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The Maurey extension property for Banach spaces
with the Gordon–Lewis property and related structures

by

P. G. Casazza (Columbia, MO) and N. J. Nielsen (Odense)

Abstract. The main result of this paper states that if a Banach space X has the
property that every bounded operator from an arbitrary subspace of X into an arbitrary
Banach space of cotype 2 extends to a bounded operator on X, then every operator from X
to an L1-space factors through a Hilbert space, or equivalently B(`∞,X∗) = Π2(`∞,X∗).
If in addition X has the Gaussian average property, then it is of type 2. This implies that
the same conclusion holds if X has the Gordon–Lewis property (in particular X could be a
Banach lattice) or if X is isomorphic to a subspace of a Banach lattice of finite cotype, thus
solving the Maurey extension problem for these classes of spaces. The paper also contains a
detailed study of the property of extending operators with values in `p-spaces, 1 ≤ p <∞.

Introduction. In 1974 Maurey [12] proved that if X is a Banach space
of type 2, then every bounded operator from an arbitrary subspace of X
to an arbitrary Banach space Y of cotype 2 admits a bounded extension
from X to Y . Since then it has been an open problem whether this property
known as the Maurey extension property characterizes Banach spaces of
type 2. Since it follows from [14] that a Banach space with this property
is of weak type 2, the answer to the problem is clearly affirmative for the
class of spaces where weak type 2 is equivalent to type 2, e.g. rearrangement
invariant function spaces.

The main result of this paper states that if a Banach space X has the
Maurey extension property, then every bounded operator from X to an
L1-space factors through a Hilbert space. If in addition X has the Gaussian
average property GAP (as defined in [2]), then it is of type 2. This implies
that the answer to the problem is also affirmative for Banach spaces which
have the Gordon–Lewis property, in particular Banach lattices, as well as
for Banach spaces which are isomorphic to subspaces of Banach lattices of
finite cotype.
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It is not known in general whether the conditionB(`∞,X∗)=Π2(`∞,X∗)
implies that X∗ is of cotype 2 or equivalently in the case above that X is of
type 2. It seems at the moment that GAP is the weakest known condition
to ensure this for K-convex spaces. It should be noted that every space of
type 2 has GAP.

We shall say that a Banach space X has Mp, 1 ≤ p < ∞, if every
bounded operator from a subspace of X to `p admits a bounded extension
to X. Another major result of the paper states that Mp, 2 < p < ∞,
characterizes Hilbert spaces among Köthe function spaces on [0, 1]. Finally
we investigate Mp, 1 ≤ p ≤ 2, in detail and prove that M1 is equivalent to
Mp, 1 < p < 2, and that M1 implies M2.

It is an open problem whether M2 implies M1 and whether M1 or M2
imply the Maurey extension property.

We now wish to discuss the arrangement of this paper in greater detail.
In Section 1 of the paper we prove some general results on extensions

of operators which are needed to prove the main results. Some of them are
probably of interest in their own right. Section 2 is devoted to the main
results stated above while Section 3 contains the investigation of the prop-
erties Mp, 1 ≤ p ≤ 2, and the proof of the implicationsM1 ⇔Mp, 1 < p < 2,
and M1 ⇒M2.

Acknowledgements. The authors are indebted to Nigel Kalton who
drew our attention to the spaces `p(δ, 2), 2 < p <∞, by using them to show
that `p does not have Mr for 2 < p < r < ∞. This subsequently led to the
idea of the proof of our main result.

Spaces like `p(δ, 2) were first considered by Rosenthal in his construction
of new Lp-spaces [20].

0. Notation and peliminaries. In this paper we shall use the notation
and terminology commonly used in Banach space theory as it appears in
[10], [11] and [21]. BX will always denote the closed unit ball of the Banach
space X.

If X and Y are Banach spaces, then B(X,Y ) (B(X) = B(X,X)) denotes
the space of all bounded linear operators from X to Y and throughout the
paper we shall identify X⊗Y with the space of all ω∗-continuous finite rank
operators from X∗ to Y in the canonical manner. Further, if 1 ≤ p < ∞,
we recall that an operator T ∈ B(X,Y ) is called p-summing if there exists
a constant K ≥ 0 so that for all finite sets {x1, . . . , xn} ⊆ X we have

( n∑

j=1

‖Txj‖p
)1/p

≤ K sup
{( n∑

j=1

|x∗(xj)|p
)1/p ∣∣∣ x∗ ∈ X∗, ‖x∗‖ ≤ 1

}
.
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The space of all p-summing operators from X to Y is denoted by
Πp(X,Y ). If T ∈ Πp(X,Y ), the p-summing norm πp(T ) is defined to be
the smallest constant K which can be used in the inequality above.

An operator T ∈ B(X,Y ) is called p-integral if there exist a probability
measure µ, operators A ∈ B(X,L∞(µ)) and B(L1(µ), Y ∗∗) so that T = BIA
where I denote the formal identity operator from L∞(µ) to L1(µ). We let
Ip(X,Y ) denote the space of all p-integral operators from X to Y equipped
with the p-integral norm ip defined by ip(T ) = inf{‖A‖ ‖B‖} where the
infimum is taken over all A and B satisfying the above.

An operator T ∈ B(X,Y ) is called p-nuclear if it admits a representation
of the form T =

∑∞
j=1 x

∗
j ⊗ yj where (x∗j) ⊆ X∗ and (yj) ⊆ Y satisfy∑∞

j=1 ‖x∗j‖p < ∞ and
∑∞

j=1 |y∗(yj)|p
′
< ∞ for all y∗ ∈ Y ∗; here 1/p + 1/p′

= 1. We let Np(X,Y ) denote the space of all p-nuclear operators from X to
Y equipped with the p-nuclear norm νp defined by

νp(T ) = inf
{( ∞∑

j=1

‖x∗j‖p
)1/p

sup
{( ∞∑

j=1

|y∗(yj)|p
′
)1/p′ ∣∣∣ ‖y∗‖ ≤ 1

} ∣∣∣

T represented as above
}
.

We recall that if 1 ≤ p ≤ ∞, then an operator T ∈ B(X,Y ) is said to fac-
tor through Lp if it admits a factorization T = BA where A ∈ B(X,Lp(µ))
and B ∈ B(Lp(µ), Y ) for some measure µ, and we denote the space of all
operators which factor through Lp by Γp(X,Y ). If T ∈ Γp(X,Y ), then we
define

γp(T ) = inf{‖A‖ ‖B‖ | T = BA, A and B as above};
γp is a norm on Γp(X,Y ) turning it into a Banach space. All these spaces
of operators are operator ideals and we refer to the above mentioned books,
[4] and [8] for further details.

