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The complete hyperexpansivity analog
of the Embry conditions

by

Ameer Athavale (Pune)

Abstract. The Embry conditions are a set of positivity conditions that characterize
subnormal operators (on Hilbert spaces) whose theory is closely related to the theory of
positive definite functions on the additive semigroup N of non-negative integers. Com-
pletely hyperexpansive operators are the negative definite counterpart of subnormal op-
erators. We show that completely hyperexpansive operators are characterized by a set of
negativity conditions, which are the natural analog of the Embry conditions for subnor-
mality. While the genesis of the Embry conditions can be traced to the Hausdorff Moment
Problem, the genesis of the conditions to be established here lies in the Lévy–Khinchin
representation as holding in the context of abelian semigroups. We actually establish the
desired negativity criteria for completely hyperexpansive operator tuples.

If H is a complex infinite-dimensional separable Hilbert space, we let
B(H) denote the algebra of bounded linear operators on H, with I and
0 standing respectively for the identity operator and zero operator on H.
An m-tuple S = (S1, . . . , Sm) of commuting operators Si in B(H) is said
to be subnormal if there exist a Hilbert space K containing H and an m-
tuple N = (N1, . . . , Nm) of commuting normal operators Ni in B(K) such
that NiH ⊂ H and Ni|H = Si for 1 ≤ i ≤ m (refer to [Lu]). The most
comprehensive account of the theory of a single subnormal operator can
be found in [Co]. There exist a number of equivalent conditions (see [Co,
Ch. 2, Thm. 1.9]) that characterize subnormal operators (with their appro-
priate generalizations carrying over to subnormal tuples). The genesis of
all of those conditions can be traced to the theory of positive definite func-
tions on abelian semigroups, and in particular to the theory of the Hausdorff
Moment Problem. In [At2], the author introduced completely hyper-
expansive operators (refer to Definition 1 below with m = 1) which are
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antithetical to subnormals in the sense that their defining properties and
behavior are directly related to the theory of negative definite functions on
abelian semigroups. In addition to [At2], completely hyperexpansive oper-
ators and related classes of operators have been studied in [At3], [At-Ar1],
[At-Ar2], [At-Sh], [Sh-At], [Ja] and [Ja-St].

The original Halmos characterization of subnormality (see [Ha]) con-
sisted of two parts: a “positivity” part and a “boundedness” part (refer to
conditions (1.10) and (1.11) as given in (c) of Theorem 1.9 in Chapter II
of [Co]). It was shown by Bram (see [Br]) that the positivity part by it-
self characterizes subnormal operators, and by Szymański (see [Sz]) that
the boundedness part by itself serves the same purpose. While a number
of “negativity” conditions (of a somewhat abstract nature) characterizing
completely hyperexpansive operators were presented in [Sh-At] (see also
[At-Sh]), in [Ja] Jabłoński established a few “inverted boundedness condi-
tions” characterizing completely hyperexpansive operators that, like their
subnormality counterparts, make the underlying geometry of the Hilbert
space more pronounced.

Now, among the host of positivity conditions characterizing subnormal
operators are a set of particularly elegant conditions that are due to Embry
(refer to [Em], [Lu] and part (f) of Theorem 1.9 in Chapter II of [Co]): An
operator T in B(H) is subnormal if and only if, for any finite set of vectors fi
(i ∈ N, 0 ≤ i) in H, one has

∑
i,j≥0〈T i+jfi, T i+jfj〉 ≥ 0. It is the purpose of

the present paper to establish the complete hyperexpansivity analog of the
Embry conditions (see Theorem 2 below) by exploiting the Lévy–Khinchin
representation as obtaining in the context of abelian semigroups (refer to
[B-C-R2]). We will actually be treating the case of completely hyperexpan-
sive operator tuples.

