup tensor product and

X
p
⊗ A is the completion of X ⊗ A in the norm defined by

∥∥∥
n∑

j=1

xj ⊗ aj
∥∥∥ = sup

∥∥∥
n∑

j=1

Φ(xj)π(aj)
∥∥∥,(1.1)

where the supremum is over all complete contractions Φ : X → B(H) and
representations π : A→ B(H) (H a Hilbert space) such that the range of Φ
is in the commutant of the range of π.

We shall consider the analogous map for the extended Haagerup tensor

product A
eh
⊗ X

eh
⊗ A, where A is a von Neumann algebra. We shall recall

the formal definition of the extended Haagerup tensor product in the next

section. Here we just note that the elements of A
eh
⊗X

eh
⊗ A are three-linear

completely bounded functionals on A]×X]×A] which are weak∗ continuous

in each variable separately and each element of A
eh
⊗X

eh
⊗A can be represented
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as a formal sum

(1.2) θ =
∑

i,j∈J
ai ⊗ xij ⊗ bj ,

where the index set J is in general infinite and ai ∈ A, xij ∈ X, bj ∈ A
are such that the matrices a := [ai] ∈ RJ(A), x := [xij] ∈ MJ(X) and
b := (bj) ∈ CJ(A) represent bounded operators when A and X are regarded
as concrete operator spaces. By definition θ acts on (ω, τ, %) ∈ A]×X]×A] as

θ(ω, τ, %) =
∑

i,j∈J
ω(ai)τ(xij)%(bj),

where the sum converges since it represents the product of three bounded op-
erators given respectively by the row matrix [ω(ai)], the J×J matrix [τ(xij)]
and the column matrix (%(bj)). The above sum (1.2) will be denoted also by

a�x�b. The norm in A
eh
⊗X

eh
⊗A is given by ‖θ‖ = inf ‖a‖‖x‖‖b‖, where the

infimum is over all possible representations of θ in the form θ = a � x � b.
By analogy with the space X

p
⊗A, we can equip X⊗A with the norm ‖ · ‖np

defined as in (1.1), but considering only normal representations π of A. How-

ever, since the definition of A
eh
⊗X

eh
⊗A involves infinite sums which are not

norm convergent, the norm completion of X ⊗ A is in general too small to
contain the range of a natural analogue of Pisier’s map q0. Instead one has

to look at the closure X
np
⊗ A of X ⊗ A in a certain topology, defined more

precisely in the next section. Here we just note that by Proposition 5.2,

X
np
⊗ A can be described as the A′-bimodule predual of CB(X,A′), that is,

X
np
⊗ A = NCBA′(CB(X,A′),B(HA))A′ .

Using this identification, we may define q : A
eh
⊗X

eh
⊗ A→ X

np
⊗ A by

q(θ)(φ) =
∑

i,j∈J
aiφ(xij)bj (φ ∈ CB(X,A′)),

where θ is represented in the form (1.2). The sum on the right hand side of
the above identity represents the product a[φ(xij)]b of three bounded opera-
tors, hence converges, say, in the strong operator topology. We shall indicate
in the next section that q is well defined, and then q is clearly a contraction.

Denote by X] the usual operator space dual of X and recall the identi-

fication CB(X,A′) = X]
F
⊗ A′ (which may be taken merely as a suggestion

that CB(X,A′) contains a copy of X]⊗A′; at this point we do not need the
theory of the Fubini tensor product [10]). Observe that each A′-bimodule

homomorphism φ : X]
F
⊗A′ → B(HA) necessarily maps X]⊗1 into A′′ = A,
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hence there is a natural map

ι : NCBA′(X]
F
⊗ A′,B(HA))A′ → NCB(X], A), ι(φ)(%) = φ(%⊗ 1).

Composing our map q : A
eh
⊗X

eh
⊗A→ X

np
⊗A with ι we get the map studied

in [20]. (In [20, 5.1(3)] it was already observed that when X is the predual of
a von Neumann algebra, the correct target space for q is not NCB(X ], A),
but a certain subspace of decomposable operators with the decomposable
norm.) The following problem is still open in general.

Problem 1. Is the map q : A
eh
⊗X

eh
⊗A→ X

np
⊗A a completely quotient

map?

It follows from results in [20] that this question has an affirmative answer
in the case when X is the predual of a von Neumann algebra. The main
obstacle to extending this solution to general operator spaces is that normal
completely bounded mappings do not always have normal extensions even
if the range space is B(H).

If we denote by N the kernel of q and put U = A
eh
⊗ X

eh
⊗ A, the above

problem asks if the map q̃ : U/N → X
np
⊗ A induced by q is a completely

isometric isomorphism. We do not even know if U/N is a normalA-bimodule.
This is perhaps the main reason that arguments analogous to those used in
the proof of Pisier’s theorem are not available in the present context of the
extended Haagerup tensor product.

We shall show that in case A ⊆ B(HA) is injective the above problem
has an affirmative answer for all finite-dimensional operator spaces if and
only if there is a conditional expectation E from B(HA) onto A which can
be approximated in the point norm topology by a net of normal complete
contractions φν from B(HA) into A. We do not require that φν are A-
bimodule maps; the results of Section 3 imply that such an approximation
of E with A-bimodule complete contractions is impossible for a general
injective A. Even without requiring that φν are A-bimodule maps, such
an approximation does not seem very likely for a general injective A. The
author does not know the answer to the following problem.

Problem 2. For which injective von Neumann algebras A ⊆ B(H) can a
conditional expectation E : B(H)→ A be approximated by normal complete
contractions in the point norm topology?

In Section 6 we show that Problem 1 has an affirmative solution in case
A is of type I and X satisfies a technical condition (satisfied by all finite-
dimensional operator spaces); this will also solve Problem 2 for algebras
of type I. After a translation of the problem to an extension question for
certain normal bimodule mappings (see the diagram in the proof of Corollary
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5.3), the proof is based on the principle of measurable selection if A has a
separable predual and then extended to general A of type I. Problem 1 also
has an affirmative solution if X is finite-dimensional with 1-exact dual (in
the sense of [27]) and A any injective von Neumann algebra (Corollary 6.6).

We refer to [12], [26] and [28] for general theory of operator spaces and
completely bounded maps, and to [15] and [19] for some topics that put the
problem studied here in a broader perspective.

2. Preliminaries. In this section we shall recall some basic facts about
the extended and normal Haagerup tensor products. (For more we refer to
[3], [10] and [21]). We shall also show how to extend some recent results of
Wittstock and Hofmeier [14] (needed later in this paper) to algebras acting
on non-separable spaces.

Given an operator space Y ⊆ B(H) and an (in general infinite) index
set J, we denote by RJ(Y ), CJ(Y ) and MJ(Y ) the spaces of all 1× J, J⊗ 1
and J ⊗ J matrices, respectively, with entries in Y that represent bounded
operators. (Equivalently, the supremum of the norms of finite submatrices
is finite in each case. Thus RJ(Y ) ⊆ B(HJ,H), CJ(Y ) ⊆ B(H,HJ) and
MJ(Y ) ⊆ B(HJ).)

The extended Haagerup tensor product of operator spaces

V1
eh
⊗ . . .

eh
⊗ Vn

is defined as the space of all n-linear completely bounded functionals on

V ]
1 × . . .× V ]

n

(that is, elements of the dual of V ]
1

h
⊗ . . .

h
⊗ V ]

n) which are weak∗ continuous
in each variable separately. We shall only need the products of at most three
spaces. Given three operator spaces X, Y and Z, by [10] for each element

θ ∈ X
eh
⊗ Y

eh
⊗ Z there exist an index set J and matrices x = [xi] ∈ RJ(X),

y = [yij ] ∈ MJ(Y ) and z = (zj) ∈ CJ(Z) such that

θ(ξ, η, ζ) =
∑

i,j∈J
〈ξ, xi〉〈η, yij〉〈ζ, zj〉 (ξ ∈ X], η ∈ Y ], ζ ∈ Z]),(2.1)

which suggests the notation

θ = x� y � z =
∑

i,j∈J
xi ⊗ yij ⊗ zj .(2.2)

The norm of θ is then equal to inf{‖x‖‖y‖‖z‖}, where the infimum is over
all representations of θ in the form θ = x� y � z such that (2.1) holds.

Following a special case in [7], the normal Haagerup tensor product of
dual operator spaces X] and Y ] is defined by Effros and Ruan in [10] as the
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dual of X
eh
⊗ Y :

X]
σh
⊗ Y ] := (X

eh
⊗ Y )].

Products of more than two factors are defined in the same way, but will not

be needed here. It is known ([3], [10]) that X ]
h
⊗ Y ] ⊆ X]

eh
⊗ Y ] ⊆ X]

σh
⊗ Y ]

completely isometrically and that X]
h
⊗ Y ] is weak∗ dense in X]

σh
⊗ Y ].

If A is a von Neumann algebra, then A
eh
⊗X

eh
⊗A can be regarded as the

closure of A
h
⊗X

h
⊗A in a topology the definition of which we now recall.