In the formulas of this paper we shall, as is customary, interpret π∞ as
the operator norm and i∞ as the γ∞-norm.

We let (rn) denote the sequence of Rademacher functions on [0, 1] and
recall that a Banach space X is said to be of type p, 1 ≤ p ≤ 2 (respectively
cotype p, 2 ≤ p <∞), if there is a constant K ≥ 1 so that for all finite sets
{x1, . . . , xn} ⊆ X we have

( 1�

0

∥∥∥
n∑

j=1

rj(t)xj
∥∥∥
p
dt
)1/p

≤ K
( n∑

j=1

‖xj‖p
)1/p

,(0.1)

respectively
( n∑

j=1

‖xj‖p
)1/p

≤ K
( 1�

0

∥∥∥
n∑

j=1

rj(t)xj
∥∥∥
p
dt
)1/p

.(0.2)
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The smallest constant K which can be used in (0.1) (respectively (0.2))
is denoted by Kp(X) (respectively Kp(X)).

A Banach space X is said to be of weak type 2 if there is a constant C
and a δ, 0 < δ < 1, so that whenever E ⊆ X is a subspace, n ∈ N and
T ∈ B(E, `n2 ), then there is an orthogonal projection P on `n2 of rank larger
than δn and an operator S ∈ B(X, `n2 ) with Sx = PTx for all x ∈ E and
‖S‖ ≤ C‖T‖.

SimilarlyX is called a weak cotype 2 space if there is a constant C and a δ,
0 < δ < 1, so that whenever E ⊆ X is a finite-dimensional subspace, then
there is a subspace F ⊆ E so that dimF ≥ δ dimE and d(F, `dimF

2 ) ≤ C.
Our definitions of weak type 2 and weak cotype 2 space are not the

original ones, but are chosen out of the many equivalent characterizations
given by Pisier [19].

Following [5] we shall say that a Banach space X has GL(p, q), 1 ≤
p, q ≤ ∞, if there is a constant K so that for all Banach spaces Y and all
T ∈ X∗⊗ Y we have iq(T ) ≤ Kπp(T ∗). The smallest constant K which can
be used in this inequality is denoted by GLp,q(X). We note that GL(1,∞)
corresponds to the classical Gordon–Lewis property GL (see [6]). X is said
to have the Gordon–Lewis property GL2 if every 1-summing operator from
X to a Hilbert space factors through an L1-space.

If n ∈ N and T ∈ B(`n2 ,X), then following [21, §12] we define the `-norm
of T by

`(T ) =
( �

`n2

‖Tx‖2 dγ(x)
)1/2

where γ is the canonical Gaussian probability measure on `n2 .
A Banach space X is said to have the Gaussian Average Property (ab-

breviated GAP) (see [2]) if there is a constant K so that `(T ) ≤ Kπ1(T ∗)
for every T ∈ B(`n2 ,X) and every n ∈ N.

We shall also need some notation on subspaces of Banach lattices and
on operators with ranges in a Banach lattice. Recall that if X is a Banach
space and L is a Banach lattice, then an operator T ∈ B(X,L) is called
order bounded [15] if there exists a z ∈ L, z ≥ 0, so that

|Tx| ≤ ‖x‖z for all x ∈ X,(0.3)

and the order bounded norm ‖T‖m is defined by

‖T‖m = inf{‖z‖ | z can be used in (0.3)}.
We let B(X,L) denote the space of all order bounded operators from X to
L equipped with the norm ‖ · ‖m. It is readily seen to be a Banach space
and a left ideal. We let X∗ ⊗m L denote the closure of X∗ ⊗ L in B(X,L)
under the norm ‖ · ‖m.
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If X is a subspace of a Banach lattice L and 1 ≤ p <∞, then we shall say
that X is p-convex in L (respectively p-concave in L) if there is a constant
K ≥ 1 so that for all finite sets {x1, . . . , xn} ⊆ X we have

∥∥∥
( n∑

j=1

|xj |p
)1/p∥∥∥ ≤ K

( n∑

j=1

‖xj‖p
)1/p

,

respectively
( n∑

j=1

‖xj‖p
)1/p

≤ K
∥∥∥
( n∑

j=1

|xj |p
)1/p∥∥∥.

Note that these inequalities depend on the embedding of X into L. The
lattice L is called p-convex (respectively q-concave) if the above inequalties
hold for every finite set of vectors in L.

If E is a Banach space and T ∈ B(E,X), then T is called p-convex if
there exists a constant K ≥ 0 so that for all finite sets {x1, . . . , xn} ⊆ E we
have ∥∥∥

( n∑

j=1

|Txj |p
)1/p∥∥∥ ≤ K

( n∑

j=1

‖xj‖p
)1/p

.

Concavity of an operator from a Banach lattice to a Banach space is defined
in a similar manner.

1. Some basic results on extensions of operators. In this section
we shall prove some general results on extensions of operators which will
be useful for us in what follows. We start with the following localization
theorem:

Theorem 1.1. Let X and Y be Banach spaces. Consider the statements:

(i) Every bounded operator from an arbitrary subspace of X into Y
extends to a bounded operator from X to Y .

(ii) There is a constant K ≥ 1 so that whenever E ⊆ X is a finite-
dimensional subspace, every T ∈ B(E, Y ) admits an extension T̃ ∈ B(X,Y )
with ‖T̃‖ ≤ K‖T‖.

Then (i) implies (ii) and if Y is a dual space, (ii) implies (i).

Proof. Assume first that (ii) does not hold. By induction we shall con-
struct a sequence (En) of finite-dimensional subspaces of X, a sequence (Fn)
of subspaces ofX of finite codimension and a sequence (Tn) ⊆ B(En, Y ) with
‖Tn‖ = 1 for all n ∈ N so that the following conditions are satisfied:

(a) Fn ∩ span{Ej | 1 ≤ j ≤ n} = {0} and the natural projection of
span{Ej | 1 ≤ j ≤ n} ⊕ Fn onto span{Ej | 1 ≤ j ≤ n} has norm less than
or equal to 2 for all n ∈ N.
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(b) Fn+1 ⊆ Fn for all n ∈ N.
(c) If T̃n ∈ B(X,Y ) is an extension of Tn, then ‖T̃1‖ ≥ 4 and ‖T̃n‖ ≥

22n+1 codimFn−1 + codimFn−1 for all n ≥ 2.

