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Direct sums of irreducible operators
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Abstract. It is known that every operator on a (separable) Hilbert space is the
direct integral of irreducible operators, but not every one is the direct sum of irreducible
ones. We show that an operator can have either finitely or uncountably many reducing
subspaces, and the former holds if and only if the operator is the direct sum of finitely
many irreducible operators no two of which are unitarily equivalent. We also characterize
operators T which are direct sums of irreducible operators in terms of the C*-structure
of the commutant of the von Neumann algebra generated by T .

1. Introduction. A bounded linear operator on a complex separable
Hilbert space H is irreducible if it has no reducing subspace other than
{0} and H; otherwise, it is reducible. In this paper, we are concerned with
the problem of characterizing operators which are expressible as the di-
rect sum of irreducible operators. Examples of such operators include any
finite-dimensional operator, compact operator, completely nonnormal es-
sentially normal operator, completely nonnormal hyponormal operator with
finite multiplicity (cf. [7, Section 2.1]) and any Cowen–Douglas operator
(cf. [3, Proposition 1.18]). On the other hand, not every operator can be ex-
pressed as such a direct sum. This is the case even for normal operators since
it can be easily seen that a normal operator is irreducible if and only if it
acts on a one-dimensional space, and thus it is the direct sum of irreducible
operators if and only if it is diagonalizable. In particular, the bilateral shift
(the operator of multiplication by the independent variable on the L2-space
of the unit circle) cannot be the direct sum of irreducible operators.

In Section 2 below, we first show in Theorem 2.1 that no operator can
have countably infinitely many reducing subspaces, that is, the number of
reducing subspaces of any operator is either finite or ℵ1, the cardinal num-
ber of the real numbers. Moreover, an operator has finitely many reducing
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subspaces if and only if it is the direct sum of finitely many irreducible oper-
ators no two of which are unitarily equivalent. These are proved by making
use of the structure theorem of two projections (Lemma 2.2).

An equivalent condition for irreducibility can be formulated in terms
of the von Neumann algebra generated by the operator. Indeed, if W ∗(T )
denotes the von Neumann algebra generated by an operator T on H and
W ∗(T )′ denotes its commutant, then using the von Neumann double com-
mutant theorem we can easily show the equivalence of the following three
conditions:

(1) T is irreducible,
(2) dimW ∗(T )′=1, and
(3) W ∗(T ) equals B(H), the algebra of all operators on H.

In Section 3, we will generalize this to direct sums of irreducible operators.
We show in Theorem 3.1 that T is such a direct sum if and only if W ∗(T )′ is
∗-isomorphic to the direct sum of full matrix algebras Mni(C) with various
sizes ni, 1 ≤ ni ≤ ∞. Here Mni(C), 1 ≤ ni ≤ ∞, denotes the algebra of
all ni-by-ni complex matrices, and M∞(C) is understood to be B(l2). As a
corollary (Corollary 3.2), we have the equivalence of T being the direct sum
of finitely many irreducible operators and dimW ∗(T )′ <∞.

If all the ni’s are finite in the above representation for W ∗(T )′, that
is, if W ∗(T )′ is ∗-isomorphic to the direct sum of full finite matrix alge-
bras, then W ∗(T )′, as an approximately finite algebra, can be characterized
in terms of its (scaled ordered) K0-group. (For results on the K-theory of
C∗-algebras, the reader can consult [13].) However, in our present situa-
tion, the full infinite matrix algebra M∞(C) may appear, which renders the
K0-group characterization inappropriate. In our final section, we show that
for this case the characterization can be obtained in terms of the semigroup
V (W ∗(T )′).

We conclude this section with two further remarks. Firstly, it is known
that on an infinite-dimensional separable Hilbert space H, there are plenty
of irreducible operators in the sense that such operators are dense in B(H) in
the norm topology (cf. [4]). In [4], it was asked whether reducible operators
are also dense. This is answered affirmatively by Voiculescu [12]. In fact, an
even stronger result is true, namely, for any operator T and any ε > 0, there
is a compact operator K with ‖K‖ < ε such that T +K is the direct sum of
infinitely many irreducible operators (cf. also [6, Proposition 4.21(iv), (v)]).

