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The essential spectrum of holomorphic
Toeplitz operators on Hp spaces

by

Mats Andersson and Sebastian Sandberg (Göteborg)

Abstract. We compute the essential Taylor spectrum of a tuple of analytic Toeplitz
operators Tg on Hp(D), where D is a strictly pseudoconvex domain. We also provide
specific formulas for the index of Tg provided that g−1(0) is a compact subset of D.

1. Introduction and main results. Let D be a bounded domain in
Cn with C3 boundary. The Hardy space Hp consists of the holomorphic
functions f in D such that

‖f‖pHp = lim sup
ε↘0

�

∂Dε

|f |p dσ <∞,

where Dε = {z ∈ D; %(z) < −ε} for some defining function % of D, and H∞

denotes the space of bounded holomorphic functions. A tuple g1, . . . , gm
of bounded holomorphic functions on D defines a tuple Tg of commuting
Toeplitz operators on Hp(D), i.e., Tgjf = gjf . For each fixed w ∈ Cm we
have the Koszul complex

0← Λ0Hp δw−g←− Λ1Hp δw−g←− . . .
δw−g←− ΛmHp ← 0,(1.1)

where ΛlHp is the space of all formal expressions

f =
∑ ′

|I|=l
fIeI ,

eI = eI1 ∧ . . . ∧ eIl , e1, . . . , em being some abstract basis, the prime means
that the summation is performed over increasing multiindices I of length l,
and the mappings δw−g are contraction (interior multiplication) with the
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operator-valued dual object
m∑

j=1

(wj − gj)e∗j ,

where e∗j is the dual basis. If Λ1Hp is identified with (Hp)m, then the next
to leftmost arrow in (1.1) is just the mapping (Hp)m → Hp defined by

(u1, . . . , um) 7→
∑

(wj − gj)uj .(1.2)

The Taylor spectrum σ(Tg,Hp) of the (commuting tuple of operators) Tg on
Hp is defined as the set of w ∈ Cm such that (1.1) is not exact. The right
spectrum σr(g,Hp) is the set of w such that (1.1) is not exact at the next to
leftmost point, i.e., such that (1.2) is not surjective. It is a consequence of
the open mapping theorem (see [11]) that σr(g,Hp) and σ(g,Hp) are closed
and hence compact sets. Obviously (1.2) is not surjective if w ∈ g(D), and
therefore we have the inclusions

g(D) ⊂ σr(g,Hp) ⊂ σ(g,Hp).(1.3)

The essential spectrum σess(Tg,Hp) is the set of w ∈ Cm such that not all the
homology of (1.1) is finite-dimensional, or stated in other words, that Tw−g
is not a Fredholm tuple. Moreover, the right essential spectrum σress(Tg) is
the set of w such that the homology of (1.1) at l = 0 is infinite-dimensional.
In [3] the following was proved:

Theorem 1.1. Let D be a strictly pseudoconvex domain in Cn with C3

boundary and assume that g1, . . . , gm ∈ H∞. Then σ(g,Hp) = σr(g,Hp) =
g(D) for all p <∞. If n = 1 this also holds for p =∞.

The main result in this note is

Theorem 1.2. Let D be a strictly pseudoconvex domain in Cn with C3

boundary and assume that g1, . . . , gm ∈ H∞. Then

σess(Tg,Hp) = σress(Tg,Hp) =
⋂

open U⊃∂D
g(D ∩ U)(1.4)

for all p <∞. If n = 1 this also holds for p =∞.

Thus, roughly speaking, σess(Tg) is the image of the boundary of ∂D un-
der the mapping g: D → Cm. It follows that σess(Tg) = σ(Tg) if m < n. For
two generators these results were proved in [9]. The analog of Theorem 1.1
for the Bergman space L2

a(D) = O(D) ∩ L2(D) was proved in [5] for any
bounded pseudoconvex domain, together with the inclusion

σess(Tg, L2
a(D)) ⊂

⋂

open U⊃∂D
g(D ∩ U),(1.5)

with equality at least if D is strictly pseudoconvex.
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Remark 1. Theorem 1.1 was also proved for BMOA and Lpa(D) =
O(D) ∩ Lp(D), 1 ≤ p < ∞, in [3]. The equality σr(Tg,X) = g(D) has
been proved for a large number of other function spaces X in strictly pseu-
doconvex domains such as various Besov spaces ([7] and [8]) and Qp spaces
([13] and [4]). In each case, the gj are assumed to be multipliers on the
space X in question. The proofs in these papers can be adapted to yield the
complete analogues of Theorem 1.1 and the corresponding inclusions (1.5).
Moreover, Theorem 1.1 holds for all p ≤ 2 if D admits a C2 plurisubhar-
monic defining function (see [12], [1], and [2]), and again one can prove the
corresponding inclusion (1.5) in this case.