Since (ii) does not hold, we can for n = 1 choose a finite-dimensional
subspace E1 of X and a T1 ∈ B(E1, Y ) with ‖T1‖ = 1 so that any bounded
extension of T1 to X has norm greater than or equal to 4. Let F1 be a
subspace of finite codimension so that F⊥1 is 2-norming over E1 (F1 can be
chosen to be of codimension 5dimE1). Clearly E1∩F1 = {0} and the natural
projection of E1 ⊕ F1 onto E1 has norm less than or equal to 2.

Assume now that E1, . . . , En, F1, . . . , Fn and T1, . . . , Tn have been con-
structed so that (a)–(c) hold. By assumption there is a finite-dimensional
subspace En+1 ⊆ X and an operator Tn+1 ∈ B(En+1, Y ) with ‖Tn+1‖ = 1
so that if T̃n+1 ∈ B(X,Y ) is an extension of Tn+1, then

‖T̃n+1‖ ≥ 22n+2 codimFn + codimFn,

which shows that (c) holds. If we choose a subspace F̂n+1 ⊆ X so that F̂⊥n+1

is 2-norming over span{Ej | 1 ≤ j ≤ n+ 1} and put Fn+1 = F̂n+1∩Fn, then
clearly also (a) and (b) are satisfied.

Hence we have constructed the required sequences. Put now G1 = E1
and Gn+1 = En+1 ∩ Fn for all n ≥ 1. By choosing an Auerbach basis for
En/Gn we easily achieve that there is a subspace Hn ⊆ En and a projection
Pn of X onto Hn so that

En = Gn ⊕Hn for all n ∈ N,(1.1)

Pnx = 0 for all x ∈ Gn and all n ∈ N,(1.2)

‖Pn+1‖ ≤ codimFn for all n ∈ N.(1.3)

Let n ≥ 2 and assume that S̃n ∈ B(X,Y ) is an extension of Tn|Gn . Put

T̃n = S̃n(I − Pn) + TnPn.

If x ∈ En, then

T̃nx = S̃n(x− Pnx) + TnPnx = Tn(x− Pnx) + TnPn = Tnx.

Hence T̃n is an extension of Tn and therefore, by (c),

‖T̃n‖ ≥ 22n+1 codimFn−1 + codimFn−1,

which in view of (1.3) clearly implies that

‖S̃n‖ ≥ 22n.(1.4)

By construction (Gn) forms an infinite direct sum and we can therefore put

G =
∞⊕

n=1

Gn.



Maurey extension property 7

We define S ∈ B(G,Y ) by

Sx =
∞∑

n=1

2−nTnxn

for all x ∈ G with x =
∑∞

n=1 xn, xn ∈ Gn for all n ∈ N. (Actually ‖S‖ ≤ 3.)
Then S does not have a bounded extension to X. Indeed, if S̃ ∈ B(X,Y ) is
an extension, then 2nS̃ is an extension of Tn|Gn and therefore, by (1.4),

‖S̃‖ ≥ 2n for all n ≥ 2,

which is a contradiction. This shows that (i) implies (ii).
Assume next that (ii) holds and that Y is a dual space; let Z be a Banach

space so that Z∗ = Y . Further, let F ⊆ X be a subspace and T ∈ B(F,Z∗)
with ‖T‖ = 1. For every finite-dimensional subspace E ⊆ F we can by
assumption find T̃E = B(X,Z∗) so that

T̃Ex = Tx for all x ∈ E, ‖T̃E‖ ≤ K.
By ω∗-compactness it follows that we can find a subnet (T̃E′) of (T̃E) and
an operator T̃ ∈ B(X,Z∗) so that

T̃E′x
ω∗→ T̃ x for all x ∈ X.

Clearly T̃ is an extension of T .

The following corollary is an immediate consequence of Theorem 1.1:

Corollary 1.2. Let X, Y and Z be Banach spaces and assume that Z
is finitely representable in X. If every bounded operator from an arbitrary
subspace of X to Y ∗ extends to a bounded operator from the whole space
to Y ∗, then every bounded operator from an arbitrary subspace of Z to Y ∗

extends.

Our next result shows that under certain conditions it is enough to con-
sider extensions of finite rank operators.

Theorem 1.3. Let X and Y be Banach spaces and E ⊆ X a subspace.
Assume that there is a constant K so that every T ∈ E∗ ⊗ Y admits an
extension T̃ ∈ B(X,Y ) with ‖T̃‖ ≤ K‖T‖. If either E or Y has the λ-
bounded approximation property , then every T ∈ B(E, Y ) admits an exten-
sion T̃ ∈ B(X,Y ∗∗) with ‖T̃‖ ≤ Kλ‖T‖.

Proof. Let T ∈ B(E, Y ). By assumption we can find a net (Tα)α∈J ⊆
E∗ ⊗ Y with ‖Tα‖ ≤ λ‖T‖ for all α so that Tαx → Tx for all x ∈ E. Let
T̃α ∈ B(X,Y ) denote an extension of Tα for each α ∈ J with

‖T̃α‖ ≤ K‖Tα‖ ≤ Kλ‖T‖.
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This immediately gives that there is a T̃ ∈ B(X,Y ∗∗) with ‖T̃‖ ≤ Kλ‖T‖
and a subnet (T̃α′) of (T̃α) so that

T̃α′x
ω∗→ T̃ x for all x ∈ X.

Since clearly also T̃α′x
ω∗→ Tx for all x ∈ E, it follows that T̃ is the required

extension.

We shall need:

Lemma 1.4. If E is an n-dimensional subspace of a Banach space X,
then (E ⊕ `n2 )∞ is 12-isomorphic to a subspace of X.

Proof. Let F be a subspace of X of finite codimension so that F⊥ is
2-norming on E (F can be chosen so that codimF = 5n). By Dvoretzky’s
theorem F contains an n-dimensional subspace G with d(G, `n2 ) ≤ 2 and
clearly E ∩ G = {0}. It is readily verified that (E ⊕ `n2 )∞ is 12-isomorphic
to E ⊕G.

The next result will be very useful for us in what follows:

Theorem 1.5. Let X and Y be Banach spaces and µ a measure. If every
bounded operator from an arbitrary subspace of X to Y ∗ extends to a bounded
operator from X to Y ∗, then the same holds for every bounded operator from
an arbitrary subspace of X ⊕ L2(µ) to Y ∗.