For any set A, Am will denote the cartesian product of A with itself m
times. If N is the set of natural numbers, then Nm is an abelian semigroup
under coordinatewise addition with the identity element 0 = (0, . . . , 0). For
p = (p1, . . . , pm) and n = (n1, . . . , nm) in Nm we write p ≤ n if pi ≤ ni
for 1 ≤ i ≤ m, and use |p| to denote p1 + . . . + pm. For p ≤ n,

(
n
p

)
is

understood to be the product
(
n1
p1

)
. . .
(
nm
pm

)
. For x = (x1, . . . , xm) in the

Euclidean space Rm and n in Nm, xn is the product xn1
1 . . . xnmm and 〈x, n〉

is x1n1 + . . .+ xmnm.
A real map ϕ on Nm is said to be positive definite if

∑
1≤i,j≤ncicjϕ(si+sj)

≥ 0 for all n≥ 1, {s1, . . . , sn}⊂Nm, and {c1, . . . , cn}⊂R. A real map ψ on
Nm is said to be negative definite if

∑
1≤i,j≤ncicjψ(si + sj) ≤ 0 for all

n ≥ 2, {s1, . . . , sn} ⊂ Nm, and {c1, . . . , cn} ⊂ R such that
∑

1≤i≤nci = 0.
A map ψ : Nm → R is completely negative definite if n 7→ ψ(n + k) is
negative definite for every k in Nm.
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We let the backward difference operators ∇i (1 ≤ i ≤ m) act on ϕ :
Nm → R through (∇iϕ)(n) = ϕ(n)− ϕ(n+ ε(i)) where ε(i) is the m-tuple
with 1 in the ith coordinate place and 0’s elsewhere. The relations ∇0

iϕ = ϕ

and (∇i∇jϕ =)∇i∇j11 . . .∇jmm ϕ = ∇j11 . . .∇ji+1
i . . .∇jmm ϕ inductively define

∇j for any j = (j1, . . . , jm) in Nm. The forward difference operators 4i are
given by (4iϕ)(n) = ϕ(n+ ε(i))− ϕ(n).

A non-negative map ϕ on Nm is said to be completely monotone if
(∇jϕ)(n) ≥ 0 for all n, j in Nm. A real map ψ on Nm is said to be completely
alternating if (∇jψ)(n) ≤ 0 for all n ∈ Nm and j ∈ Nm \ {0}. We remark
that completely monotone functions form an extreme subset of the set of
positive definite functions on Nm that are bounded above, while completely
alternating functions are an extreme subset of the set of negative definite
functions on Nm that are bounded below (refer to [B-C-R2]).

A Radon measure µ on a subset X of Rm will be understood to be
a Borel measure µ satisfying (i) µ(C) < ∞ for every compact subset C
of X, (ii) µ(B) = sup{µ(C) : C ⊂ B, C compact} for each Borel set B
in X. A finite Radon measure can be verified to be a regular Borel measure.
Propositions 1 and 2 below are respectively Propositions 6.11 and 6.12 in
Chapter 4 of [B-C-R2]. We use the symbol 1̃ to denote (1, . . . , 1) in Rm.

Proposition 1. For ϕ : Nm → R, the following are equivalent.

(i) ϕ is completely monotone.

(ii)
∑

p∈Nm, 0≤p≤n
(−1)|p|

(
n

p

)
ϕ(p+ q) ≥ 0 for all q, n in Nm.

(iii) There exists a positive Radon measure µ on [0, 1]m such that

(A) ϕ(n) =
�

[0,1]m

xn dµ(x) (n ∈ Nm).

Proposition 2. For ψ : Nm → R, the following are equivalent.

(i) ψ is completely alternating.

(ii)
∑

p∈Nm, 0≤p≤n
(−1)|p|

(
n

p

)
ψ(p+ q) ≤ 0 for all q, n in Nm, n 6= 0.

(iii) There exist an m-tuple b = (b1, . . . , bm) of non-negative reals and a
positive Radon measure ν on [0, 1]m \ {1̃} such that

(B) ψ(n) = ψ(0) + 〈b, n〉+
�

[0,1]m\{1̃}

(1− xn) dν(x) (n ∈ Nm \ {0}).