Secondly, although not every operator is the direct sum of irreducible
operators, every one can be expressed as the direct integral of irreducible
ones. This is what the next proposition says.

Proposition 1.1. Every operator is the direct integral of irreducible op-
erators.
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Proof. This is an easy consequence of [1, Theorem 3.6] on the direct in-
tegral decomposition of operator algebras. Indeed, since for any operator T ,
the weakly closed algebra Alg T generated by T and I can be expressed as� ⊕
Λ
Aλ dµ(λ), where Λ is a separable metric space, µ is (the completion of) a

σ-finite regular Borel measure on Λ, and Aλ is a weakly closed irreducible
operator algebra for almost all λ in Λ (an operator algebra is irreducible if
it has no nontrivial reducing subspace), we have T =

� ⊕
Λ
Tλ dµ(λ), where Tλ

is in Aλ for almost all λ. Hence Alg T ⊆
� ⊕
Λ

Alg Tλ dµ(λ) ⊆
� ⊕
Λ
Aλ dµ(λ) =

Alg T , which implies that Alg Tλ = Aλ for almost all λ. The irreducibil-
ity of Aλ then implies that of Tλ. Thus T =

� ⊕
Λ
Tλ dµ(λ) is the asserted

decomposition of T .

For any C∗-algebra A and natural number n, let Mn(A) denote the
C∗-algebra of n-by-n matrices with entries from A.

2. Number of reducing subspaces. The main result of this section
is the following theorem.

Theorem 2.1. The number of reducing subspaces of any operator is ei-
ther finite or uncountably infinite. The former case occurs if and only if the
operator is the direct sum of finitely many irreducible operators

∑n
i=1⊕Ti

with Ti and Tj unitarily inequivalent for any i 6= j. In this case, the number
of reducing subspaces is 2n.

The preceding result has an analogue in a different context: the number
of invariant subspaces of any operator on a finite-dimensional space is either
finite or uncountably infinite, the former case occurring if and only if the
operator is cyclic (cf. [9]).

To prove Theorem 2.1, we need three lemmas. The first one is a structure
theorem for two arbitrary (orthogonal) projections. This result has appeared
repeatedly in the literature before; the version we adopt below is from [5].

Lemma 2.2. Let P and Q be two arbitrary projections on a Hilbert space.
Then there is a unitary operator U such that

U∗PU =
(
I1 0
0 0

)
⊕ I2 ⊕ I3 ⊕ 0⊕ 0

and

U∗QU =
(
A B
B I1 − A

)
⊕ I2 ⊕ 0⊕ I4 ⊕ 0

on the space H1⊕H1⊕H2⊕H3⊕H4⊕H5, where A is a positive contraction
on H1 and B is the positive square root of A(I1−A). We may require that
0 < A ≤ 1

2I1, in which case A is unique up to unitary equivalence.

The preceding lemma is used to prove
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Lemma 2.3. If T has countably many reducing subspaces, then W ∗(T )′

is abelian.

Proof. Let P and Q be two projections in W ∗(T )′ represented as
in Lemma 2.2 with 0 < A ≤ 1

2I1. Since P and Q both commute with T ,
a simple computation shows that T is of the form T1 ⊕ T1 ⊕

∑5
i=2⊕Ti on

H1 ⊕H1 ⊕
∑5
i=2⊕Hi with T1A = AT1. For each complex scalar λ, let Mλ

be the subspace {λBx⊕x⊕0⊕0⊕0⊕0 : x ∈ H1}. It is easily seen that the
Mλ’s are all reducing subspaces of T and are distinct if H1 6= {0}. Since T
has only countably many reducing subspaces, this forces H1 = {0}. Hence
P = I2 ⊕ I3 ⊕ 0⊕ 0 and Q = I2 ⊕ 0⊕ I4 ⊕ 0 commute. Since the von Neu-
mann algebra W ∗(T )′ is generated by the projections it contains, we infer
that W ∗(T )′ is abelian.

Recall that a projection p in a C∗-algebra is minimal if there is no
projection q other than 0 and p such that pq = q.

Lemma 2.4. Let P be a projection in W ∗(T )′. Then T |ranP is irre-
ducible if and only if P is a minimal projection in W ∗(T )′.

This is an easy consequence of the definitions of irreducibility and mini-
mal projection.

We need one more lemma.