Proof. Let E ⊆ (X ⊕ L2(µ))∞ be an arbitrary finite-dimensional sub-
space. Clearly there exists an n ∈ N so that we can find n-dimensional
subspaces G ⊆ X and F ⊆ L2(µ) with E ⊆ G ⊕ F . By Lemma 1.4, G ⊕ F
and therefore also E is 12-isomorphic to a subspace of X. Hence X⊕L2(µ) is
finitely representable in X and the conclusion follows from Corollary 1.2.

Finally we shall need the following proposition, the proof of which is
obvious:

Proposition 1.6. Let X and Y be Banach spaces so that for every sub-
space E ⊆ X every T ∈ B(E, Y ) admits an extension T̃ ∈ B(X,Y ). If Z is
a quotient of X, then Z has the same property.

2. The main results. We start with the following definition:

Definition 2.1. (i) A Banach space X is said to have the Maurey ex-
tension property (MEP) if for any subspace E ⊆ X, any Banach space Y
of cotype 2 and every T ∈ B(E, Y ) there exists an extension T̃ ∈ B(X,Y )
of T .

(ii) X is said to have Mp, 1 ≤ p ≤ ∞, if the condition in (i) holds with
Y = `p.
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Maurey [12] proved that if X is a Banach space of type 2, then it has
MEP.

We need the following lemma:

Lemma 2.2. Let X be a Banach space with MEP. For every λ ≥ 1 there
exists a constant C(λ) ≥ 1 so that every bounded operator T from an ar-
bitrary finite-dimensional subspace E of X to an arbitrary Banach space Y
of cotype λ admits an extension T̃ from X to Y with ‖T̃‖ ≤ C(λ)‖T‖. If in
addition Y is a dual space, then the above holds for any subspace E of X.

Proof. Assume that the statement is not true. Then there exist a λ ≥ 1,
a sequence (Yn) of Banach spaces of cotype 2 with K2(Yn) ≤ λ, a sequence
(En) of finite-dimensional subspaces of X and a sequence (Tn) of operators,
Tn ∈ B(En, Yn), ‖Tn‖ = 1 for all n ∈ N, so that every extension T̃n ∈
B(X,Yn) has ‖T̃n‖ ≥ n. Put Y = (

∑∞
n=1 Yn)2 and let, for every n ∈ N, Pn

denote the natural projection of Y onto Yn. Clearly Y is of cotype 2 with
K2(Y ) ≤ λ.

Since X has MEP, it follows that (ii) of Theorem 1.1 holds. Hence for
every n, Tn admits an extension Sn ∈ B(X,Y ) with ‖Sn‖ ≤ K. If we put
T̃n = PnSn, then T̃n ∈ B(X,Yn) is an extension of Tn with ‖T̃n‖ ≤ K. This
is a contradiction.

The second part of the lemma follows from the first part and Theorem 1.1
(ii)⇒(i) (or rather the proof of it!).

A refined version of Theorem 1.1 will probably show that the lemma is
true for all subspaces E ⊆ X without assuming that Y is a dual space. We
did not check this, however, since in our application the target space Y will
be a reflexive space, even isomorphic to a Hilbert space.

It follows immediately from Theorem 1.1 that X has Mp if and only if
there is a constant K so that for every finite-dimensional subspace E ⊆ X
every T ∈ B(E, `p) has an extension T̃ ∈ B(X, `p) with ‖T̃‖ ≤ K‖T‖. We
let Mp(X) denote the smallest constant which can be used here.

Using the above together with the local properties of Lp-spaces we find
that in Definition 2.1 we can substitute `p with an arbitrary infinite-dimen-
sional Lp-space.

The following result follows immediately from [14, Theorem 10]:

Theorem 2.3. If X is a Banach space with M2, then it is of weak type 2.

We shall postpone the investigation of the property Mp to the next sec-
tion and turn to our main results. They state in short that MEP character-
izes type 2 spaces among Banach spaces with the Gaussian average property
and that Mp, 2 < p < ∞, characterizes Hilbert spaces among Köthe func-
tion spaces on [0, 1]. Before we can prove it we need to define certain special
spaces of cotype 2.
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If µ is a probability measure and 0 < δ < 1, then we define the space
L1(µ; δL2) by

L1(µ; δL2) = {(f, δf) | f ∈ L2(µ)} ⊆ (L1(µ)⊕ L2(µ))∞.

Since L1(µ) ⊕ L2(µ) is isomorphic to a subspace of an L1-space, it follows
that L1(µ; δL2) is of cotype 2 with a constant C independent of δ. Note
also that it is a sublattice of L1(µ)⊕L2(µ). It is a reflexive space since it is
1/δ-isomorphic to a Hilbert space.

We are now ready to prove:

Theorem 2.4. If X is a Banach space with the Maurey extension prop-
erty , then every operator from X to an arbitrary L1-space factors through a
Hilbert space (equivalently B(`∞,X∗) = Π2(`∞,X∗)).

Proof. Let X be a Banach space with MEP, let (Ω,S, ν) be an arbitrary
probability space and let T ∈ B(X,L1(ν)) be arbitrary with ‖T‖ = 1.
From [11, Corollary 1.d.12] it follows that if we prove that T is a 2-convex
operator, then T ∈ Γ2(X,L1(ν)). Hence let n ∈ N and {x1, . . . , xn} ⊆ X
with h = (

∑n
j=1 |Txj |2)1/2 6= 0. We may assume that ‖h‖1 = 1. Put E =

span{x1, . . . , xn}, let ∆ = {t ∈ Ω | h(t) > 0} and define the probability
measure µ on ∆ by dµ = hdν. Further we let Mh: L1(∆, ν)→ L1(µ) denote
the isometry given by

Mh(f) = fh−1 for all f ∈ L1(∆, ν)

and define Φ: E → L1(µ) by Φ = MhT .
Since X has MEP and L1(µ; δL2), 0 < δ < 1, has cotype 2 with constant

C it follows from Theorem 1.5 and Lemma 2.2 that there is a constant M
independent of δ and µ so that every bounded operator S from a subspace
of (X ⊕ L2(µ))∞ to L1(µ; δL2) has an extension S̃ to (X ⊕ L2(µ))∞ with
‖S̃‖ ≤M‖S‖. Choose now δ so that 2CMδ < 1 and let Z ⊆ (X ⊕ L2(µ))∞
be defined by

Z = {(x, δΦ(x)) | x ∈ E}
(note that Φ(E) ⊆ L∞(µ)), define I : Z → L1(µ; δL2) by

I(x, δΦ(x)) = (Φ(x), δΦ(x)) for all x ∈ E
and let Ĩ: (X ⊕ L2(µ))∞ → L1(µ; δL2) be an extension of I with ‖Ĩ‖ ≤
M‖I‖ ≤M . For every x ∈ E we now get

(Φ(x), δΦ(x)) = Ĩ(x, 0) + δĨ(0, Φ(x)).