Remark 1. The result in Proposition 1 is the solution of the multivari-
able Hausdorff Moment Problem and was arrived at in [H-S]. The result in
Proposition 2 was derived in [B-C-R1] as a special case of the Lévy–Khinchin
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representation on abelian semigroups. It was observed in [At2] that, for the
case m = 1, one has in (B) b = µ({1}) and dν(x) = dµ(x)/(1 − x), where
µ is a positive regular Borel measure on [0, 1]. The corresponding situation
in the multivariable case is more intriguing. For our purposes, and unlike
the presentation in [B-C-R2], it will be useful and instructive to derive the
Lévy–Khinchin representation (of Proposition 2) from the solution of the
multi-dimensional Hausdorff Moment Problem (as given by Proposition 1).
While the proofs of parts (1), (2) and (3) of Theorem 1 below are present in
some disguise or other in [B-C-R2], the observations in parts (4) and (5) of
Theorem 1 are going to be the key ingredients in our derivation of the com-
plete hyperexpansivity analog of the Embry conditions; in particular, the
observation in (5) shows that the assumption regarding the Lévy measure ν
in Proposition 4 of [At-Sh] is redundant.

Note that ψ : Nm → R is completely alternating if and only if 4iψ is
completely monotone for all i = 1, . . . ,m (this can be deduced from [B-C-R2,
Ch. 4, Lemma 6.3]).

Theorem 1. Let ψ : Nm → R be completely alternating. If the com-
pletely monotone functions ϕi(n) = 4iψ(n) (i = 1, . . . ,m) have the mea-
sures µi associated with them as in Proposition 1, then the following are
true.

(1) (1− xi)dµj(x) = (1− xj)dµi(x) for all i, j = 1, . . .m.
(2) The measure ν defined on [0, 1]m \ {1̃} by

dν(x) =
dµi(x)
1− xi

, x ∈ [0, 1]m \ Ai,

where Ai = [0, 1]× . . .× [0, 1]×
i︷︸︸︷
{1} ×[0, 1]× . . .× [0, 1], is well defined.

(3) dµi(x) = (1− xi)dν(x) on [0, 1]m \ {1̃} for all i = 1, . . . ,m.
(4) The measure ν and the m-tuple (µ1({1̃}), . . . , µm({1̃})) satisfy the

condition (B) of Proposition 2.

(5) dν(x) =
dµ1(x) + . . .+ dµm(x)
m− (x1 + . . .+ xm)

.

Proof. (1) We employ the argument of Lemma 3.12 in Chapter 4 of
[B-C-R2]. Since 4i4jψ(n) = 4j4iψ(n), one has 4iϕj(n) = 4jϕi(n), and
consequently �

[0,1]m
xn(xi − 1) dµj(x) =

�
[0,1]m

xn(xj − 1) dµi(x).

The Weierstrass Theorem and the Riesz Representation Theorem now com-
plete the proof of (1).

(2) The result here follows from Theorem 1.18 in Chapter 2 of [B-C-R2].
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(3) In view of the definition of the measure ν in (2), it suffices to prove
that µi(Ai \ {1̃}) = 0 for i = 1, . . . ,m. One may write

Ai = [0, 1)× [0, 1]× . . .× [0, 1]×
i︷︸︸︷
{1} ×[0, 1]× . . .× [0, 1]

∪ {1} × [0, 1)× . . .× [0, 1]×
i︷︸︸︷
{1} ×[0, 1]× . . .× [0, 1] ∪ . . .

∪ {1} × {1} × . . .× {1} ×
i︷︸︸︷
{1} × . . .× [0, 1) ∪ {1̃}.

The desired assertion now follows from the conditions in (1).
(4) Notice that

ψ(n1, . . . , nm)

= ψ(n1, . . . , nm−1, 0) +
∑

0≤pm≤nm−1

ϕm(n1, . . . , nm−1, pm) = . . .

= ψ(0, . . . , 0) +
∑

0≤p1≤n1−1

ϕ1(p1, 0, . . . , 0) + . . .