Lemma 2.5. Let A and B be irreducible operators on H and K, re-
spectively. Then A and B are unitarily equivalent if and only if there is a
nonzero operator X such that XA = BX and XA∗ = B∗X.

Proof. Assume that XA = BX and XA∗ = B∗X for some X 6= 0. It is
easily seen that kerX and ranX are reducing subspaces of A and B, respec-
tively. If kerX 6= {0}, then by the irreducibility of A we have kerX = H,
i.e. X = 0, which contradicts our assumption. Hence kerX = {0}, i.e. X is
one-to-one. In a similar fashion, we infer that ranX = K, i.e. X has dense
range. Therefore, the polar decomposition of X yields X = UP , where U is
unitary and P = (X∗X)1/2 ≥ 0. Since X∗XA = X∗BX = AX∗X, we have
PA = AP . Hence UAP = UPA = XA = BX = BUP . Note that P also
has dense range. From the above, we conclude that UA = BU , which shows
the unitary equivalence of A and B as asserted.

We are now ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. Assume that an operator T has a countably
infinite number of reducing subspaces. This implies, by Lemma 2.3, that
W ∗(T )′ is abelian. Hence it is generated by some Hermitian operator A
(cf. [10, Theorem 7.12]). Note that σ(A), the spectrum of A, cannot be a fi-
nite set for otherwise A would be of the form

∑n
i=1⊕λiIi and W ∗(A) would

consist of operators of the form
∑n
i=1⊕αiIi with scalars αi, which implies
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that W ∗(A) = W ∗(T )′ contains only finitely many projections, contradict-
ing our assumption. Thus we can decompose σ(A) into countably infinitely
many mutually disjoint Borel subsets each having a strictly positive spectral
measure. The spectral projections corresponding to various unions of such
subsets are all in W ∗(A) = W ∗(T )′. Since there are uncountably many of
them, this again contradicts our assumption. Thus the number of reducing
subspaces of T cannot be countably infinite.

Now assume that T has finitely many reducing subspaces. By Lemma 2.3,
W ∗(T )′ is abelian. Let P1, . . . , Pn be the minimal projections in it. Since the
Pj ’s are commuting, it is easily seen that they are mutually orthogonal and
have sum equal to I. Let T =

∑n
i=1⊕Ti on H =

∑n
i=1⊕ ranPi. Then the

Ti’s are irreducible by Lemma 2.4. Next we prove that no two of the Ti’s
are unitarily equivalent. For this, assume otherwise that there is a unitary
operator U such that UTi = TjU , where 1 ≤ i < j ≤ m. For any scalar λ,
let

Mλ = {0⊕ . . .⊕ x
ith
⊕ 0⊕ . . .⊕ 0⊕ λUx

jth
⊕ . . .⊕ 0 : x ∈ Hi}.

Then the Mλ’s are distinct reducing subspaces of T . Since there are infinitely
many of them, this contradicts our assumption on T .

Conversely, assume that T =
∑n
i=1⊕Ti on H =

∑n
i=1⊕Hi, where the

Ti’s are all irreducible and no two of them are unitarily equivalent. Let P =
[Pij ]

n
i,j=1 be a projection commuting with T . Then PijTj = TiPij for all i

and j. From this we obtain PijT ∗j = P ∗jiT
∗
j = (TjPji)∗ = (PjiTi)∗ = T ∗i P

∗
ji =

T ∗i Pij . Since Ti and Tj are irreducible and are not unitarily equivalent for
i 6= j, Lemma 2.5 implies that Pij = 0 and hence also Pji = 0. Thus Pii is a
projection commuting with Ti. The irreducibility of Ti implies that Pii = 0
or Ii. This shows that P is one of the 2n projections obtained by taking the
direct sum of some of the Ii’s with the 0’s. Equivalently, this says that the
reducing subspaces of T are the 2n subspaces obtained by taking the direct
sum of some of the Hi’s with the {0}’s, completing the proof.

3. Full matrix algebras. In this section, we will characterize the direct
sum of irreducible operators in terms of the C∗-algebra structure of the
commutant of its generated von Neumann algebra.

For any operator T on H and any integer n, 1 ≤ n ≤ ∞, let T (n) denote
the direct sum of n copies of T on H(n) = H ⊕ . . .⊕H (n copies).