The A,B-topology on a normal operator A,B-bimodule X, where A and
B are von Neumann algebras, is defined by the family of seminorms

s%ω(x) = inf{ω(a2)1/2‖y‖%(b2)1/2 : x = ayb, y ∈ X, a ∈ A+, b ∈ B+},
where ω and % are normal positive functionals on A and B, respectively. It
is not completely obvious that s%ω is a seminorm, but we refer to [23] and
[22] for more details. Here we only note that if X is a dual normal operator
bimodule (in the sense of [9]) this topology is in between the norm and the
weak∗ topology. A bounded linear functional θ on X is continuous in the
A,B-topology if and only if for each x ∈ X the linear functionals a 7→ θ(ax)
and b 7→ θ(xb) are normal on A and B (respectively).

Lemma 2.1. For each operator space X and von Neumann algebra A

the Haagerup tensor product A
h
⊗ X

h
⊗ A is dense in A

eh
⊗ X

eh
⊗ A in the

A,A-topology.

Sketch of the proof. Given an element θ =
∑

i,j∈J ai⊗xij⊗bj as in (2.2),
for each finite subset F ⊆ J we put θF =

∑
i,j∈F ai ⊗ xij ⊗ bj . It suffices to

prove that the net {θF}F (where finite subsets of J are ordered by inclusion)
converges to θ in the A,A-topology and this can be done by using a polar
decomposition argument in the same way as in the proof of [22, Theorem
5.3] or [20, p. 343].

It is easy to see that bounded homomorphisms of normal operator A,B-
bimodules are continuous in the A,B-topology. (For one-sided modules this
is proved in [22] and the proof for bimodules is essentially the same.)

Turning to the analogy of Pisier’s map q0 in the context of the extended
Haagerup tensor product, let S be the set of “all” pairs s = (Φ, π) where
Φ : X → B(Hs) is a complete contraction and π : A → B(Hs) is a normal
representation with range contained in Φ(X)′. (To assure that S is indeed a
set, we may consider only pairs arising by the GNS construction from states

on C∗(X)
nor
⊗ A, the normal tensor product defined in [8].) Each such pair
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s = (Φ, π) ∈ S induces a map Φ
e· π : A

eh
⊗X

eh
⊗ A→ B(Hs) by

(Φ
e· π)(θ) =

∑

i,j∈J
Φ(xij)π(aibj),(2.3)

where θ is represented in the form (1.2). Using the above notation θ =
a � x � b, the sum on the right hand side of this definition can be written
as π1,J(a)ΦJ(x)πJ,1(b) (where ΦJ, πJ,1 and π1,J denote the suitable amplifica-
tions of Φ and π, as usual), which is a product of three bounded operators.
(In particular the sum converges in the strong operator topology.) Since
the representation of θ in the form θ = a � x � b is not unique, it is not
completely obvious that Φ

e· π is a well defined map. One way to see this,

is to consider first the restriction Ψ of Φ
e· π to A

h
⊗ X

h
⊗ A; then by the

well known Wittstock extension theorem for bimodule mappings and using
Lemma 2.1 and the automatic continuity of A-bimodule homomorphisms in
the A,A-topology, Ψ has a unique completely bounded A-bimodule exten-

sion to A
eh
⊗X

eh
⊗ A, which must be given by (2.3).

Note that X ⊗A with the norm∥∥∥
∑

xj ⊗ aj
∥∥∥
np

= sup
(Φ,π)∈S

∥∥∥
∑

j

Φ(xj)π(aj)
∥∥∥(2.4)

is an operator A-subbimodule of B(
⊕

s∈SHs) and the direct sum of the

mappings Φ
e
� π is a natural contraction q from A

eh
⊗X

eh
⊗A into B(

⊕
s∈SHs).

We denote the closure of X ⊗ A in the A,A-topology of B(
⊕

s∈S Hs) by

X
np
⊗ A.

Since q is an A-bimodule mapping, the range of q is contained in X
np
⊗ A.

The operator space structure in X
np
⊗A can be described by Mn(X

np
⊗ A)

:= X
np
⊗Mn(A). Using the identity Mn(A

eh
⊗X

eh
⊗ A) = Cn(A)

eh
⊗X

eh
⊗ Rn(A)

(n ∈ N) it is not difficult to verify that q is a completely contractive A-
bimodule map.

The following result of Effros and Kishimoto will be needed in Section 3.

Theorem 2.2 ([7]). If A ⊆ B(H) and B ⊆ B(K) are von Neumann
algebras, then

CBA(B(K,H))B = A′
σh
⊗ B′

completely isometrically as dual normal operator A′, B′-bimodules. More
precisely , the correspondence ι(a′ ⊗ b′)(x) = a′xb′ (a′ ∈ A′, b′ ∈ B′, x ∈
B(K,H)) extends to a weak∗ continuous completely isometric isomorphism

from A′
σh
⊗ B′ onto CBA(B(K,H)B. Under this isomorphism the subspace
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A′
eh
⊗B′ of A′

σh
⊗ B′ is mapped onto the space NCBA(B(K,H))B of all normal

bimodule maps.

Proof. For K = H this is proved in [7]; the general case can be proved
in the same way or deduced by standard arguments from the special case
by considering A⊕B acting diagonally on H⊕K.

The next theorem, which is a special case of [9, 4.2] and can also be
deduced by the method of [14, p. 149], follows simply by the continuity of
module homomorphisms in the A,C-topology.

Theorem 2.3. Let A ⊆ B(H) and B ⊆ B(K) be von Neumann algebras
and Φ : B(K,H)→ B(K,H) a (not necessarily normal) completely bounded
map. If Φ is a homomorphism of left A-modules, then

Φ
(∑

j∈J
ajxj

)
=
∑

j∈J
ajΦ(xj)

for each index set J and all aj ∈ A, xj ∈ B(K,H) such that the sums∑
j∈J aja

∗
j and

∑
j∈J x

∗
jxj are weak∗ convergent. A similar conclusion holds

for completely bounded homomorphisms of right B-modules. In particular
(take K = H and B = A), the space CBA(B(H))A is contained in the com-
mutant of NCBA′(B(H))A′ in CB(B(H)) (since each Ψ ∈ NCBA′(B(H))A′
is of the form x 7→∑

j∈J ajxbj for some index set J and aj , bj ∈ A with the
sums

∑
j∈J aja

∗
j and

∑
j∈J b

∗
jbj weak∗ convergent).

In Section 3 we shall also need the following extract from results of
Hofmeier and Wittstock (see [14, 3.1, 3.2, 3.7]). Recall that an atom in a
von Neumann algebra A is a non-zero minimal projection in A.

Theorem 2.4 ([14]). If A ⊆ B(H) is a von Neumann algebra such that
A′ contains a von Neumann subalgebra without atoms or , if A has no atomic
central direct summands of type IJ,n, where n ∈ N and J is an infinite
cardinal , then

(CBA(B(H))A)c = NCBA′(B(H))A′,

where CBA(B(H))A)c is the commutant of CBA(B(H))A in CB(B(H)).

In [14] Theorem 2.4 was proved for separable spaces only, but the sep-
arability assumption was used only to prove certain auxiliary results which
imply the following proposition (see [14, 2.5, 3.1]).

Proposition 2.5 ([14]). If A ⊆ B(H) is an abelian von Neumann alge-
bra without atoms, then

(CBA′(B(H))A′)c = NCBA(B(H))A.

Since Theorem 2.4 can be deduced from Proposition 2.5 as in [14] without
assuming the separability of H, we have to prove here Proposition 2.5 only
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for non-separable H. In fact, by Theorem 2.3 only the inclusion

(CBA′(B(H))A′)c ⊆ NCBA(B(H))A

requires additional arguments for non-separable H.
We recall from [16] that a von Neumann algebra A is countably decom-

posable (also called σ-finite) if every orthogonal set of non-zero projections
in A is countable.

Proof of Proposition 2.5, a reduction to a separable H. Assume first that
A is countably decomposable and countably generated. Given a vector ξ ∈
H, let p′ ∈ A′ be the projection with range [Aξ] and let p ∈ A be the central
carrier of p′ (the range of p is [A′ξ]). Then the map η : ap 7→ ap′ is an isomor-
phism of Ap onto Ap′ [16, p. 335] and (since η−1 is weak∗ continuous) it in-

duces a weak∗ continuous isomorphism η̃ : Ap′
σh
⊗ Ap′ → Ap

σh
⊗ Ap. By The-

orem 2.2 we have weak∗ homeomorphic completely isometric identifications

CBp′A′p′(p′B(H)p′)p′A′p′ = Ap′
σh
⊗ Ap′ and Ap

σh
⊗ Ap = CBA′p(pB(H)p)A′p,

hence, composing this with η̃ we get a weak∗ continuous isomorphism

τ : CBp′A′p′(p
′B(H)p′)p′A′p′ → CBA′p(pB(H)p)A′p.