+
∑

0≤pi≤ni−1

ϕi(n1, . . . , ni−1, pi, 0, . . . , 0) + . . .

+
∑

0≤pm≤nm−1

ϕm(n1, . . . , nm−1, pm)

= ψ(0) +
∑

1≤j≤m
µj({1̃})nj +

∑

0≤p1≤n1−1

�
[0,1]m\{1̃}

xp1
1 dµ1(x) + . . .

+
∑

0≤pi≤ni−1

�
[0,1]m\{1̃}

xn1
1 . . . x

ni−1
i−1 x

pi
i dµi(x) + . . .

+
∑

0≤pm≤nm−1

�
[0,1]m\{1̃}

xn1
1 . . . x

nm−1
m−1 x

pm
m dµm(x).

Using (3), one further has

ψ(n) = ψ(0) +
∑

1≤j≤m
µj({1̃})nj +

�
[0,1]m\{1̃}

(1− xn1
1 ) dν(x) + . . .

+
�

[0,1]m\{1̃}

xn1
1 . . . x

ni−1
i−1 (1− xnii ) dν(x) + . . .

+
�

[0,1]m\{1̃}

xn1
1 . . . x

nm−1
m−1 (1− xnmm ) dν(x)

= ψ(0) +
∑

1≤j≤m
µj({1̃})nj +

�
[0,1]m\{1̃}

(1− xn) dν(x).

This establishes (4).
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(5) The desired result follows from (3).

If T = (T1, . . . , Tm) is a tuple of commuting operators Ti in B(H), then
we interpret T ∗ to be (T ∗1 , . . . , T

∗
m) and Tn to be Tn1

1 . . . Tnmm . The operator
theoretic significance of Proposition 1 is revealed by the following result in
[At1], which is an m-variable generalization of J. Agler’s criterion in [Ag]
for the subnormality of a contraction (that is, a member of B(H) whose
norm does not exceed 1): An m-tuple T of commuting operators in B(H) is
a subnormal tuple of contractions if and only if

(G) Bn(T ) ≡
∑

p∈Nm, 0≤p≤n
(−1)|p|

(
n

p

)
T ∗pT p ≥ 0 for all n in Nm.

It was highlighted in [At1] that (G) is equivalent to requiring n 7→ ‖T nh‖2
to be completely monotone for every h in H.

Definition 1. An m-tuple T = (T1, . . . , Tm) of commuting operators in
B(H) is said to be completely hyperexpansive if

(H) Bn(T ) ≡
∑

p∈Nm, 0≤p≤n
(−1)|p|

(
n

p

)
T ∗pT p ≤ 0 for all n in Nm \ {0}.

It follows from the discussion in Remark 2 of [At-Sh] that (H) is equivalent
to requiring n 7→ ‖Tnh‖2 to be completely alternating for every h in H.

Theorem 2. Let T = (T1, . . . , Tm) be a tuple of commuting operators
in B(H). Then (1), (2) and (3) below are equivalent.

(1) T is completely hyperexpansive.
(2) For any integer tuple n in Nm \ {0} and any finite set of vectors fi

(i ∈ Nm, 0 ≤ i ≤ n) in H satisfying
∑
i fi = 0, one has

∑

0≤i,j≤n
〈T i+jfi, T i+jfj〉 ≤ 0.

(3) For any integer tuple n in Nm \{0}, any f in H, and any real scalars
λi (i ∈ Nm, 0 ≤ i ≤ n) satisfying

∑
i λi = 0, one has

∑

0≤i,j≤n
λiλj‖T i+jf‖

2 ≤ 0.