Theorem 3.1. An operator T on H is the direct sum of irreducible
operators, say ,

∑n
i=1⊕T

(ni)
i on

∑n
i=1⊕H

(ni)
i , where 1 ≤ n ≤ ∞,

1 ≤ ni ≤ ∞ for all i and the Ti’s are pairwise unitarily inequivalent , if
and only if W ∗(T )′ is ∗-isomorphic to

∑n
i=1⊕Mni(C). Moreover , the Ti’s

are unique up to permutation and unitary equivalence. More precisely , if
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T =
∑m
k=1⊕S

(mk)
k is another direct sum of irreducible operators with pair-

wise unitarily inequivalent Sk’s, then n = m and there is a permutation π
of {1, . . . , n} and a unitary operator U in W ∗(T )′ such that ni = mπ(i) and
UTi = Sπ(i)U for all i.

Since every finite-dimensional (unital) C∗-algebra is ∗-isomorphic to the
direct sum of finitely many full (finite) matrix algebras (cf. [11, Theo-
rem 11.2]), an easy consequence of the preceding theorem is

Corollary 3.2. T is the direct sum of finitely many irreducible opera-
tors if and only if dimW ∗(T )′ <∞.

We need the following lemma for the proof of Theorem 3.1.

Lemma 3.3. If T is irreducible on H and X is such that XT = TX
and XT ∗ = T ∗X, then X is a scalar multiple of identity.

Proof. Since X∗X commutes with T , the same is true for any spectral
projection P of X∗X. The irreducibility of T then implies that P = 0 or I.
Thus the spectrum of X∗X must be a singleton {α} and hence X∗X = αI.
On the other hand, from the assumptions XT = TX and XT ∗ = T ∗X we
also deduce that kerX is a reducing subspace of T . Thus kerX = {0} or H.
This says that either X is one-to-one or X = 0. Similarly, by considering
ranX, we deduce that either X has dense range or X = 0. Thus for our
purpose we may assume that X is one-to-one with dense range. Hence X =
U(X∗X)1/2 =

√
αU , where U is unitary, by polar decomposition. We may

assume that α 6= 0. Then UT = TU and UT ∗ = T ∗U . Arguing as above, we
obtain U = βI. Thus X =

√
αβI is a scalar multiple of identity.

Proof of Theorem 3.1. Assume T =
∑n
i=1⊕T

(ni)
i on H =

∑n
i=1⊕H

(ni)
i ,

where the Ti’s are pairwise unitarily inequivalent irreducible operators. If
X is an operator in W ∗(T )′, then X =

∑n
i=1⊕Xi with Xi in W ∗(T (ni)

i )′

by Lemma 2.5. Letting Xi = [Y ijk]ni
j,k=1

, we see that Y ijk belongs to W ∗(Ti)′.

Therefore Y ijk is a scalar multiple of identity by Lemma 3.3. Say, Y ijk = λijkIi,
where Ii is the identity operator on Hi. Then X =

∑n
i=1⊕[λijkIi]

ni

j,k=1
.

Obviously, the mapping X 7→ ∑n
i=1⊕[λijk]ni

j,k=1
defines a ∗-isomorphism

from W ∗(T )′ onto
∑n
i=1⊕Mni(C).

Conversely, let Φ be a ∗-isomorphism from W ∗(T )′ onto

A ≡
n∑

i=1

⊕Mni(C),

and let Eij denote the element 0⊕ . . .⊕ eij ⊕ . . .⊕ 0 in A, where eij is the
ni-by-ni matrix whose (j,j)-entry equals 1 and all others equal 0. Then the
Φ−1(Eij)’s are mutually orthogonal minimal projections in W ∗(T )′ with
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sum equal to I. Obviously, Φ−1(Eij)H is a reducing subspace of T with
Tij ≡ T |Φ−1(Eij)H irreducible (by Lemma 2.4), and T =

∑
ij ⊕Tij . Since

for any pair j and k the matrices Eij and Eik are unitarily equivalent
(via a unitary operator, say, U in A), we infer that Tij and Tik are uni-
tarily equivalent (via the unitary Φ−1(U)|Φ−1(Eij)H). Thus T is the direct
sum of irreducible operators

∑n
i=1⊕T

(ni)
i1 as asserted.