For each Ψ ∈ CBp′A′p′(p′B(H)p′)p′A′p′ denote τ(Ψ) by Ψ̃ . If Ψ corresponds

to an elementary tensor of the form a⊗ b ∈ Ap′
σh
⊗ Ap′, then one can verify

directly that

Ψ̃ |p′B(H)p′ = Ψ.(2.5)

By linearity and weak∗ continuity, (2.5) holds for all

Ψ ∈ CBp′A′p′(p
′B(H)p′)p′A′p′ .

Given Φ ∈ (CBA′(B(H))A′)c, let Φp′ ∈ CB(p′B(H)p′) be defined by
Φp′(x) = p′Φ(x)p′. Note that Φ maps pB(H)p into itself since the left
and the right multiplication by p are A′-bimodule mappings, hence com-
mute with Φ. Since each Ψ̃ ∈ CBA′p(pB(H)p)A′p extends to a map Ψ̂ ∈
CBA′(B(H))A′ (by Ψ̂(y) = Ψ̃(pyp) for y ∈ B(H)) and Φ commutes with
Ψ̂ , Φ|pB(H)p commutes with each Ψ̃ . Consequently Φp′ commutes with ev-
ery Ψ ∈ CBp′A′p′(p′B(H)p′)p′A′p′ . Indeed, since Ψ̃ is a homomorphism of
A′p-bimodules and p′ = p′p ∈ A′p, for each z ∈ p′B(H)p′ ⊆ pB(H)p we
have, by (2.5),

Φp′(Ψ(z)) = Φp′(Ψ̃(z)) = p′Φ(Ψ̃(z))p′ = p′Ψ̃(Φ(z))p′ = Ψ̃(Φp′(z)).

Note that p′A′p′ is the commutant of Ap′ in p′B(H)p′ and Ap′ ∼= Ap ⊆ A
is without atoms. Since the Hilbert space p′H = [Aξ] is separable (for A is
countably generated), Φp′ is normal by [14]. Thus for each vector ξ ∈ H the
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map x 7→ 〈Φ(x)ξ, ξ〉 = 〈Φp′(x)ξ, ξ〉 is normal on B(H), which implies that Φ
is normal.

If A is countably decomposable (but not necessarily countably gener-
ated), then A contains a countably generated von Neumann subalgebra B
without atoms. (To prove this, we may assume that there exists a unit cyclic
and separating vector ξ ∈ H for A [16, p. 339]. For each r ∈ [0, 1] one can
choose a projection pr ∈ A with 〈prξ, ξ〉 = r. Let B be the weak∗ closure
of the linear span of all the projections pr for (rational) r and let q′ ∈ B′
be the projection onto [Bξ]. Since [B ′ξ] ⊇ [Aξ] = H, the central carrier of
q′ is 1, hence B is isomorphic to Bq′. But by the choice of the projections
pr the correspondence χ[0,r] 7→ prξ can be extended to a unitary operator U
from L2[0, 1] onto [Bξ] such that U ∗Bq′U = L∞[0, 1]. Since L∞[0, 1] has no
atoms the same holds for Bq′ and B ∼= Bq′.) Then A′ ⊆ B′ implies that

X := (CBA′(B(H))A′)
c ⊆ (CBB′(B(H))B′)

c =: Y.

Since B is countably decomposable and countably generated, Y contains
normal maps only, hence so must X.

Finally, in general (if A is not countably decomposable), for each projec-
tion p ∈ A, Ap has no atoms. The restriction Φp of any Φ ∈ (CBA′(B(H))A′)c

to pB(H)p commutes with CBA′p(pB(H)p)A′p, hence, if p is countably de-
composable, Φp must be normal. Again, this implies that Φ is normal since
〈Φ(x)ξ, ξ〉 = 〈Φp(x)ξ, ξ〉 for each vector ξ ∈ H, where p is the projection
with range [A′ξ], which is countably decomposable in A.

3. The density in the point norm topology of NCBA(B(H))A in
CBA(B(H))A for some atomic von Neumann algebras. In this section
we shall need an extension of Arveson’s version of Voiculescu’s theorem [1,
Theorem 4] to the case of bimodule maps over certain von Neumann algebras
(Theorem 3.2 below). The proof of this theorem relies on the techniques
developed in [1] and we shall give below only the necessary adjustments,
referring to [1] or [5] for the details. (We have not been able to deduce
the result from already known variants of Voiculescu’s theorem [17] or [18]
since no condition of nuclearity or exactness is present in our situation.) The
main result of this section (Theorem 3.5) is stated for atomic von Neumann
algebras A, but in our application in the later sections we shall only use the
case A = C of the theorem. It follows from Theorem 3.5 that Theorem 3.2
is not true for non-atomic A.

A von Neumann algebra is called atomic if it is the weak∗ closed linear
span of its minimal projections, which is the case if and only if A is of type
I with atomic centre [16, 6.9.37], hence a direct sum of type I factors.

Lemma 3.1. Let A be a finite atomic von Neumann algebra on a Hilbert
space H such that A′ is not finite, π : A→Mn a normal (unital) representa-
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tion (inducing on Mn the structure of an A-bimodule) and Φ : B(H)→Mn

a unital completely positive (abbreviated CP) A-bimodule homomorphism
which annihilates the ideal K(H) of compact operators. Then for each finite
projection q ∈ A′ there exists a net of isometries Vν : Cn → q⊥H such that

Vνπ(a) = aVν (a ∈ A) and Φ(x) = lim
ν
V ∗ν xVν (x ∈ B(H)),

where the convergence is in the norm topology.

Proof. By the hypothesis we have decompositions of the form

A =
⊕

i∈I
(Mni ⊗ 1Hi) and H =

⊕

i∈I
(Cni ⊗Hi),

where ni ∈ N. Since π is normal, kerπ = p⊥A for some central projection
p ∈ A. Since Mn is finite-dimensional, pA =

⊕
i∈F(Mni⊗1Hi) for some finite

subset F ⊆ I and, up to unitary equivalence, π|pA is of the form

π
(⊕

i∈F
(ai ⊗ 1Hi)

)
=
⊕

i∈F
a

(ki)
i ∈

⊕
M(ki)
ni ⊆Mn,

∑

i∈F
kini = n.

Put Hp =
⊕

i∈F(Cni ⊗Hi) = pH. Since Φ is an A-bimodule homomorphism
and π(p⊥) = 0, we have Φ(x) = Φ(pxp) for each x ∈ B(H), which means
that Φ may be regarded as a map from B(Hp) into Mn. By [1, p. 335] there
exists a net of contractions Tν : Cn → Hp such that

Φ(x) = lim
ν
T ∗ν xTν (x ∈ B(Hp)).(3.1)

Since pA is finite-dimensional there exists a finite group G of unitary ele-
ments with linear span pA. Let m be the cardinality of G. Since Φ is an
A-bimodule map, from (3.1) we have

Φ(x) =
1
m

∑

u∈G
π(u)Φ(u∗x) = lim

ν

1
m

∑

u∈G
π(u)T ∗ν u

∗xTν = lim
ν
R∗νxTν ,

where Rν = m−1∑
u∈G uTνπ(u)∗ is a contraction from Cn intoHp satisfying

Rνπ(a) = aRν

for all a ∈ G, hence for all a ∈ pA. Another averaging over G shows that

Φ(x) = lim
ν
R∗νxSν (x ∈ pA),(3.2)

where Rν and Sν are contractions intertwining the representations π|pA on
Cn and id|pA on Hp. Since for each unit vector ξ ∈ Cn,

‖(Sν −Rν)ξ‖2 = ‖Sνξ‖2 + ‖Rνξ‖2 − 2Re 〈R∗νSνξ, ξ〉
≤ 2(1− Re 〈R∗νSνξ, ξ〉)

ν→ 0

by (3.2), it follows (since Cn is finite-dimensional) that limν ‖Sν −Rν‖ = 0.
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Thus
Φ(x) = lim

ν
S∗νxSν

for all x ∈ B(Hp); in fact, for all x ∈ B(H) since p⊥Sν = 0. Now the same
arguments as in [1, pp. 336, 337] show that each Sν can be replaced by an
isometry Vν satisfying all the requirements of the lemma.