Proof. Suppose the conditions in (2) hold. For any tuple k = (k1, . . . , km)
of non-negative integers, a fixed vector h in H and reals ci (i∈Nm, 0≤ i≤n)
satisfying

∑
i ci = 0, consider fi = ciT

kh. Clearly,
∑
i fi = 0 so that

∑

0≤i, j≤n
〈T i+jfi, T i+jfj〉 =

∑

0≤i, j≤n
cicj‖T i+j+2kh‖2 ≤ 0.
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This shows that the map n 7→ ‖Tnh‖2 is completely negative definite on Nm.
It follows from Theorem 1.10 in Chapter 7 of [B-C-R2] that n 7→ ‖T nh‖2
is completely alternating on Nm. In view of our comment following Defini-
tion 1, the operator tuple T is then completely hyperexpansive. Thus (2)
implies (1), and the argument here also makes it clear that (3) implies (1).
Further, (2) obviously implies (3).

We now show that (1) implies (2). Suppose then that T is completely
hyperexpansive. It will suffice to treat the case m = 2. Now, for any h in
H, the map n 7→ ψh(n) = ‖Tnh‖2 is completely alternating. In view of our
observation preceding Theorem 1, the maps n 7→ ϕ1(n) = 41ψh(n) and
n 7→ ϕ2(n) = 42ψh(n) are completely monotone on N2, so that there exist
two (regular) positive Borel measures µ1h and µ2h on [0, 1]2 satisfying, for
n = (n1, n2) in N2,

‖Tn1+1
1 Tn2

2 h‖2 − ‖Tn1
1 Tn2

2 h‖2 =
�

[0,1]m
xn1

1 xn2
2 dµ1h(x1, x2),

‖Tn1
1 Tn2+1

2 h‖2 − ‖Tn1
1 Tn2

2 h‖2 =
�

[0,1]m
xn1

1 xn2
2 dµ2h(x1, x2).

A standard polarization argument now leads to positive B(H)-valued
measures F1(·) and F2(·) on [0, 1]2 such that, for any Borel subset σ of
[0, 1]2, one has µ1h(σ) = 〈F1(σ)h, h〉 and µ2h(σ) = 〈F2(σ)h, h〉.

One can now see that, for n = (n1, n2) in N2 \ {0}, the Lévy–Khinchin
representation

‖Tn1
1 Tn2

2 h‖2 = ‖h‖2 + n1µ1h({1̃}) + n2µ2h({1̃})

+
�

[0,1]2\{1̃}

(1− xn1
1 xn2

2 )
d(µ1h + µ2h)(x1, x2)

2− x1 − x2

is equivalent to the operator representation

T ∗1
n1T ∗2

n2Tn1
1 Tn2

2 = I + n1F1({1̃}) + n2F2({1̃})

+
�

[0,1]2\{1̃}

(1− xn1
1 xn2

2 )
d(F1 + F2)(x1, x2)

2− x1 − x2
.

Thus, for any integer tuple n in N2 \ {0} and any finite set of vectors fi
(i ∈ N2, 0 ≤ i ≤ n) in H satisfying

∑
i fi = 0, one has

∑

0≤i, j≤n
〈T i+jfi, T i+jfj〉 = ‖f0‖2 +

∑

i+j 6=0

〈T ∗i+jT i+jfi, fj〉

= ‖f0‖2+
∑

i+j 6=0

〈fi, fj〉+
∑

i+j 6=0

(i1+j1)〈F1({1̃})fi, fj〉



240 A. Athavale

+
∑

i+j 6=0

(i2 + j2)〈F2({1̃})fi, fj〉

+
∑

i+j 6=0

〈 �
[0,1]2\{1̃}

(1− xi1+j1
1 xi2+j2

2 )
d(F1 + F2)(x1, x2)

2− x1 − x2
fi, fj

〉
.

Now, ‖f0‖2 +
∑
i+j 6=0〈fi, fj〉 = ‖∑i≥0 fi‖2 = 0. Further,

∑

i+j 6=0

(i1 + j1)〈F1({1̃})fi, fj〉 =
∑

i,j≥0

(i1 + j1)〈F1({1̃})fi, fj〉

=
∑

i,j≥0

i1〈F1({1̃})fi, fj〉+
∑

i,j≥0

j1〈F1({1̃})fi, fj〉,

and the last sum is easily seen to be zero in view of
∑
j≥0 fj =

∑
i≥0 fi = 0.