Using this on the xj ’s we obtain

(1, δ) =
(( n∑

j=1

|Φ(xj)|2
)1/2

, δ
( n∑

j=1

|Φ(xj)|2
)1/2)

(2.1)
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=
( n∑

j=1

|(Φ(xj), δΦ(xj))|2
)1/2

=
( n∑

j=1

|Ĩ(xj , 0) + δĨ(0, Φ(xj))|2
)1/2

≤
( n∑

j=1

|Ĩ(xj , 0))|2
)1/2

+ δ
( n∑

j=1

|Ĩ(0, Φ(xj))|2
)1/2

.

Taking norms on both sides of (2.1) we get

1 ≤
∥∥∥
( n∑

j=1

|Ĩ(xj , 0)|2
)1/2∥∥∥+ δ

∥∥∥
( n∑

j=1

|Ĩ(0, Φ(xj))|2
)1/2∥∥∥

≤
∥∥∥
( n∑

j=1

|Ĩ(xj , 0)|2
)1/2∥∥∥+ δC

( 1�

0

∥∥∥
n∑

j=1

rj(t)Ĩ(0, Φ(xj))
∥∥∥

2
dt
)1/2

≤
∥∥∥
( n∑

j=1

|Ĩ(xj , 0)|2
)1/2∥∥∥+ δCM

( 1�

0

∥∥∥
n∑

j=1

rj(t)(0, Φ(xj))
∥∥∥

2
dt
)1/2

=
∥∥∥
( n∑

j=1

|Ĩ(xj , 0)|2
)1/2∥∥∥+ δCM

∥∥∥
(

0,
n∑

j=1

|Φ(xj)|2
)1/2∥∥∥

=
∥∥∥
( n∑

j=1

|Ĩ(xj , 0)|2
)1/2∥∥∥+ δCM.

Hence
1
2
≤
∥∥∥
( n∑

j=1

|Ĩ(xj , 0)|2
)1/2∥∥∥.(2.2)

Let now Q: L1(µ)⊕L2(µ)→ L2(µ) be the canonical projection onto the
second coordinate. By the definition of the order in L1(µ)⊕ L2(µ) we have

( n∑

j=1

|QĨ(xj , 0)|2
)1/2

= Q
( n∑

j=1

|Ĩ(xj, 0)|2
)1/2

.

Assume now that
( n∑

j=1

|Ĩ(xj, 0)|2
)1/2

= (g, δg) with g ∈ L2(µ).

If ‖(∑n
j=1 |Ĩ(xj, 0)|2)1/2‖ = ‖g‖1, then by (2.2),

δ

2
≤ δ
∥∥∥
( n∑

j=1

|Ĩ(xj , 0)|2
)1/2∥∥∥ = δ‖g‖1 ≤ δ‖g‖2 =

∥∥∥
( n∑

j=1

|QĨ(xj , 0)|2
)1/2∥∥∥
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and if ‖(∑n
j=1 |Ĩ(xj , 0)|2)1/2‖ = δ‖g‖2, then

1
2
≤
∥∥∥
( n∑

j=1

|Ĩ(xj , 0)|2
)1/2∥∥∥ =

∥∥∥
( n∑

j=1

|QĨ(xj , 0)|2
)1/2∥∥∥.

Using the fact that the range of QĨ is a Hilbert space we obtain

δ

2
≤
∥∥∥
( n∑

j=1

|QĨ(xj , 0)|2
)1/2∥∥∥ =

( n∑

j=1

‖QĨ(xj, 0)‖2
)1/2
≤M

( n∑

j=1

‖xj‖2
)1/2

.

We have now verified that T is 2-convex with constant less than or equal to
2Mδ−1.

Theorem 2.4 immediately implies:

Theorem 2.5. Let X be a Banach space which satisfies one of the fol-
lowing conditions:

(i) X has the Gaussian average property.
(ii) X has the Gordon–Lewis property GL2 (in particular X could be a

Banach lattice).
(iii) X is isomorphic to a subspace of a Banach lattice of finite cotype.

If X has the Maurey extension property , then X is of type 2.

Proof. Let X be a Banach space with MEP.
(i) If X has GAP, then it follows from Theorem 2.4 and [2, Theorem

1.10] that X is of type 2.
(ii) Since X has MEP, it is of finite cotype and if in addition it has GL2,

then it has GAP by [2, Theorem 1.3]. (ii) can also be derived directly from
Theorem 2.4 and [18, Proposition 8.16].

(iii) If X is isomorphic to a subspace of a Banach lattice of finite cotype,
then it has GAP by [2, Theorem 1.4].

Remark. It follows from [2] that every space of type 2 has GAP. Hence
if there exists a Banach space with MEP and without GAP, then it cannot
have type 2.

If a Banach space X has MEP, then every bounded operator from a
subspace of X to a cotype 2 space Y with GL can be extended to X through
a Hilbert space (as in Maurey’s original result). Indeed, let E be a subspace
ofX and T ∈ B(X,Y ). Since E has MEP and Y has GL(1, 2) by [3, Theorem
3.4], it follows from Theorem 2.4 and Theorem 3.6 in the next section that
T ∈ Γ2(E, Y ). Since X has MEP, the part of the factorization of T which
goes into a Hilbert space can be extended to X.

Before we can prove our main result on Mp, 2 < p < ∞, we need a
sequence space equivalent of the spaces considered in Theorem 2.4.
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If X, respectively Y , have unconditional normalized bases (xn), respec-
tively (yn), then we say that (xn) dominates (yn) and write (yn) < (xn)
if the linear operator T : span(xn) → span(yn) defined by Txn = yn for all
n ∈ N is bounded. If 1 ≤ q ≤ ∞ and the unit vector basis of `q dominates
(xn), respectively is dominated by (xn), then we shall say that (xn) satisfies
an upper q-estimate, respectively lower q-estimate.