Theorem 3.2. Let A be a finite atomic von Neumann algebra on a
Hilbert space H such that A′ is not finite, π a normal representation of
A on a separable Hilbert space K, Φ : B(H)→ B(K) a unital CP A-bimodule
homomorphism such that Φ(K(H)) = 0 and B a separable C∗-subalgebra of
B(H). Then there exists a sequence of isometries Vk : K → H such that

Vkπ(a) = aVk (a ∈ A), Φ(x) = lim
k
V ∗k xVk,

Φ(x)− V ∗k xVk ∈ K(K) for all x ∈ B.
Sketch of the proof. We have the decompositions

π(A) =
⊕

i∈I
(Mni ⊗ 1Ki), K =

⊕

i∈I
(Cni ⊗Ki),(3.3)

where ni ∈ N and Ki are separable Hilbert subspaces of K. Let C be the
(separable) C∗-subalgebra of B(K) generated by Φ(B) ∪ K(K). Using the
approximate unit of K(K) consisting of finite rank projections in π(A)′ =⊕

i∈I(1ni ⊗ B(Ki)), by [1, pp. 330, 331] we may construct a countable qua-
sicentral (for C) approximate unit (ej) such that ej ∈ π(A)′ for all j ∈ N.
Then, given ε > 0 and a finite subset F of C, the same arguments as in [1, pp.
333, 334] or [5, p. 226] show that there exists a sequence of positive finite rank
operators fn ∈ π(A)′ such that

∑
n f

2
n = 1, x−∑n fnxfn ∈ K(K) for x ∈ C

and ‖x−∑n fnxfn‖ < ε for x ∈ F . Put En = f2
1 +. . .+f2

n and let pn ∈ π(A)′

be the range projection of En. Then a 7→ π(a)pn is a normal representation
of A on the finite-dimensional space pnK and Φn : x 7→ pnΦ(x)pn is a unital
CP A-bimodule homomorphism from B(H) into pnB(K)pn = B(pnK) such
that Φn(K(H)) = 0. Now with the use of Lemma 3.1, the required isometries
Vk can be constructed in the same way as in [1] or [5, pp. 226, 228].

Corollary 3.3. Let A be a finite atomic von Neumann algebra on a
Hilbert space H such that A′ is not finite, and π a normal representation of
A on any Hilbert space K. Then any (unital) CP A-bimodule homomorphism
Φ : B(H)→ B(K) can be approximated in the point norm topology by a net
of (unital) normal CP A-bimodule homomorphisms.

Proof. If K is separable and Φ is unital with Φ(K(H)) = 0 this follows
directly from Theorem 3.2 since each finite subset of B(H) is contained in a
separable C∗-subalgebra of B(H). Let us now remove the assumption that
K is separable. Since π(A) is finite and atomic we have a decomposition
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of the form (3.3), which implies that for each ξ ∈ K the space [π(A)ξ] is
separable (namely, ξ has only countably many non-zero components relative
to the decomposition of K in (3.3)). Thus, for each separable subspace L of
K the space [π(A)L] is also separable. This implies that, given a separable
C∗-subalgebra B of B(H) and denoting by D the C∗-subalgebra of B(K)
generated by Φ(B)∪π(A), the space [DL] is separable. It follows that K can
be decomposed into an orthogonal sum of separable subspaces Kν (cyclic
for D) reducing Φ(B) and π(A). Let pν ∈ π(A)′ be the projection with
range Kν and let Φν : B(H) → B(Kν) be the unital CP map defined by
Φν(x) = pνΦ(x)pν . Then Φν |B can be approximated in the p.n. topology
by a net of normal unital CP A-bimodule maps for each ν, hence the same
holds for the orthogonal sum Φ|B =

∑
ν Φν |B. Again, since each finite subset

of B(H) is contained in some separable C∗-subalgebra of B(H), Φ can be
approximated by normal unital CP A-bimodule homomorphisms. The same
arguments work also if Φ is not unital (or the restriction that Φ is unital can
be removed by a well known argument, see [12, Lemma 5.1.6]).

For a general CP A-bimodule homomorphism Φ (not necessarily anni-
hilating K(H)) let Φ = Φnor + Φsing be the decomposition into the normal
and singular parts [16, Section 10.1], [31]. Note that Φnor and Φsing are CP
A-bimodule homomorphisms. Since Φsing(K(H)) = 0, it follows from the pre-
vious paragraph that there exists a bounded net of normal CP A-bimodule
maps Φν : B(H) → B(K) converging to Φsing in the p.n. topology, hence
the net (Φν + Φnor)ν approximates Φ in the required way. (If Φ is unital,
then a standard modification produces a required net of normal unital maps
approximating Φ.)

The following is a variation on [14, Lemma 3.5].

Lemma 3.4. Let A ⊆ B(H) and B ⊆ B(K) be von Neumann algebras.
If A or B is atomic with finite commutant then

CBA(B(K,H))B = NCBA(B(K,H))B.

Proof. Suppose that A is atomic with A′ finite (the case when B is
atomic and B′ finite can be treated in the same way or by taking adjoints).
Thus we have A =

⊕
i∈I(B(Hi)⊗1ni) and H =

⊕
i∈IHnii for some index set

I and integers ni ∈ N. Let pi ∈ A be the projection with range Hnii . Each
Φ ∈ CBA(B(K,H))B determines a collection of maps

Φi := Φ|B(K,Hnii ) = piΦ|B(K,Hnii ) ∈ CBB(Hi)(B(K,Hnii ))B (i ∈ I).
Since Φ is a homomorphism of left A-modules, for each x ∈ B(K,H) we
have, by Theorem 2.3,

Φ(x) =
∑

i∈I
piΦ(pix) =

∑

i∈I
piΦi(pix) (x ∈ B(K,H)).(3.4)
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Since the commutant of B(Hi) in B(Hnii ) is Mni (and noting that Mn

σh
⊗ Y =

Mn

eh
⊗Y = Mn

h
⊗Y for each dual operator space Y and n ∈ N), Theorem 2.2

shows that

CBB(Hi)(B(K,Hnii ))B = Mni

σh
⊗ B′ = Mni

h
⊗B′ = NCBB(Hi)(B(K,Hni))B,

hence each Φi in (3.4) is normal. That Φ is normal then follows from (3.4)
by applying to both sides any vector functional ωξ,η on B(K,H) and using
the Schwarz inequality and orthogonality of the family (pi) to show that the
sum for ωξ,ηΦ is norm convergent.

Theorem 3.5. Let A be a von Neumann algebra on a Hilbert space H.
The space NCBA(B(H))A is dense in CBA(B(H))A in the point norm topol-
ogy if and only if A is atomic without central summands of type II,J where
both I and J are infinite cardinals; in this case the unit ball of NCBA(B(H))A
is dense in the unit ball of CBA(B(H))A in the p.n. topology.

Proof. Let A = Aa⊕B be the central decomposition of A into its atomic
part Aa and the part B without atoms and let H = Ha ⊕ K be the cor-
responding decomposition of H. As mentioned in [14] (without proof), if
B 6= 0, then there exists a non-zero Φ ∈ SCBB(B(K))B (= the space
of all singular B-bimodule homomorphisms on B(K)). To show this, note
that the restriction to B of the quotient homomorphism σ : B(K) →
B(K)/K(K) is completely isometric since B has no atoms, and by the Witt-
stock extension theorem the map (σ|B)−1 can be extended to a map Φ̃ ∈
CBB(B(K)/K(K),B(K))B; put Φ = Φ̃σ. By Theorem 2.4,

(CBB′(B(K))B′)
c = NCBB(B(K))B,

hence
Φ 6∈ (CBB′(B(K))B′)

c.

On the other hand, (CBB′(B(K))B′)c contains NCBB(B(K))B by Theorem
2.3, hence it also contains the p.n. closure of NCBB(B(K))B. It follows that

Φ 6∈ NCBB(B(K))B
p.n.

.

Thus NCBB(B(K))B
p.n. 6= CBB(B(K))B, which easily implies that

NCBA(B(H))A
p.n. 6= CBA(B(H))A.

A similar argument can be applied if A contains central summands of type
I∞,∞ (since such a summand contains a von Neumann algebra without
atoms and we can apply Theorem 2.4 again to this summand). Thus, if
NCBA(B(H))A is p.n. dense in CBA(B(H))A then A must be atomic with
no central summands of type I∞,∞.

Assume now that A is atomic with a central decomposition A = A1⊕A2,
H = H1 ⊕H2, where A1 is finite with A′1 infinite and A′2 is finite (A1 or A2
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may be absent). Then each Φ ∈ CBA(B(H))A has a decomposition Φ = [Φij ],
where Φij ∈ CBAi(B(Hj,Hi))Aj (i, j = 1, 2). If Φ is singular and CP then
by Lemma 3.4, Φij = 0 if (i, j) 6= (1, 1). By Corollary 3.3, Φ1,1 is in the p.n.
closure of the normal CP A1-bimodule homomorphisms, hence Φ is in the
p.n. closure of the normal CP A-bimodule maps. If Φ is unital CP (but not
necessarily singular), we may decompose Φ as Φnor +Φsing and approximate
Φsing by normal CP A-bimodule maps Φk; then modifying the CP maps
Φnor + Φk in the standard way to assure unitality, we get an approximation
of Φ in the p.n. topology by a net of unital normal CP A-bimodule maps.
Finally, the case of a general map Φ ∈ CBA(B(H))A can be reduced to the
completely positive case by Paulsen’s well known 2 × 2 matrix technique
(see [26]).