To prove the uniqueness, let T =
∑m
k=1⊕S

(mk)
k on H =

∑m
k=1⊕L

(mk)
k

be another direct sum of irreducible operators for T with pairwise unitarily
inequivalent Sk’s, where 1 ≤ m ≤ ∞ and 1 ≤ mk ≤ ∞ for all k. If Pkl,
1 ≤ k ≤ m and 1 ≤ l ≤ mk, denotes the projection from H onto the lth
component of L(mk)

k , then the mutually orthogonal projections Fkl ≡ Φ(Pkl)
in A are such that

∑
k,l Fkl = I. Moreover, since each Fkl is minimal by

Lemma 2.4, it can only “live” in some Mni(C) and can only have rank one.
Also note that for any fixed k, the different Fkl’s are all in the same Mni(C)
with

∑
l Fkl = Ini , the identity matrix of size ni. This is because for a

fixed k, the different Pkl’s are unitarily equivalent via a unitary operator in
W ∗(T )′, and thus the different Fkl’s are unitarily equivalent via a unitary
operator in A. This latter unitary operator, being a direct sum of operators
from the Mnj (C)’s, can intertwine only operators in the same Mni(C). Since∑
l Fkl = Ini and the mutually orthogonal Fkl’s each have rank one, we infer

that mk = ni and the Fkl’s (for different l’s) are simultaneously unitarily
equivalent to the Eij ’s (for different j’s). From

∑
k,l Fkl = I =

∑
i,j Eij and

the above, we conclude that m = n and, after a permutation of the indices,
the Fkl’s (for different k’s and l’s) are simultaneously unitarily equivalent to
the Eij ’s (for different i’s and j’s). Our assertion on the uniqueness of the
irreducible summands for T then follows by applying Φ−1 to the Fkl’s and
the intertwining unitary operator in A.

We next consider the problem when two operators have isomorphic re-
ducing subspace lattices. When the operators are normal, this has been
solved by Conway and Gillespie [2]. Using their result, we may settle the
problem when the two operators are both direct sums of irreducible ones.
This covers in particular the cases of operators on finite-dimensional spaces
and compact operators.

For any operator T , let RedT denote the lattice of its reducing subspaces.

Proposition 3.4. Let A =
∑n
j=1⊕A

(nj)
j and B =

∑m
k=1⊕B

(mk)
k be

direct sums of irreducible operators with pairwise unitarily inequivalent Aj ’s
and Bk’s, where 1 ≤ n,m ≤ ∞ and 1 ≤ nj ,mk ≤ ∞ for all j and k.
Then RedA is isomorphic to RedB if and only if n = m and there is a
permutation π of {1, . . . , n} such that nj = mπ(j) for all j.

To prove this, we need the following
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Lemma 3.5. If T is irreducible, then, for any 1 ≤ n ≤ ∞, RedT (n)

is isomorphic to Red In, where In denotes the identity operator on an
n-dimensional space.

Proof. If P = [P ji ]
n

i,j=1 is any projection commuting with T (n), then for
any i and j we deduce using Lemma 3.3 that Pij = λijI, where λij is some
scalar. The mapping P 7→ [λij ]

n
i,j=1 then induces a lattice isomorphism from

RedT (n) onto Red In.

Proof of Proposition 3.4. Using Lemma 2.5, we may infer that RedA
and

∑
j⊕RedA(nj)

j are isomorphic. This latter lattice is isomorphic to∑
j ⊕Red(1/j)Inj (by Lemma 3.5) or Red

∑
j ⊕(1/j)Inj . Hence RedA

is isomorphic to Red
∑
j⊕(1/j)Inj . A similar assertion holds for B. Hence if

RedA and RedB are isomorphic, then the same is true for Red
∑
j⊕(1/j)Inj

and Red
∑
k ⊕(1/k)Imk . For normal operators, this implies that n = m

and there is a permutation π of {1, . . . , n} such that nj = mπ(j) for all j
(cf. [2, Theorem 3.2]). A reversal of the above implications yields the con-
verse.

The next result will be useful in Section 4.

Proposition 3.6. If T (k) is a direct sum of irreducible operators, where
k is a natural number , then so is T .