2. Proofs. The inclusion⋂

open U⊃∂D
g(D ∩ U) ⊂ σress(Tg,Hp)

follows just as for the Bergman space L2
a(D) (see Theorem 8.2.6 in [6]). Since

clearly σress(Tg,Hp) ⊂ σess(Tg,Hp), we will focus on the remaining inclusion

σess(Tg,Hp) ⊂
⋂

open U⊃∂D
g(D ∩ U).(2.1)

for the rest of this paper. A moment’s thought reveals that it is equivalent
to the statement that (1.1) has finite-dimensional homology for each w such
that g−1(w) is a compact subset of D. In what follows we can with no loss
of generality assume that w = 0. Let us introduce the notation

Hr(Tg,Hp(D)) =
Ker(ΛrHp(D)

δg→ Λr−1Hp(D))

Im(Λr+1Hp(D)
δg→ ΛrHp(D))

.

and define Hr(Tg,O(V )) in the analogous way, for V ⊂⊂ D. The restriction
mapping Hp(D) → O(V ) then induces a mapping of complexes from (1.1)
(for w = 0) to the complex

0← Λ0O(V )
δg← Λ1O(V )← . . . ,

and hence we get a mapping on homology

Hr(Tg,Hp(D))→ Hr(Tg,O(V )).(2.2)

We will prove the following theorem.

Theorem 2.1. Suppose that D is a strictly pseudoconvex domain with
C3 boundary , and g is a tuple of bounded holomorphic functions on D such
that g−1(0) is a compact subset of D, and let V be a pseudoconvex open
set such that g−1(0) ⊂ V ⊂⊂ D. If n ≥ 1 and 1 ≤ p < ∞ or n = 1 and
p =∞, then the mapping (2.2) is an isomorphism.
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If g−1(0) is a compact subset of D it is clearly a discrete set. It is well
known that then the spaces Hr(Tg,O(V )) are finite-dimensional. Taking
Theorem 2.1 for granted we can therefore conclude that all Hr(Tg,Hp(D))
are finite-dimensional as well. By the remark above this means that the
inclusion (2.1) holds. Thus Theorem 1.2 is proved.

If Tg is a Fredholm tuple we define the index as

Ind(Tg,Hp(D)) =
m∑

r=0

(−1)r dimHr(Tg,Hp(D)),

and Ind(Tg,O(V )) in the analogous way. Then we have

Corollary 2.2. Under the assumptions of Theorem 2.1 we have

Ind(Tg,Hp(D)) = Ind(Tg,O(V )).

In particular, if m = n it is well known that Hr(Tg,O(V )) = 0 for r > 0
and that

dimH0(Tg,O(V )) =
M∑

j=1

νzj (g)

if z1, . . . , zM are the zeros of g and νzj (g) is the order of the zero of g at the
point zj. Thus we have

Corollary 2.3. Under the assumptions of Theorem 2.1 and m = n we
have Hr(Tg,Hp(D)) = 0 for r > 0 and

Ind(Tg,Hp(D)) =
M∑

j=1

νzj(g).(2.3)

The formula (2.3) appeared in [5] for the Bergman space L2
a(D) instead

of Hp(D).

3. Proof of Theorem 2.1. We only write down the proof of Theo-
rem 2.1 for Hp(D), 1 ≤ p < ∞; the case p = ∞ when n = 1 follows with
minor modifications. The proof relies on the technique and results of [10].
Fix a p, 1 ≤ p < ∞, and let X = Hp(D). Moreover, let E0,k(D) denote the
space of smooth (0, k)-forms in D, and E0,k(D) the subspace of forms that
are smooth up to the boundary. There are (cf. [10]) Fréchet spaces Bk such
that E0,k(D) ⊂ Bk ⊂ E0,k(D),

0→ X → B0
∂→ B1

∂→ . . .
∂→ Bn → 0(3.1)

is a complex, the Tgj are bounded on Bk, and if χ is a cutoff function in D
which is identically 1 in a neighborhood of g−1(0), then also (1− χ)gj/|g|2
are bounded operators on Bk. In fact, we just take the intersections of the
Banach spacesBk from [10] with E0,k(D); the last statement follows from [10]
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since the Bk condition is just a boundedness condition close to ∂D. To
see that these new spaces are complete, let {fj} be a Cauchy sequence in
Bk ∩ E0,k(D). Let f be the limit of {fj} in E0,k(D). Fatou’s lemma applied
twice to each term in the definition of ‖ · ‖Bk shows that ‖f − fj‖Bk ≤
lim inf l ‖fl − fj‖Bk . Thus {fj} converges to f in Bk and hence Bk ∩ E0,k(D)
is complete.