4. A proper embedding of a dual operator space. It is well known
that each dual operator space X] can be represented completely isometri-
cally and weak∗ homeomorphically as a weak∗ closed subspace in some B(H)
[12, p. 45], but in general, weak∗ continuous CB mappings from X] to B(K)
do not extend to weak∗ continuous CB mappings from B(H) into B(K) (see
[9] and [2]). We say that X] ⊆ B(H) is properly embedded if each weak∗ con-
tinuous map φ : X] → B(K) with ‖φ‖cb < 1 (for each Hilbert space K) can
be extended to a weak∗ continuous map φ̃ : B(H)→ B(K) with ‖φ̃‖cb < 1.
(All maps here are linear.)

Proposition 4.1. Each dual operator space X] can be properly embed-
ded into some B(H). More precisely , there exist a Hilbert space H and a
weak∗ homeomorphic complete isometry Φ from X] onto a weak∗ closed
subspace of B(H) such that for each weak∗ continuous map ψ : X] → B(K)
with ‖ψ‖cb < 1 (K any Hilbert space) there exists a weak∗ continuous map
ψ̃ : B(H)→ B(K) satisfying ψ̃Φ = ψ and ‖ψ̃‖cb < 1.

Proof. Let K be a fixed Hilbert space of dimension equal to the cardi-
nality of some weak∗ dense subset of X] and let S be the set of all weak∗

continuous maps ψ : X] → B(K) such that ‖ψ‖cb < 1. Let

Φ =
⊕

ψ∈S
ψ, H =

⊕

ψ∈S
K.

For each ψ ∈ S let ιψ : K → H be the corresponding inclusion, pψ : H → K
the projection and define

ψ̃ : B(H)→ B(K) by ψ̃(v) = pψvιψ.

Then ψ̃Φ = ψ and clearly ψ̃ is a weak∗ continuous complete contraction.
If ψ : X] → B(L) is weak∗ continuous with ‖ψ‖cb < 1 (L any Hilbert

space), then L can be decomposed as an orthogonal sum of subspaces Kν
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reducing ψ(X]) such that dimKν ≤ dimK for each ν; hence we may assume
that Kν ⊆ K and construct the required extension ψ̃ of ψ by applying the
previous paragraph to each component of ψ.

Clearly Φ is weak∗ continuous and, since X] has a weak∗ continuous
completely isometric representation into some B(L), Φ must be completely
isometric. As Φ is weak∗ continuous and isometric, it is a well known con-
sequence of the Krĕın–Shmul’yan theorem that Φ(X ]) is weak∗ closed and
Φ is a weak∗ homeomorphism onto Φ(X]).

Proposition 4.2. Let X] ⊆ B(H) be a properly embedded dual operator
space and let η : T(H) → X be the completely quotient map from the trace
class T(H) to the predual X of X] the adjoint of which is the inclusion of
X] into B(H). Then for all operator spaces U and V ,

σ := 1⊗ η ⊗ 1 : U
eh
⊗ T(H)

eh
⊗ V → U

eh
⊗X

eh
⊗ V

is a completely quotient map.

Proof. Let w ∈ U
eh
⊗ X

eh
⊗ V and ‖w‖ < 1. Then there exist an index

set J and u ∈ RJ(U), x ∈ MJ(X) and v ∈ CJ(V ) such that ‖u‖, ‖x‖ and
‖v‖ are all less than 1 and w = u � x � v :=

∑
i,j∈J ui ⊗ xij ⊗ vj . Note

that the operator space MJ(X) can be identified naturally with the space
NCB(X],MJ) of all weak∗ continuous CB mappings from X] into MJ (by
sending each matrix x = [xij ] to the map x̂ defined by x̂(%) = [%(xij)] for
% ∈ X]). In particular MJ(T(H)) = NCB(B(H),MJ) since B(H) is the dual
of T(H). The assumption that X] is properly embedded into B(H) implies
that

NCB(B(H),MJ)→ NCB(X],MJ), φ 7→ φ|X],

is a quotient map, hence the amplification

ηJ : MJ(T(H))→ MJ(X)

of η is also a quotient map. So, there exists an element t ∈ MJ(T(H)) such

that ‖t‖ < 1 and ηJ(t) = x. With z := u� t� v ∈ U
eh
⊗ T(H)

eh
⊗ V , we have

now ‖z‖ < 1 and σ(z) = w. This proves that σ is a quotient map. That σ is
in fact a completely quotient map follows by applying the same argument
to the spaces Cn(U) and Rn(V ) (n ∈ N) instead of U and V , respectively,
since

Mn(U
eh
⊗X

eh
⊗ V ) = Cn(U)

eh
⊗X

eh
⊗ Rn(V )

isometrically for every operator space X.

In the rest of this section A ⊆ B(H) will be an injective von Neumann
algebra and we will say a few words about the approximation of CB maps
from B(H) into A with normal maps in the p.n. topology.
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Proposition 4.3. If A is an injective von Neumann algebra, then the
unit ball N1 of NCB(B(H), A) is dense in the unit ball C1 of CB(B(H), A)
in the p.n. topology if and only if for each finite-dimensional subspace F of
B(H) the restriction rF : NCB(B(H), A) → CB(F,A), rF (ψ) = ψ|F , is a
quotient map.

Proof. Assume that N1 is dense in C1 in the p.n. topology. Let F be a
finite-dimensional subspace of B(H), φ ∈ CB(F,A), ‖φ‖cb < 1, and choose
ε so that 0 < ε < 1 − ‖φ‖cb. Since A is injective, there exists an exten-
sion φ0 ∈ CB(B(H), A) of φ such that ‖φ0‖cb = ‖φ‖cb. By the hypoth-
esis there exists a map ψ0 ∈ NCB(B(H), A) such that ‖ψ0‖cb < 1 − ε
and ‖(φ0 − ψ0)|F‖cb < ε/2. By injectivity again, there exists an extension
φ1 ∈ CB(B(H), A) of (φ0 − ψ0)|F such that ‖φ1‖cb < ε/2. Then by the hy-
pothesis again there exists ψ1 ∈ NCB(B(H), A) such that ‖ψ1‖cb < ε/2 and
‖(φ1 − ψ1)|F‖cb < ε/22. Continuing in this way, we find two sequences of
maps φn ∈ CB(B(H), A) and ψn ∈ NCB(B(H), A) such that ‖φn‖cb < 2−nε
and ‖ψn‖cb < 2−nε if n ≥ 1, ‖(φn−ψn)|F‖cb < 2−n−1ε and φn is an exten-
sion of (φ0−ψ0−. . .−ψn−1)|F . Put ψ =

∑∞
n=0 ψn. Then ψ ∈ NCB(B(H), A),

‖ψ‖cb < 1 and ψ|F = φ, hence rF is a quotient map. This proves the propo-
sition in one direction; the reverse direction is obvious.

From Theorem 3.5 (in the special case A = C) and Proposition 4.3 we
deduce the following consequence.

Corollary 4.4. Each finite-dimensional subspace of B(H) is properly
embedded.

Corollary 4.5. Let A be an injective von Neumann algebra acting on
a Hilbert space HA. Then for all Hilbert spaces H the unit ball of the space
NCB(B(H), A) is dense in the unit ball of CB(B(H), A) in the p.n. topology
if and only if there exists a conditional expectation E : B(HA) → A in the
p.n. closure of the unit ball U of NCB(B(HA), A).

Proof. Suppose that there is a conditional expectation E : B(HA)→ A
in the p.n. closure of U . Let φ ∈ CB(B(H), A) with ‖φ‖cb < 1, ε > 0 and
F a finite-dimensional subspace of B(H). By Corollary 4.4 there exists a
map σ ∈ NCB(B(H),B(HA)) such that ‖σ‖cb < 1 and σ|F = φ|F . By the
hypothesis there exists a map ψ ∈ NCB(B(HA), A) such that ‖ψ‖cb ≤ 1 and
‖(E − ψ)|φ(F )‖cb < ε. Then ψσ ∈ NCB(B(H), A), ‖ψσ‖cb < 1 and (since
φ = Eφ and σ|F = φ|F ) ‖(φ− ψσ)|F‖cb = ‖(E − ψ)φ|F‖cb < ε.

5. The module dual of a normal operator bimodule. The module
dual of an operator bimodule over C∗-algebras was introduced by Na [24]
and Pop [29]. Here we need such a dual for normal operator bimodules over
von Neumann algebras. To simplify the notation we consider only normal
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bimodules over a single von Neumann algebra A; the case of bimodules over
a pair of von Neumann algebras can be treated in the same way.

For a normal operator A-bimodule X, the bimodule dual X \ of X is
defined by

X\ = CBA(X,B(HA))A,

where HA is the Hilbert space on which A is represented faithfully and
normally in some canonical way, say in the standard form [13]. (Here we
shall not need any technical properties of the standard form. If A is σ-finite,
we may simply suppose that A on HA has a cyclic and separating vector,
which determines (A,HA) up to unitary equivalence.) X] is an A′-bimodule
in the natural way.

If Y is a dual operator A-bimodule, then the bimodule predual Y\ of Y is
defined as the subspace of all weak∗ continuous elements of Y \. In particular,
sinceX\ is a weak∗ closed subspace of CB(X,B(HA)) = (X⊗̂T(HA))], where
T(HA) is the trace class of HA, we may consider (X\)\.