Similarly, one has
∑

i+j 6=0

(i2 + j2)〈F2({1̃})fi, fj〉 = 0.

We now verify that
∑

i+j 6=0

〈 �
[0,1]2\{1̃}

(1− xi1+j1
1 xi2+j2

2 )
d(F1 + F2)(x1, x2)

2− x1 − x2
fi, fj

〉
≤ 0.

For that purpose we set, for any Borel subset σ of [0, 1]2 and any positive
integer k ≥ 1,

Gk(σ) =
�
σ

d(F1 + F2)(x1, x2)
2− x1 − x2 + 1/k

.

It should be noted that each Gk is a semi-spectral measure on [0, 1]2; to be
specific, each Gk is a B(H)-valued positive function defined on the Borel
subsets of [0, 1]2 which is countably additive in the weak operator topology.
Elementary measure-theoretic considerations convince one that it would suf-
fice to verify that, for every k,

Ik ≡
∑

i+j 6=0

〈 �
[0,1]2\{1̃}

(1− xi1+j1
1 xi2+j2

2 ) dGk(x1, x2)fi, fj
〉
≤ 0.

By the Naimark Dilation Theorem (refer to Section 4 of [Ml], for example)
there exist, for every k, a Hilbert space Kk, a B(Kk)-valued (normalized)
spectral measure Ek on [0, 1]2, and a bounded linear map Rk from H to Kk
such that Gk(σ) = R∗kEk(σ)Rk for every Borel subset σ of [0, 1]2. If we now
set Aki = � [0,1]2 xi dEk(x1, x2) (i = 1, 2) (and note that the value of Ik does

not change by adding the point 1̃ to the domain of integration in its defining
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expression), then we have

Ik =
∑

i+j 6=0

〈Rkfi, Rkfj〉 −
∑

i+j 6=0

〈Ai1k1A
i2
k2Rkfi, A

j1
k1A

j2
k2Rkfj〉

= − ‖Rkf0‖2 −
∑

i+j 6=0

〈Ai1k1A
i2
k2Rkfi, A

j1
k1A

j2
k2Rkfj〉

= −
∥∥∥
∑

i≥0

Ai1k1A
i2
k2Rkfi

∥∥∥
2
≤ 0.

The dilation technique used in the proof of Theorem 2 has already ap-
peared in the context of completely hyperexpansive operators in the work
of Jabłoński ([Ja]). It is interesting to note that, in the very special case of
a power-bounded completely hyperexpansive operator T , the conditions (2)
in Theorem 1 above stand verified by Proposition 5.4 in [Ja]; indeed, as is
shown there, for such an operator T there exists a positive operator Q such
that ∑

i,j≥0

〈T i+jfi, T i+jfj〉 ≤
∥∥∥Q1/2

∑

i≥0

fi

∥∥∥
2

for any finite set of vectors fi in H.
In the terminology employed by Stochel in [St], the conditions (2) of The-

orem 2 can be described as follows: An m-tuple of commuting operators in
B(H) is completely hyperexpansive if and only if the Embry map n 7→ T ∗nTn

is conditionally negative definite on Nm. As was shown by Stochel, the “con-
ditional positive definiteness” of the Embry map is necessary and sufficient
for the subnormality of a tuple of (commuting) contractions (refer to state-
ment (iii) in Theorem 4.1 of [St]). Similarly, the conditions (3) of Theorem 2
are the complete hyperexpansivity analog of the Lambert conditions for sub-
normality (refer to [L], [Lu], [St]) and are the counterpart of statement (iv)
in Theorem 4.1 of [St] pertaining to a subnormal tuple of contractions. The
results of Theorem 2 thus highlight a general theme (as expounded in the
previous works of the author and others) that completely hyperexpansive
operator tuples are the antithesis of subnormal tuples of contractions.

Acknowledgments. The author is thankful to the referee for suggest-
ing some changes making the original treatment more explicit and complete.
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