If 1 ≤ q < ∞ and (en) denotes the unit vector basis of `q, then for
every 0 < δ < 1 we define the space X(δ, q) to be the closed linear span in
(X ⊕ `q)∞ of the sequence (xj + δej).

The next theorem, which will be very useful for us in several contexts,
states:

Theorem 2.6. Let X, respectively Y , be Banach spaces with normalized
unconditional bases (xn), respectively (yn), and let 1 ≤ q < ∞ be such
that (yn) < (xn) with constant K1 and (yn) satisfies an upper q-estimate
with constant K2. If for some 0 < δ < 1 the formal identity operator Iδ
from X(δ, q) to Y (δ, q) extends to a bounded operator Ĩδ from (X ⊕ `q)∞ to
Y (δ, q) with ‖Ĩδ‖ < δ−1, then for all (tn) ⊆ R,

(2.3) δ2(1− ‖Iδ‖δ)
( ∞∑

n=1

|tn|2
)1/2

≤
√

2K2 ubc(xn)
∥∥∥
∞∑

n=1

tnxn

∥∥∥ if 1 ≤ q ≤ 2,

(2.4) δ2(1− ‖Iδ‖δ)
( ∞∑

n=1

|tn|q
)1/q

≤ K2 ubc(xn)
∥∥∥
∞∑

n=1

tnxn

∥∥∥ if 2 ≤ q ≤ ∞.

For example, (xn) has a lower 2-estimate if 1≤q≤2 and a lower q-estimate
if 2 ≤ q <∞.

Proof. Since Ĩδ extends Iδ, for all n ∈ N we have

yn + δen = Ĩδxn + δĨδen

and hence by the triangle inequality

1− ‖Ĩδ‖δ ≤ ‖Ĩδxn‖ for all n ∈ N.(2.5)

Let Q: (Y ⊕ `q)∞ → `q be the canonical projection and let T = QĨδ. Fix
n ∈ N and let (ak) ⊆ R be chosen so that

Ĩδxn =
∞∑

k=1

akyk + δ

∞∑

k=1

akek.
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If ‖Ĩδxn‖ = δ(
∑∞

k=1 |ak|q)1/q, then by (2.5),

1− ‖Ĩδ‖δ ≤ δ
( ∞∑

k=1

|ak|q
)1/q

= ‖Txn‖(2.6)

and if ‖Ĩδxn‖ =
∥∥∥
∑∞

k=1 akyk

∥∥∥, we obtain

δ(1− ‖Ĩδ‖δ) ≤ δ
∥∥∥
∞∑

k=1

akyk

∥∥∥ ≤ K2δ
( ∞∑

k=1

|ak|q
)1/q

= ‖Txn‖.(2.7)

Comparing (2.6) and (2.7) we deduce that for all n ∈ N,

K−1
2 δ(1− ‖Ĩδ‖δ) ≤ ‖Txn‖.

Let r = max(q, 2). Since `q is of cotype r, for all n ∈ N and all (tj)nj=1 ⊆ R
we get

K−1
2 δ(1− ‖Ĩ‖δ)

( n∑

j=1

|tj|r
)1/r

≤
( n∑

j=1

|tj|r‖Txj‖r
)1/r

≤ Cq
( 1�

0

∥∥∥
n∑

j=1

rj(t)tjTxj
∥∥∥
r
dt
)1/r

≤ Cq‖T‖
( 1�

0

∥∥∥
n∑

j=1

rj(t)tjxj
∥∥∥
r
dt
)1/r

≤ Cqδ−1 ubc(xj)
∥∥∥

n∑

j=1

tjxj

∥∥∥

where Cq ≤
√

2 for 1 ≤ q < 2 and Cq = 2 for 2 ≤ q <∞. This immediately
gives (2.3) and (2.4). Note that our assumptions imply that δ < K−1

1 .

Remark. Theorem 2.6 remains true if we assume that both X and Y
are finite-dimensional.

Theorem 2.6 was inspired by Nigel Kalton, who used the spaces `p(δ, 2)
to prove that `p does not have Mr for 2 < p < r < ∞. This subsequently
led to the idea of the proof of Theorem 2.4. Spaces like `p(δ, 2) were first
considered by Rosenthal in his construction of new Lp-spaces [20].

Before we go on we need a few facts about the spaces `p(δ, 2), p > 2, which
all go back to [20]. Hence let 2 < p <∞ and 0 < δ < 1. The space Lp(0,∞)∩
L2(0,∞) equipped with the maximum of the p-norm and the 2-norm is a
rearrangement invariant function space on [0,∞[ which is isomorphic to
Lp(0, 1) [11, Theorem 2.f.1]. In addition `p(δ, 2) is isometric to a norm 1
complemented subspace of Lp(0,∞)∩L2(0,∞). Indeed, it is readily seen that
if we take a sequence (Ik)∞k=1 of mutually disjoint intervals in [0,∞[ each of
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length δ2p/(p−2), then the closed linear span of {1Ik} is isometric to `p(δ, 2).
This span is also norm 1 complemented since conditional expectations are
norm 1 projections in Lp(0,∞) ∩ L2(0,∞). Hence we have verified:

Lemma 2.7. Let 2 < p < ∞. There exists a constant C so that for all
δ ∈ ]0, 1[, `p(δ, 2) is C-isomorphic to a C-complemented subspace of Lp(0, 1).

We need yet another lemma:

Lemma 2.8. If X is a Banach space with Mp for some 2 < p <∞, then
inf{q | X has cotype q} < p. In particular X has cotype p.

Proof. Put q0 = inf{q | X has cotype q}. By [13], Lq0(0, 1) is finitely
representable in X and hence it has Mp by Corollary 1.2. If p ≤ q0, then
Lp(0, 1) is a quotient of Lq0(0, 1) and hence it also has Mp by Proposition
1.6; this is a contradiction since Lp(0, 1) contains uncomplemented subspaces
isomorphic to `p (see [20]).

We are now ready to prove:

Theorem 2.9. If 2 < p < ∞ and X is a Banach space with Mp, then
the following statements hold :

(i) For every λ ≥ 1 there exists a constant c(λ) so that whenever (xj) ⊆
X is a finite or infinite λ-unconditional normalized sequence then

c(λ)
(∑

j

|aj |2
)1/2

≤
∥∥∥
∑

j

ajxj

∥∥∥ for all (aj) ⊆ R.(2.8)

(ii) X is of weak type 2 and has property (H). If in addition X is a Banach
lattice then it is a weak Hilbert space which satisfies a lower 2-estimate.