Theorem 5.1. Let X be a normal operator A-bimodule. Then (X \)\ is
the smallest strong A-bimodule containing X. In particular , (X\)\ = X if
and only if X is strong.

Proof. Consider first the bimodule Y = B(HIA) = MI(B(HA)), where
I is some index set and the A-bimodule structure on Y is given by the
representation π : A → B(HIA), π(a) = a(I). Then from Theorem 2.2 we
deduce (by first considering CBA(B(HIA))A and regarding HA as a subspace
in HIA) that

Y \ = CBA(B(HIA),B(HA))A = RI(A′)
σh
⊗ CI(A′),

where for each a′ ∈ RI(A′) and b′ ∈ CI(A′) the element a′⊗ b′ acts as a map
from B(HIA) to B(HA) by (a′ ⊗ b′)(x) = a′xb′ (x ∈ B(HIA) = MI(B(HA))).
Let Rfin

I (A′) be the subspace in RI(A′) consisting of all rows that have only
finitely many non-zero entries and let Cfin

I (A′) be the analogous space of

columns. Since Rfin
I (A′) ⊗ Cfin

I (A′) is weak∗ dense in RI(A′)
σh
⊗ CI(A′) and

each Φ ∈ (Y \)\ is a A′-bimodule map, Φ is determined by the values

bij := Φ(eTi ⊗ ej) ∈ B(HA),

where ej ∈ Cfin
I (A′) (j ∈ I) has 1 in the jth entry and 0 elsewhere. For each

subset F ⊆ I let (eTi )i∈F denote the column and [ej]j∈F the row matrix. Note
that for a finite F the matrix

[eTi ⊗ ej]i,j∈F ∈MF(RI(A′)
σh
⊗ CI(A′)) = CF(RI(A′))

σh
⊗ RF(CI(A′))

satisfies

‖[eTi ⊗ ej ]i,j∈F‖ = ‖(eTi )i∈F � [ej]j∈F‖ ≤ ‖(eTi )i∈F‖ ‖[ej]j∈F‖ = 1
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since [ej]j∈I and (eTi )i∈I are just the identity matrix. It follows that the
matrix b := [bij ]i,j∈I represents a bounded operator with ‖b‖ ≤ ‖Φ‖cb, hence
b ∈ Y . From Φ(eTi ⊗ ej) = (eTi ⊗ ej)(b) for all i, j ∈ I (where eTi ⊗ ej ∈
RI(A′)

σh
⊗ CI(A′) = Y \) we conclude that Φ is the evaluation at b. Thus

(Y \)\ = Y .
For a general X, we may assume that X ⊆ B(K) for some Hilbert space

K, where the A-bimodule structure is induced by a normal representation
π : A→ B(K). Moreover, since each normal representation of A is unitarily
equivalent to a restriction of a multiple of the identity representation, we
may regard X as a subbimodule of the module of the form Y = B(HIA)
considered in the previous paragraph. By the Wittstock extension theo-
rem the inclusion X ⊆ Y induces the (weak∗ continuous) quotient map-
ping q : Y \ → X\. For each φ ∈ (X\)\ the composition φq is in (Y \)\,
hence by what we have already proved there exists an element b ∈ Y such
that

φ(θ|X) = (φq)(θ) = θ(b)(5.1)

for all θ ∈ Y \. If b 6∈ X
A,A

, then by [23, Theorem 3.8] we could choose
θ ∈ Y \ such that θ(X) = 0 and θ(b) 6= 0, but this would contradict
(5.1). Thus, b ∈ X

A,A
and it follows from (5.1) that φ(σ) = σ(b) for all

σ ∈ X\, where σ is the (unique) A,A-continuous extension of σ to X
A,A

.
Thus, (X\)\ = X

A,A
as vector spaces. To show that this identification is

completely isometric, let x = [xij ] ∈ Mn(X) ⊆ Mn(B(HIA)). For each fi-
nite subset F of I let p′F ∈ MI(A′) be the projection with range HFA and
observe that ‖x‖ can be approximated arbitrarily closely by the norms of
the matrices [p′Fxijp

′
F] as F ranges over all finite subsets of I. Since each

p′FB(HIA)p′F = B(HFA) can be identified with Mm(B(HA)), where m is the
cardinality of F, it follows that ‖x‖ = sup ‖[%kl(xij)]‖, where the supremum
is over all complete contractions [%kl] ∈ Mm(X\) = CB(X,Mm(B(HA))) and
all m ∈ N.

Given an operator space X and a von Neumann algebra A ⊆ B(HA), we

denote the space CB(X,A′) by X]
F
⊗A′ to emphasise that it contains a copy

of X]⊗A′. (This is a special case of the general Fubini tensor product [10].)

Proposition 5.2. For each operator space X and von Neumann alge-
bra A,

(X
np
⊗ A)\ = X]

F
⊗A′

completely isometrically as A′-bimodules, hence

X
np
⊗ A = (X]

F
⊗ A′)\ = NCBA′(X

]
F
⊗ A′,B(HA))A′ .
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Proof. By the definitions we have X]
F
⊗A′ = CB(X,A′) and (X

np
⊗A)\ =

CBA(X
np
⊗A,B(HA))A. By the definition (2.4) of the norm inX

np
⊗A each com-

plete contraction φ ∈ CB(X,A′) can be extended (uniquely) to a completely
contractive A-bimodule map φ̃ : X⊗A→ B(HA) such that φ̃(x⊗a) = φ(x)a
for all x ∈ X and a ∈ A. By the Wittstock extension theorem and the auto-
matic continuity in the A,A-topology φ̃ can be extended uniquely to a com-

pletely contractive A-bimodule map ι(φ) : X
np
⊗A→ B(HA). This defines an

isometry ι : CB(X,A′)→ CBA(X
np
⊗A,B(HA))A. To see that ι is surjective,

note that each CB A-bimodule homomorphism ψ : X
np
⊗ A→ B(HA) neces-

sarily maps X ⊗ 1 into A′, hence ψ = ι(φ), where φ ∈ CB(X,A′) is defined
by φ(x) = ψ(x⊗ 1). Finally, that ι is completely isometric follows from the
identifications

Mn(CB(X,A′)) = CB(X,Mn(A′))

and

Mn(CBA(X
np
⊗ A,B(HA))A) = CBA(X

np
⊗ A,Mn(B(HA)))A

= CBA(X
np
⊗ A,B(HnA))A

by replacing in the above argument A with A⊗ 1n for each n ∈ N. The rest
of the proposition follows now from Theorem 5.1.

When we deal with several operator spaces simultaneously, we denote

the map q : A
eh
⊗X

eh
⊗ A→ X

np
⊗ A (defined in the Introduction) by qX .

Corollary 5.3. Let A a von Neumann algebra, X] a dual operator
space properly embedded in B(H) and denote by η : T(H) → X the map

whose adjoint is the inclusion X] ⊆ B(H). Then the map qX : A
eh
⊗X

eh
⊗A→

X
np
⊗ A is (completely) quotient if and only if the map ηA := η⊗ 1 : T(H)

np
⊗

A→ X
np
⊗ A is (completely) quotient.

Proof. Consider the commutative diagram

A
eh
⊗ T(H)

eh
⊗ A T(H)

np
⊗ A = NCBA′(B(H)⊗A′,B(HA))A′

A
eh
⊗X

eh
⊗ A X

np
⊗ A = NCBA′(X]

F
⊗ A′,B(HA))A′

qT(H) //

σ

��
ηA

��
qX //

where σ = 1 ⊗ η ⊗ 1 and the equalities follow from Proposition 5.2. From
[20, 5.1(3), 4.2] we deduce that qT(H) is a completely quotient map and the
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same holds for σ by Proposition 4.2. It follows from the diagram that qX is
a completely quotient map if and only if the same holds for ηA.

Corollary 5.4. Given an injective von Neumann algebra A, the map

qX : A
eh
⊗ X

eh
⊗ A → X

np
⊗ A = X

A
⊗ A is a quotient map for all finite-

dimensional operator spaces X if and only if there is a conditional expecta-
tion E : B(HA)→ A in the p.n. closure of the unit ball of NCB(B(HA), A).

Proof. By the diagram in the proof of Corollary 5.3, qX is a quotient
map if and only if the restriction map

U := NCBA′(B(H)⊗ A′,B(HA))A′ → V := NCBA′(X]
F
⊗A′,B(HA))A′

is a quotient map. Note that U = NCB(B(H), A) (see [20, 4.2]) and, if
X is finite-dimensional, the fact that injective von Neumann algebras are
semidiscrete [4] implies by [8, 4.5] that V = CB(X ], A). Thus, qX is a
quotient map for all finite-dimensional spaces X if and only if the restriction
map NCB(B(H), A)→ CB(X], A) is quotient, which, by Proposition 4.3 and
Corollary 4.5, is the case if and only if there is a conditional expectation
E : B(HA)→ A in the p.n. closure of the unit ball of NCB(B(HA), A).