Proof. Assume that T (k) is unitarily equivalent to the direct sum S ≡∑n
i=1⊕Ti(ni), where 1 ≤ n ≤ ∞, 1 ≤ ni ≤ ∞ for all i and the Ti’s are pair-

wise unitarily inequivalent irreducible operators. Then there are mutually
orthogonal projections Pj , j = 1, . . . , k, commuting with S and satisfying∑
j Pj = I such that S|(ranPj), j = 1, . . . , k, are mutually unitarily equiv-

alent. Using Lemma 2.5, we deduce that Pj is of the form
∑
i⊕Qij , where

the Qij ’s are mutually orthogonal projections commuting with Ti
(ni) and

satisfying
∑
j Qij = Ii such that Ti

(ni)|(ranQij), j = 1, . . . , k, are mutually
unitarily equivalent. Thus we are reduced to proving the following: if A(k) is
unitarily equivalent to B(n), 1 ≤ n ≤ ∞, where B is irreducible, then A is a
direct sum of irreducible operators. We may further assume that n =∞ for
otherwise W ∗(A(k))′ = Mk(W ∗(A)′) is finite-dimensional by Corollary 3.2,
which implies the same for W ∗(A)′ and thus our assertion for A follows by
Corollary 3.2 again. Under the assumption n = ∞, A(k) is unitarily equiv-
alent to C(k), where C = B(∞). The unitary equivalence of A and C then
follows from an argument analogous to the proof of the first test problem
in [8].

4. K-theoretic characterization. In the preceding section, direct
sums of irreducible operators are characterized in terms of the structure
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of certain C∗-algebras. We now proceed to describe the latter in terms of
some ingredients from K-theory.

If A is the C∗-algebra
∑n
i=1⊕Mni(C) with 1≤ n≤∞ and 1≤ni<∞ for

all i, then A is an approximately finite algebra and hence can be character-
ized by its (scaled ordered) K0-group (cf. [13, Theorem 12.1.3]). However,
if we allow some ni’s to be ∞, then the K0-group can no longer distinguish
two such algebras. This is because the K0-group of M∞(C) is trivial (cf.
[13, Examples 6.2.3]). However, for any C∗-algebra A its K0-group is de-
fined through an abelian semigroup V (A), and it turns out that the latter
is strong enough to distinguish Mn(C) for finite and infinite values of n.
Indeed, it is known that

V (Mn(C)) ∼=
{N+ if 1 ≤ n <∞,

N+ ∪ {∞} if n =∞,

where N+ = {0, 1, . . .} (cf. [13, Examples 6.1.4]), and hence

V
( n∑

i=1

⊕Mni(C)
)
∼= N(k1)

+ ⊕ (N+ ∪ {∞})(k2),

where k1 (resp., k2) is the number of finite (resp., infinite) ni’s, and for a
semigroup V , V (k) denotes the direct sum of k copies of V . Our purpose in
this section is to prove the following

Theorem 4.1. An operator T on H is the direct sum of irreducible op-
erators if and only if V (W ∗(T )′) is isomorphic to N(k1)

+ ⊕ (N+ ∪ {∞})(k2)

for some integers k1 and k2, 0 ≤ k1, k2 ≤ ∞.

Here we briefly recall the definition of V (A). Two projections p and q
in M∞(A), the collection of all finite matrices with entries from A, are said
to be equivalent if there is a v in M∞(A) such that v∗v = p and vv∗ = q.
The equivalence class containing p is denoted by [p] and the set of all these
classes is V (A). V (A) is an abelian semigroup with addition defined by

[p] + [q] = [diag(p, q)],

where diag(p, q) is the matrix
(
p
0

0
q

)
(cf. [13, Section 6.1]).

Theorem 4.1 will be proved after the following series of lemmas.

Lemma 4.2. Let P and Q be two projections in W ∗(T )′ which are or-
thogonal to each other. If P is unitarily equivalent to Q via a unitary oper-
ator in W ∗(T )′, then T |(ranP ) is unitarily equivalent to T |(ranQ).