Let Bl
k(D) denote the space of (0, k)-forms f that can be written as

f =
∑ ′

|I|=l
fI ∧ eI ,

where fI ∈ Bk. We are taking the exterior algebra of both (the space gen-
erated by) e1, . . . , em and T ∗0,1(D), and therefore the operators δ = δg and
∂ anticommute so Bl

k(D) is a double complex. We have the corresponding
total complex

. . .
δ−∂−→ Lr(TotBl

k(D)) δ−∂−→ Lr+1(TotBl
k(D)) δ−∂−→ . . .(3.2)

where

Lr(TotBl
k(D)) =

n⊕

p=0

Bp−r
p (D),

and we let Hr(TotBl
k(D)) denote the cohomology of the complex (3.2). In

the same way we have the double complex E l0,k(V ), and its corresponding
total complex Lr(Tot E l0,k(V )), and the cohomology groups Hr(Tot E l0,k(V )).
The restriction mapping induces a mapping of the double complexes, thus a
mapping of the total complexes, and hence a mapping on cohomology, i.e.,
we have natural mappings

Hr(TotBl
k(D))→ Hr(Tot E l0,k(V )).(3.3)

Lemma 3.1. If g−1(0) ⊂ V ⊂⊂ D, then (3.3) is an isomorphism.

Proof. Both Bl
k(D) and E l0,k(V ) are modules over E(D). Let

γ =
m∑

j=1

gj
|g|2 ej ,

and let Γf = γ ∧ f . Then the operator Γ is bounded on Bk(D \ g−1(0))
and on E l0,k(V \ g−1(0)), and (δΓ + Γδ)f = f so the double complexes
Bl
k(D \ g−1(0)) and E l0,k(V \ g−1(0)) are exact in l and therefore the lemma

follows from a standard homology argument.

However, for us it is worthwhile to consider a more concrete version of
the argument. Let χ be a cutoff function in V that is 1 in a neighborhood
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of g−1(0); then f 7→ (1−χ)γ ∧ f is a bounded operator on Bk. Moreover, if

α =
m∑

j=1

γ ∧ (∂γ)j−1,

then (δ − ∂)α = 1 and f 7→ (1 − χ)α ∧ f is bounded Lr(TotBl
k(D))

→ Lr−1(TotBl
k(D)). If now [f ] ∈ Hr(TotBl

k(D)) and there is a v ∈
Lr(Tot E l0,k(V )) such that (δ − ∂)v = f in V , then

(δ − ∂)(χv + (1− χ)α ∧ f − ∂χ ∧ α ∧ v) = f

in D, which shows that (3.3) is injective. On the other hand, if v ∈
Lr(Tot E l0,k(V )) and (δ − ∂)v = 0, then

(δ − ∂)((1− χ)α ∧ v) = v − (χv − ∂χ ∧ α ∧ v)

which shows that v is then cohomologous in V to the form χv−∂χ∧α∧v ∈
Lr(TotBl

k(D)), proving that (3.3) is surjective.

Notice that E l0,k(V ) is exact in k (recall that V is assumed to be pseu-
doconvex) except on level k = 0, where the kernels are Ol(V ) = ΛlO(V ).
By standard homological algebra it follows that the natural mapping
Hr(Tg,O(V ))→ H−r(Tot E l0,k(V )) is an isomorphism (an explicit argument
is contained in the proofs of Lemma 3.2 and Theorem 2.1 below). The map-
ping X → B0 also induces natural mappings Hr(Tg,X)→ H−r(TotBl

k(D))
and thus we have the following picture:

Hr(Tg,X)→ H−r(TotBl
k(D)) ' H−r(Tot E l0,k(V ))(3.4)

' Hr(Tg,O(V )),

where the composite mappings Hr(Tg,X) → Hr(Tg,O(V )) are the natural
ones, i.e., (3.3). If also the complex (3.1) were exact, then it would follow
immediately, by the same argument, that the leftmost arrow in (3.4) were
an isomorphism, and hence Theorem 2.1 would have been proved.

Unfortunately, we cannot find such a complex with the stated properties
which is also exact. The main point in [10] is that one can do without
exactness.

Remark 2. This idea was used, though not formalized, in [3] and goes
back to Wolff’s proof of the corona problem. To see this, let n = 1 and
p =∞. Then our space B1 is the space of (0, 1)-forms f such that r|f |2 +
r|∂f | is a Carleson measure, r being the distance to the boundary, and B0
is the space of functions u such that ∂u ∈ B1. Then 0 → H∞ → B0 →
B1 → 0 is a complex and Bj are closed under Tg. Although not exact, any
f ∈ B1 admits a solution u ∈ L∞(∂D) to ∂bu = f (this is Wolff’s theorem),
and this turns out to imply the missing isomorphism in (3.4) (for r = 0).
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Assuming that g−1(0) is empty, as in the corona theorem, one concludes
that Hr(Tg,X) = 0, which is precisely the corona theorem.