6. The case of algebras of type I. If µ is a positive countably ad-
ditive measure on a (σ-algebra on a) space ∆ and X is a Banach space we
denote by L∞(µ,X) the space of all essentially bounded (strongly) mea-
surable functions from ∆ to X (see [6]). If X is an operator space then
L∞(µ,X) is an operator space in a natural way. Given a countable set J, we
denote by L̃∞(µ,MJ(X)) the space of all functions f = [fij] : ∆ → MJ(X)
such that the component functions fij : ∆→ X are measurable and ‖f‖ is
essentially bounded.

If A is injective, then X
np
⊗ A is just the closure X

A
⊗ A of X ⊗̌ A in the

A,A-topology (since C∗(X)
nor
⊗ A = C∗(X) ⊗̌A by [8]), which by [23] is just

the smallest strong A,A-bimodule containing X ⊗̌ A.

Lemma 6.1. Let µ be a positive finite measure on a space ∆, C = L∞(µ),
X an operator space, J a countable (or finite) set and A = MJ(C). Then:

(i) X
C
⊗ C = L∞(µ,X).

(ii) X
A
⊗ A = L̃∞(µ,MJ(X)).

Proof. (i) Put Y = X⊗̌C and represent the normal operator C-bimodule
Y as Y ⊆ B(H) for some Hilbert space H on which C acts faithfully and

normally. Since C is abelian the closure X
C
⊗ C of Y in the C,C-topology

is the same as in the C, C-topology (the two topologies have the same con-
tinuous functionals on the weak∗ closed submodule of B(H) consisting of
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elements commuting with C) and by [22, 2.2, 5.3] this closure consists of all
f ∈ B(H) such that there exists an orthogonal set {ei : i ∈ I} of (non-zero)
projections in C with sum 1 such that fei ∈ Y . Since µ is finite, I must
be countable. Regarding Y as a subspace of L∞(µ,X) in the usual way, we
see that each fei is in L∞(µ,X), hence also f =

∑
i fei is in L∞(µ,X).

Conversely, the Egorov theorem states that each f ∈ L∞(µ,X) is a uniform
limit of step functions outside a subset of arbitrary small measure and this
implies that there is an orthogonal sequence {ei} of projections in C such

that fei ∈ Y for all i, hence f ∈ X
C
⊗ C.

(ii) We assume that J is infinite and identify J with N. Let pn ∈MJ ⊆ A
be the projection onto the first n coordinates, so that (pn) is a sequence
of finite rank projections converging to 1. Let f = [fij] ∈ L̃∞(µ,MJ(X)).

By (i) the component functions fij of f are in X
C
⊗ C, hence pnfpn ∈

Mn(X
C
⊗C) for each n. Since X

A
⊗A is a strong A-bimodule (hence a strong

C-bimodule) containing X ⊗̌A ⊇ Mn(X ⊗̌C), it must contain Mn(X
C
⊗C),

hence pnfpn ∈ X
A
⊗ A for all n. Since the sequence (pnfpn) converges to

f in the MJ,MJ-topology (hence also in the A,A-topology), it follows that

f ∈ X
A
⊗A. This proves the inclusion L̃∞(µ,MJ(X)) ⊆ X

A
⊗A and the reverse

inclusion follows from the easily verified fact that L̃∞(µ,MJ(X)) is a strong
A,A-bimodule containing X ⊗̌ A.

In the following theorem we have a restriction on the size of the operator
space X; we do not know if it can be removed. In contrast, there is no
restriction on the size of the von Neumann algebra A. To show this, we prove
the theorem for a general A of type I, although the proof is much shorter if
A has a separable predual (below, the separable case will be proved first).

Theorem 6.2. If A is a von Neumann algebra of type I and X an opera-
tor space such that X] can be properly embedded into B(H) with H separable,

then q : A
eh
⊗X

eh
⊗ A→ X

A
⊗ A is a completely quotient map.

Proof. Let ι : X] → B(H) be the inclusion, η : T(H) → X the com-
pletely quotient map with adjoint ι and set T = T(H). By Corollary 5.3 it

suffices to prove that the map ηA : T
A
⊗ A→ X

A
⊗A is completely quotient.

One can verify that if A is a direct sum of von Neumann algebras Ai, then

Y
A
⊗ A =

⊕
i(Y

Ai⊗ Ai) for each operator space Y . Thus, we may assume
that A = MJ(C) for some Abelian von Neumann algebra C and some index
set J, since each von Neumann algebra of type I is a direct sum of algebras
of such a form. We shall now divide the proof into three steps.
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1. Suppose that A has a separable predual. Then J is countable (hence
we will assume that J = N) and (up to isomorphism) C = L∞(µ) for some
finite complete Borel measure on a compact metric space ∆. By Lemma 6.1,

X
A
⊗A = L̃∞(µ,MJ(X)). Let f ∈ L̃∞(µ,MJ(X)) and ε ∈ (0, 1). Put B = MJ

and let ηJ : MJ(T ) → MJ(X) be the map induced by η. Since MJ(X) =
NCB(X],MJ) and MJ(T ) = NCB(B(H),MJ) and X] is properly embedded
in B(H), ηJ is a quotient map. Therefore for each λ ∈ ∆ there exists an
element t(λ) ∈ MJ(T ) such that ηJ(t(λ)) = f(λ) and ‖t(λ)‖ < ‖f(λ)‖ + ε.
To show that t(λ) can be chosen in a measurable way, we may assume (by
changing it on a set of measure 0, see [16, p. 1032]) that f is a Borel map. Let
V be the closed ball in MJ(T ) with centre 0 and radius ‖f‖+ε, equipped with
the topology determined by the family of seminorms t 7→ ‖pntpn‖, where
pn ∈ MJ is the projection onto the first n coordinates for each n ∈ J = N. (It
is not difficult to verify that this is just the B,B-topology on V .) Then V is
a complete separable metrizable space. Since the map ηJ : MJ(T )→ MJ(X)
is continuous where both spaces carry the B,B-topology, the set

S = {(λ, t) ∈ ∆× V : f(λ) = ηJ(t)}

is a Borel subset of∆×V . By the principle of measurable selection (see [16, p.
1041]) there exists a measurable map g : ∆→ V such that ηJ(g(λ)) = f(λ)
for all λ ∈ ∆. The topology in V is such that measurability of g means that
the components gij of g are measurable functions from ∆ into X, hence

g ∈ L̃∞(µ,MJ(T )) = T
A
⊗ A. The identity ηJ(g(λ)) = f(λ) a.e. means that

ηA(g) = f and, since ‖g‖ ≤ ‖f‖+ ε, this proves that ηA is a quotient map.
Thus q is a quotient map. Replacing in the above argument A with Mn(A)
for all n ∈ N, we see that q is in fact a completely quotient map. This proves
the theorem in the case where A has a separable predual.

2. Suppose now that A is countably decomposable (but not necessarily

with a separable predual). Since bounded subsets of X
A
⊗ A are metriz-

able in the A,A-topology and each w ∈ X
A
⊗ A is in the A,A-closure of

some bounded subset of X ⊗̌ A by [23], each w ∈ X
A
⊗ A is in fact a

limit in the A,A-topology of a sequence of elements wn ∈ X ⊗̌ A. We
claim that there exists a countably generated type I von Neumann sub-

algebra A0 of A such that w ∈ X
A0⊗ A0. To see this, let ω be a faithful

normal state on A. Since wn is a Cauchy sequence in the A,A-topology,
it follows from [23, 3.1] that we have wn − wm = am,nym,n + zm,nbm,n for
some bounded sequences (ym,n), (zm,n) ⊆ X ⊗̌ A and (am,n), (bm,n) ⊆ A+

such that ω(a2
m,n) and ω(b2

m,n) tend to 0 as m and n tend to ∞. Let
A0 be a countably generated von Neumann subalgebra of A such that all
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wn, ym,n and zm,n are in X ⊗̌ A0 and all am,n and bm,n are in A0. Fur-
ther, by replacing A0 with the smallest von Neumann subalgebra of A
which contains A0 and is invariant for the modular group corresponding
to the state ω, we know by [30] that there is a faithful normal condi-
tional expectation from A to A0, hence A0 is of type I by [31]. By con-

struction, (wn) is a Cauchy sequence in the A0, A0-topology of X
A0⊗ A0,

hence (since a closed ball of X
A0⊗ A0 is a complete metric space in the

A0, A0-topology by [22, 5.5] and [23, 3.1]) the sequence has a limit w̃. But
w̃ is then also the limit of the sequence (wn) in the (weaker) A,A-topology

of X
A
⊗ A, hence w̃ = w. This proves the claim. Since a σ-finite count-

ably generated von Neumann algebra has a separable predual, by what

we have already proved there is an element t ∈ T
A0⊗ A0 ⊆ T

A
⊗ A with

‖t‖ ≤ ‖w‖+ ε and ηA(t) = w. This proves that ηA is a quotient map if A is
σ-finite.