Proof. (i) Let n ∈ N, λ ≥ 1 and let (xj)nj=1 ⊆ X be a normalized
λ-unconditional sequence. Since ([xj]⊕ `n2 )∞ is 12-isomorphic to a subspace
of X, it follows that ([xj] ⊕ `n2 )∞ has Mp with constant less than or equal
to 12Mp(X). Combining this with Lemma 2.7 we find that every bounded
operator T from a subspace of ([xj ] ⊕ `n2 )∞ to any `p(δ, 2), 0 < δ < 1, has
an extension T̃ to ([xj]⊕ `n2 )∞ with ‖T̃‖ ≤ 12C2Mp(X). By Lemma 2.8, X
has cotype p and hence the cotype constant of ([xj] ⊕ `n2 )∞ is less than or
equal to 2Kp(X) and therefore the formal identity operator Iδ of [xj](δ, 2)
into `p(δ, 2) has a norm less than or equal to 2Kp(X). If we now choose δ
so that 24C2kp(X)Mp(X)δ < 1, then it follows that Iδ has an extension to
([xj]⊕ `n2 )∞ with norm less than δ−1. Hence by Theorem 2.6 we get, for all
(tj)nj=1 ⊆ R,

δ2

2

( n∑

j=1

|tj|2
)1/2

≤ λ
∥∥∥

n∑

j=1

tjxj

∥∥∥,

which proves (2.8).
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(ii) Since X has Mp, it also has M2 (because Lp has a complemented
subspace isomorphic to a Hilbert space) and hence X is of weak type 2.
Combining this with (2.8) we deduce that there exists a constant C(λ) so
that if (xj)nj=1 ⊆ X is λ-unconditional and normalized, then

c(λ)
√
n ≤

∥∥∥
n∑

j=1

xj

∥∥∥ ≤ C(λ)
√
n,

which proves that X has property (H).
If in addition X is a Banach lattice, then it follows from [17, Corol-

lary 4.4] that X is a weak Hilbert space which by (2.8) satisfies a lower
2-estimate.

Let us conclude this section with two corollaries.

Corollary 2.10. Let X be a Köthe function space on [0, 1]. If X has
Mp for some p, 2 < p <∞, then X is lattice isomorphic to L2(0, 1).

Proof. It follows from Theorem 2.9 that X is a weak Hilbert space and
hence by [16, Theorem 3], X is lattice isomorphic to L2(0, 1).

Corollary 2.11. If X is a Banach lattice with an upper 2-estimate
which has Mp for some p, 2 < p < ∞, then X is isomorphic to a Hilbert
space.

3. The extension properties Mp, 1 ≤ p < ∞. In this section we
shall investigate the properties Mp in greater detail. Our first theorem gives
a necessary and sufficient condition for an operator from a subspace of X
to `p to extend to X.

Theorem 3.1. Let X be a Banach space, E a subspace of X and T ∈
B(E, `p), 1 ≤ p ≤ ∞. Let Q be the natural quotient map of X∗ onto E∗.
The following statements are equivalent :

(i) T has an extension T̃ ∈ B(X, `p).
(ii) There is a constant K ≥ 1 so that for all Banach spaces Z and all

S ∈ B(Z,E) with S∗Q ∈ Πp(X∗, Z∗), TS is p-integral with

ip(TS) ≤ Kπp(S∗Q).(3.1)

Proof. Assume that (i) holds and let T̃ ∈ B(X, `p) be an extension. Since
‖T̃‖ = γp(T̃ ), it follows from [4, Theorem 9.11] that if Z is an arbitrary
Banach space and S ∈ B(Z,E) with S∗Q ∈ Πp(X∗, Z∗), then T̃ S = TS is
p-integral with

ip(TS) = ip(T̃ S) ≤ ‖T̃‖πp(S∗Q),

which is (3.1) with K = ‖T̃‖.
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Assume next that (ii) holds and define

N = {U ∈ N1(`p,X) | U(`p) ⊆ E}.
If we can prove that T acts as a bounded linear functional on N via trace
duality, then since N1(`p,X)∗ = B(X, `∗∗p ) it follows that T admits an ex-

tension T̃ ∈ B(X, `p).
Hence let U ∈ N be arbitrary and let ε > 0. From Kwapień’s char-

acterization of Γ ∗p (see [8]) it follows that there exist a Banach space Z,
A ∈ Πp′(`p, Z) and S ∈ B(Z,E) with S∗Q ∈ Πp(X∗, Z∗) so that U = SA
and

πp′(A)πp(S∗Q) ≤ ν1(U) + ε.

Applying now (1.2) we obtain

| tr(TU)| ≤ ip(TS)πp′(A) ≤ Kπp(S∗Q)πp′(A) ≤ K(ν1(U) + ε).

Since ε > 0 was arbitrary, this shows that T admits an extension T̃ with
‖T̃‖ ≤ K.

In our next result we shall use Theorem 3.1 to give a necessary and
sufficient condition for every operator from a given subspace of X to extend
to X.

Theorem 3.2. Let E be a subspace of a Banach space X and 1 ≤ p
≤ ∞. Further let Q denote the canonical quotient map of X∗ onto E∗. The
following statements are equivalent :

(i) Every T ∈ B(E, `p) extends to a T̃ ∈ B(X, `p).
(ii) There is a constant K ≥ 1 so that every T ∈ E∗ ⊗ `p extends to a

T̃ ∈ B(X, `p) with ‖T̃‖ ≤ K‖T‖.
(iii) There exists a constant K ≥ 1 so that for all Banach spaces Z,

whenever S ∈ B(E∗, Z) with SQ ∈ Πp(X∗, Z) then S ∈ Πp(E∗, Z) with

πp(S) ≤ Kπp(SQ).(3.2)

Proof. In view of the open mapping theorem and Theorem 1.3 it is im-
mediate that (i) and (ii) are equivalent. Hence assume that (ii) holds and
let K be a constant from there. Let Z be an arbitrary Banach space and let
S ∈ B(E∗, Z) with SQ ∈ Πp(X∗, Z). Our assumption and [9] (see also [15])
imply that

sup{‖TS∗‖m | T ∈ B(E∗∗, `p), ‖T‖ ≤ 1}
≤ K sup{‖TS∗‖m | T ∈ B(X∗∗, `p), ‖T‖ ≤ 1} = Kπp(SQ).

Since the left hand side is finite, we can conclude that it is equal to πp(S).
Hence S ∈ Πp(E∗, Z) with πp(S) ≤ Kπp(SQ).