It turns out that it is enough to find spaces B ′k with E0,k(D) ⊂ B′k ⊂
E0,k(D) with the following properties:

(i) The spaces B′k are closed under Tg.
(ii) If k ≥ 0 and f ∈ Bk+1 + B′k+1 and ∂f = 0, then there is a solution

u ∈ B′k to ∂u = f .
(iii) If f ∈ B0 +B′0 and ∂f = 0, then f ∈ X.

To be precise, in [10] spaces B′k are defined such that (i) and (ii) hold
for k ≥ 1 (for k ≥ 2 actually B′k = Bk). Moreover, B′0 is chosen as Lp(∂D)
and the exact statement of (ii) for k = 0 is: If f ∈ B1 + B′1 then there is a
solution u ∈ B′0 to ∂bu = f ; for this use of the symbol ∂b, see [10]. Moreover,
it turns out that there is a trace mapping τ :B0 → τB0 ⊂ Lp(∂D), thus the
elements in B0 have boundary values in Lp(∂D), and the precise statement
of (iii) is: If f ∈ τB0 +B′0 and ∂bf = 0, then f ∈ τHp ' Hp.

In the proof below, for simplicity, we assume that we actually have access
to spaces satisfying (i) to (iii), and leave it to the reader to fill in the small
formal modifications that are needed; see also [10].

Lemma 3.2. If u ∈ L−r(TotBl
k(D)) and

(δ − ∂)u = f ∈ Λr−1X,

then there is v ∈ L−r−1(Tot (B′k)
l(D)) such that

u+ (δ − ∂)v = h ∈ ΛrX.
Proof. In fact, if u =

∑
ur+k,k with ur+k,k ∈ Br+k

k , then ∂ur+n,n
= 0 so we can solve ∂vr+n,n−1 = ur+n,n in (B′n−1)r+n. Then δvr+n,n−1 ∈
(B′n−1)r+n−1 and ∂(ur+n−1,n−1 + δvr+n,n−1) = 0, so we can inductively find
vr+k+1,k ∈ (B′k)

r+k+1 such that ∂vr+k,k−1 = ur+k,k + δvr+k+1,k. Finally,
h = ur,0 + δvr+1,0 ∈ ΛrX.

We can now conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. We start with the injectivity. In view of (3.4) it is
enough to show that the leftmost mapping actually is an isomorphism. Take
[f ] ∈ Hr(Tg,X) and assume that it is 0 in H−r(TotBl

k(D)). Thus there is
a u ∈ L−r−1(TotBl

k(D)) such that (δ − ∂)u = f . But then, by Lemma 3.2,
there is v ∈ L−r−2(Tot (B′k)

l) such that

u+ (δ − ∂)v = h ∈ Λr+1X.

Thus
δh = (δ − ∂)h = (δ − ∂)u = f

so that [f ] = 0 in Hr(Tg,X). Thus (2.2) is injective.
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For the surjectivity, take [u] ∈ H−r(TotBl
k); then (since (δ − ∂)u = 0)

Lemma 3.2 gives a v ∈ L−r−1(Tot (B′k)
l) such that

u+ (δ − ∂)v = h ∈ ΛrX;

then
δh = (δ − ∂)h = (δ − ∂)u = 0,

so h really defines a class [h] in Hr(Tg,X). Now,

u− h = −(δ − ∂)v

in V , i.e., [u] and [h] coincide as elements in H−r(Tot E l0,k(V )), and by (3.4)
it follows that they actually coincide in H−r(TotBl

k(D)), and thus [u] is in
the image of (2.2). This concludes the proof.

For the reader who wants a more concrete argument for the isomor-
phism (2.2), let us dissect the argument; we restrict to the injectivity part.
So let us again start with [f ] ∈ Hr(Tg,X) and assume that its image in
Hr(Tg,O(V )) vanishes. Thus there is a holomorphic solution in V to δv = f .
With the notation from the proof of Lemma 3.1 we get the form

w = χv + (1− χ)α ∧ f − ∂χ ∧ α ∧ v ∈ L−r−1(TotBl
k(D))

such that (δ− ∂)w = f . It remains to analyze what happens in the proof of
Lemma 3.2. If K is a linear homotopy operator for ∂ in D that admits the
stated estimates, then the function h ∈ Λr+1X such that δh = f is obtained
as

h =
n∑

j=0

(δK)jwj ,

where wj is the component of w which is in B−r−1+j
j . The surjectivity part

can be explained in a very similar way.
One can also for simplicity carry out the whole procedure in the smaller

domains Dε = {% < −ε}, so that g is holomorphic in a neighborhood, and
everything is smooth (or at least continuous) up to the boundary. Noticing
that we have uniform Bk estimates at each step, we end up with hε with
uniform Hp(Dε) estimates such that δghε = f in Dε. The conclusion then
follows by a normal family argument.
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