3. In general, if A is not countably decomposable, we can reduce the
problem to the σ-finite case as follows. First we may regard X ⊗̌ A (and

consequently X
A
⊗ A) as a subbimodule in NCB(X], A) in the well known

canonical way. For each w ∈ NCB(X], A) the von Neumann subalgebra
Aw of A generated by the range of w contains a countable weak∗ dense
subset (since X] does), therefore for each vector ξ ∈ HA the projection pξ
with range [A′Awξ] is σ-finite in A and clearly pξ ∈ A ∩ A′w. This implies,
by a standard maximality argument, that w can be decomposed as a sum
w =

∑
i piw for some orthogonal family (pi) of σ-finite (in A) projections

pi ∈ A ∩ A′w and each piw can be regarded as an element of NCB(X], Ai),

where Ai = piApi. Further, if w ∈ X
A
⊗ A, then piw ∈ X

Ai⊗ Ai for all i,

hence, by what we have already proved, there exist ti ∈ T
Ai⊗ Ai such that

ηAi(ti) = piw and ‖ti‖ < ‖piw‖+ ε. Then t :=
∑
ti ∈

⊕
i(T

Ai⊗ Ai) ⊆ T
A
⊗ A

is such that ηA(t) = w and ‖t‖ < ‖w‖+ ε. This proves that ηA is a quotient
map; that it is in fact completely quotient follows again by replacing in this
argument A with Mn(A) for all n ∈ N.

We do not know if in Theorem 6.2, the restriction that X can be properly
embedded into B(H) for a separable H can be removed. This condition is
satisfied in particular for all finite-dimensional operator spaces (Corollary
4.4) and all operator spaces X such that X ] can be realised as a subspace
in some B(H) for a separable H so that X] ∩K(H) is weak∗ dense in X].

Remark 6.3. If A is a finite von Neumann algebra of type I, then the

map q : A
eh
⊗ X

eh
⊗ A → X

np
⊗ A is completely quotient for each operator
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space X. One way to show this (indirectly suggested to me by Christian
Le Merdy) is to observe that if in the first part of the proof of Theo-
rem 6.2, J is finite then L̃∞(µ,MJ(X)) = L∞(µ,MJ(X)), where µ is a
finite countably additive positive measure on a space ∆. Thus each f ∈
L̃∞(µ,MJ(X)) can be approximated uniformly by functions of the form∑∞

j=1 χ∆jxj , where xj ∈ MJ(X) and χ∆j are the characteristic functions
of disjoint measurable subsets ∆j of ∆ (this follows from the proof of the
Pettis measurability theorem, [6, p. 42]), hence (by the proof of the open
mapping theorem) f can be lifted in an appropriate way to an element of
L̃∞(µ,MJ(T )).

From Theorem 6.2, Corollary 5.4, Corollary 4.5 and Proposition 4.3 we
deduce the following consequence.

Corollary 6.4. For each von Neumann algebra A of type I and a finite-
dimensional subspace X] ⊆ B(H) every CB map φ : X] → A with ‖φ‖cb < 1
can be extended to a normal map ψ : B(H)→ A with ‖ψ‖cb < 1.

Theorem 6.2 (together with Corollary 5.3) implies that if X is a finite-
dimensional operator space and q : T(H)→ X is a completely quotient map

then the induced map T(H)
A
⊗ A→ X ⊗̌ A is also completely quotient if A

is of type I. If we replace T(H)
A
⊗ A with the usual spatial tensor product

T(H) ⊗̌ A the result is no longer true for all finite-dimensional operator
spaces X even in the case A = B(H). After we had already found a direct
proof of the following proposition, N. Ozawa kindly informed us that the
first part of it can also be deduced from his results in [25]. We give below
our original proof. We refer to [27] for the definition of 1-exact operator
spaces that are used in the following proposition.

Proposition 6.5. Let η : T(H) → X be a completely quotient map,
where X is finite-dimensional. Then the induced map η1 := η ⊗ 1 : T(H) ⊗̌
B(H) → X ⊗̌ B(H) is completely quotient if and only if the dual X] of X
is 1-exact. In this case the map η ⊗ 1 : T(H) ⊗̌ A → X ⊗̌ A is completely
quotient for each injective operator space A.

Proof. Put T = T(H), B = B(H) and identify B with MJ for some
index set J. Note that taking adjoints induces a complete isometry be-
tween CB(T, Y ) and NCB(Y ], B) = MJ(Y ) for each operator space Y ; under
this identification the subspace Y ⊗̌B of MJ(Y ) corresponds to the closure

FCB(T, Y )
cb

of finite rank operators FCB(T, Y ).
For a finite-dimensional X, if the map η1 : T ⊗̌B → X ⊗̌B is quotient,

then by the identification of the previous paragraph this means that the
corestriction map r : FCB(T, T )

cb → FCB(T,X), r(φ) = ηφ, is a quotient
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map. In particular, given ε > 0, there exists φ ∈ FCB(T )
cb

such that ηφ = η
and ‖φ‖cb < 1 + ε/8. Choose ψ ∈ FCB(T ) with ‖φ − ψ‖cb < ε/8, hence
‖ψ‖cb < 1 + ε/4. Put S = imψ, a finite-dimensional subspace of T .

Given a map θ : X → Y between operator spaces we shall denote for
each n the induced map θ ⊗ 1 : Mn(X) → Mn(Y ) by θ again for simplicity
of notation.

Observe that for each n ∈ N and each t in the unit ball of Mn(T ) there
exists an s in the unit ball of Mn(S) such that ‖φ(t) − s‖ < ε/2. (In-
deed, since ‖φ(t)− ψ(t)‖ < ε/4 and ‖ψ(t)‖ < 1 + 4−1ε, we can choose s =
(1 + 4−1ε)−1ψ(t).)

Since η is completely quotient, given n and x ∈ Mn(X) with ‖x‖ = 1,
there exists t ∈Mn(T ) such that η(t) = x and ‖t‖ < 1+2−1ε. Thus t1 := (1+
2−1ε)−1t satisfies ‖t1‖ < 1 and ‖x−η(t1)‖ < ε/2. By the previous paragraph
there exists an s1 ∈ Mn(S) such that ‖s1‖ ≤ 1 and ‖φ(t1)−s1‖ < ε/2. Thus,

‖x− η(s1)‖ = ‖x− η(t1) + η(φ(t1)− s1)‖ < ε.

This means that for each y ∈ Mn(X) there exists an element s ∈ Mn(S)
such that ‖s‖ ≤ ‖y‖ and ‖y − η(s)‖ ≤ ε‖y‖. Applying this successively to
elements x, x− η(s1), . . . , we find a sequence of elements sk ∈ Mn(S) such
that ‖sk‖ ≤ εk−1 and ‖x− η(s1)− . . .− η(sk)‖ ≤ εk. For s :=

∑
sk we now

have η(s) = x and ‖s‖ ≤ (1− ε)−1.
So we have proved that for each ε > 0 there exists a finite-dimensional

subspace S of T such that for each n and x ∈ Mn(X) there is an element
s ∈ Mn(S) with η(s) = x and ‖s‖ ≤ (1 − ε)−1‖x‖. We can replace S in
this statement by Tm, the predual of Mm, for some m ∈ N; this follows
from the fact that for each finite-dimensional subspace S of T there exists
m ∈ N such that S is ε-almost completely isometric to a subspace of Tm
(see [11] for a more general result of this sort). By duality this implies that
the completely bounded Banach–Mazur distance from X ] to some subspace
of Mm is dominated by (1 − ε)−2 (see the proof of Theorem 4.1.8 in [12]),
hence X] is 1-exact since ε > 0 was arbitrary.

Conversely, if X] is 1-exact (that is, arbitrarily close in the CB Banach–
Mazur distance to a subspace of Mm for some m), then by duality, given
ε > 0, there exists an m and a complete contraction τ : Tm → X such
that the induced map Tm/ker τ → X is invertible with the CB norm of the
inverse less than 1 + ε. Since Tm is a projective operator space [2], there
exists a linear map φ : Tm → T with ηφ = τ and ‖φ‖cb < 1 + ε. Tensoring
with A, it now suffices to show that the map τ ⊗ 1 : Tm ⊗̌ A → X ⊗̌ A is
ε-almost completely quotient, and this translates to the fact that the map
r : CB(Mm, A) → CB(X], A), r(θ) = θτ ] (where τ ] is the adjoint of τ), is
almost completely quotient, which is a consequence of the extension theorem
for CB maps.
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Corollary 6.6. If X is a finite-dimensional operator space whose dual

X] is 1-exact , then the map q : A
eh
⊗X

eh
⊗A→ X ⊗̌A is completely quotient

for each injective von Neumann algebra A.

Proof. Since T(H) ⊗̌ A ⊆ T(H)
np
⊗ A and X ⊗̌ A = X

np
⊗ A, the map

ηA : T(H)
np
⊗ A → X

np
⊗ A is completely quotient by Proposition 6.5, hence

the result follows from Corollary 5.3.
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