Assume next that (iii) holds and let T ∈ B(E, `p) be arbitrary. We shall
verify that (ii) of Theorem 3.1 holds. Hence let Z be an arbitrary Banach
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space and S ∈ B(Z,E) with S∗Q ∈ Πp(X∗∗, Z∗). From (3.2) we conclude
that S∗ ∈ Πp(E∗, Z∗), and therefore by [9], TS is order bounded and hence
also p-integral with

ip(TS) ≤ ‖TS‖m ≤ ‖T‖πp(S∗) ≤ K‖T‖πp(S∗Q).

Hence T admits an extension T̃ to X with ‖T̃‖ ≤ K‖T‖.
Using the previous results we now obtain:

Theorem 3.3. Let X be a Banach space and 1 ≤ p ≤ ∞. The following
statements are equivalent.

(i) X has Mp.
(ii) There exists a constant K ≥ 1 so that if E is an arbitrary subspace of

X, QE is the canonical quotient map of X∗ onto E∗ and Z is an arbitrary
Banach space, then for every S ∈ B(E∗, Z) with SQ ∈ Πp(X∗, Z) we have
S ∈ Πp(E∗, Z) with

πp(S) ≤ Kπp(SQ).

Proof. This follows immediately from Theorems 1.1 and 3.2.

We now need the following lemma:

Lemma 3.4. If X is a Banach space with M1, then has type p for some p,
1 < p ≤ 2.

Proof. Let X have M1. If X is not of type greater than one, then by [13],
`1 is finitely representable in X and hence it follows from Corollary 1.2 that
`1 has M1. By [1], `1 contains an uncomplemented subspace E isomorphic
to `1; hence no isomorphism of E onto `1 can be extended to `1, which is a
contradiction.

We are now able to prove

Theorem 3.5. If X is a Banach space, then the following statements
hold :

(i) If X has M1, then it has M2.
(ii) If 1 < p < 2, then X has M1 if and only if it has Mp.
(iii) If X has Mp for some p, 2 < p <∞, then it has M2.

Proof. (i) Let X have M1. By Lemma 3.4 there is a q > 1 so that X
has type q. Let 1 < p < q. If E ⊆ X is a subspace, then it follows from [13]
that Π1(E∗, Z) = Πp(E∗, Z) for every Banach space Z and hence we see
from our assumption and Theorem 3.3 that X has Mp. Since Lp(0, 1) has a
complemented subspace isomorphic to a Hilbert space, we conclude that X
has M2.

(ii) Let 1 < p < 2 and assume first that X has M1. By (i) and Theorem
2.3, X has type q for all q < 2 and hence we can argue as in (i) to conclude
that X has Mp. Assume next that X has Mp. Again the argument of (i)
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shows that X has M2 and is therefore of type q for all q < 2. If E ⊆ X
is a subspace and T ∈ B(E, `1), then T ∈ Γp(E, `1) and hence it can be
extended to a bounded T̃ ∈ B(X, `1).

(iii) If 2 < p <∞, then Lp(0, 1) has a complemented subspace isomorphic
to a Hilbert space and hence if X has Mp, it also has M2.

We shall now need the following factorization theorem which is a gener-
alization of [18, Theorem 8.17].

Theorem 3.6. Let 1 ≤ p ≤ 2 and let X and Y be Banach spaces. If
B(`∞,X∗) = Πp′(`∞,X∗) and Y has GL(1, p), then B(X,Y ) ⊆ Γp(X,Y ∗∗)
and there exists a constant Cp so that

γp(T ) ≤ Cp GL1,p(Y )‖T‖ for all T ∈ B(X,Y ).(3.3)

Proof. Let T ∈ B(X,Y ) be arbitrary. We shall use [4, Theorem 9.11] to
show that T ∈ Γp(X,Y ∗∗). To this end let Z be an arbitrary Banach space
and S ∈ B(Z,X) with S∗ ∈ Πp(X∗, Z∗). The assumptions on X give that
S∗ is absolutely summing and since Y has GL(1, p), we deduce that TS is
p-integral with

ip(TS) ≤ GL1,p(Y )π1(S∗T ∗) ≤ Cp GL1,p(Y )πp(S∗)‖T‖
for a suitable constant Cp. This together with the above-mentioned theorem
gives (3.3).

Corollary 3.7. Let p and X be as in Theorem 3.6. If Y is a comple-
mented subspace of a p-concave Banach lattice Z, then B(X,Y ) = Γp(X,Y ).

Proof. It follows from [5] that Y has GL(1, p) and since Z does not
contain c0, it follows from [11] that Z and hence also Y is complemented in
its second dual.

The next theorem is a direct consequence of Theorems 3.6 and 3.5.

Theorem 3.8. Let X be a Banach space with M1 and Y a Banach space
with GL(1, p) where 1 ≤ p < 2. If E ⊆ X is a subspace, then every T ∈
B(E, Y ) extends to a T̃ ∈ B(X,Y ∗∗) with

‖T̃‖ ≤Mp(X) GL1,p(Y )Tr(X)‖T‖ for all r with p < r < 2.(3.4)

Proof. Choose p < r < 2 and let T ∈ B(E, Y ). Since X (and hence E)
has type r by Theorem 3.5, we deduce from Theorem 3.6 that T ∈ Γp(E, Y ∗∗)
with

γp(T ) ≤ Tr(X) GL1,p(Y )‖T‖.(3.5)

Since X also has Mp it follows from (3.5) that T can be extended to a
T̃ ∈ B(X,Y ∗∗) so that (3.4) holds.

It is immediate from the definition of M2 that the following holds:
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Proposition 3.9. Let X be a Banach space with M2. For every finite-
dimensional subspace E ⊆ X there exists a projection P of X onto E with

‖P‖ ≤M2(X)d(E, `dimE
2 ).(3.6)

If X is a Banach space and there exists a constant K so that (3.6) holds
with K in place of M2(X), then X is said to have the Maurey projection
property. It follows from [18, Theorem 11.6] that a Banach space with this
property is of weak type 2. We end this section with the following result:

Theorem 3.10. Let X be a Köthe function space on [0, 1] with an un-
conditional basis. If X has the Maurey projection property , then it is of
type 2.

Proof. Since X has an unconditional basis, it follows from [7] that X is
isomorphic to X(`2) (= `2⊗mX). It therefore follows from from [19, Remark
11.8] that X being of weak type 2 is actually of type 2.
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