Proof. Let U be a unitary operator in W ∗(T )′ such that UP = QU , and
let W = U |(ranP ). Then W is a unitary operator from ranP onto ranQ
and satisfies W (T |(ranP )) = (T |(ranQ))W .
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Lemma 4.3. Let T be an operator on H with V (W ∗(T )′) ∼= (N+)(k1) ⊕
(N+ ∪ {∞})(k2), where 0 ≤ k1, k2 ≤ ∞. Let l = k1 + k2, {ei}li=1 be the l
free generators of V (W ∗(T )′), and P 6= 0 be a projection in W ∗(T )′. Then
T |(ranP ) is irreducible if and only if [P ] = ei for some i.

Proof. Assume that T |(ranP ) is irreducible and let [P ] =
∑l
i=1⊕αiei,

where the αi’s are integers, 0 ≤ αi ≤ ∞. Assume that more than one of
the αi’s is nonzero, say, α1, α2 6= 0. Then f ≡ α1e1 and g ≡ ∑∞i=2⊕αiei
are nonzero elements in V (W ∗(T )′). Hence there exists a natural num-
ber m for which there are mutually orthogonal projections Q and R in
Mm(W ∗(T )′) = W ∗(T (m))′ such that [Q] = f and [R] = g. If S = Q + R,
then [S] = [Q] + [R] = f + g =

∑l
i=1⊕αiei = [P ]. Hence S and P ⊕ 0(m−1)

are unitarily equivalent via a unitary operator in W ∗(T (m))′, where 0 de-
notes the zero operator on H. Lemma 4.2 then implies that T (m)|(ranS)
is unitarily equivalent to T (m)|(ran(P ⊕ 0(m−1))). But the former equals
(T (m)|(ranQ)) ⊕ (T (m)|(ranR)) while the latter coincides with the irre-
ducible T |(ranP ). This is a contradiction. Hence only one of the ei’s can be
nonzero, which proves that [P ] = ei for some i.

Conversely, assume that [P ] = e1 and T |(ranP ) is reducible. Then there
are nonzero projections Q and R in W ∗(T )′ such that QR = 0 and P =
Q+R. Let [Q] =

∑l
i=1⊕αiei and [R] =

∑l
i=1⊕βiei, where 0 ≤ αi, βi ≤ ∞

for all i. From e1 = [P ] = [Q] + [R] =
∑l
i=1⊕(αi + βi)ei, we deduce that

α1 + β1 = 1 and αi + βi = 0 for all i ≥ 2. Hence α1 = 0 or β1 = 0 and
αi = βi = 0 for all i ≥ 2. This shows that [Q] = 0 or [R] = 0, which is a
contradiction. Thus T |(ranP ) is irreducible.

Lemma 4.4. Assume that A on H is a direct sum of irreducible operators
and B on K has no reducing subspace on which it is irreducible. If X is
such that XA = BX and XA∗ = B∗X, then X = 0.

Proof. Let A =
∑∞
n=1⊕An on H =

∑∞
n=1⊕Hn, where An is irreducible

for all n. (A similar argument applies if A is the direct sum of finitely
many irreducible operators.) Let X∗ be represented as [X1X2 . . .]t from
K to

∑
n⊕Hn. We now show that X1 = 0. Indeed, from XA = BX and

XA∗ = B∗X a simple computation yields X1B = A1X1 and X1B
∗ = A∗1X1.

Hence (X1X
∗
1 )A1 = A1(X1X

∗
1 ) and (X1X

∗
1 )A∗1 = A∗1(X1X

∗
1 ). Since A1 is

irreducible, Lemma 3.3 implies that X1X
∗
1 is a scalar multiple of identity,

say, X1X
∗
1 = λIH1 .

Assuming that X1 6= 0, we want to derive a contradiction. Indeed, in
this case, we have λ 6= 0. If U = λ−1/2X1, then UU∗ = IH1 and Q ≡ U∗U is
a projection on K satisfying QB = BQ. Let p = IH1 ⊕ 0 and q = 0⊕Q be
operators on H1⊕K and let p′ = p⊕0 and q′ = q⊕0 on (H1⊕K)⊕(H1⊕K).
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Letting C = A1 ⊕ B, we claim that p′ and q′ are unitarily equivalent via a
unitary operator in W ∗(C(2))′.

To prove this, let v =
( 0

0
U
q

)
on H1 ⊕ K. Then v is a partial isometry

in W ∗(C)′ with vv∗ = p and v∗v = q. Our assertion then follows from [13,
Proposition 5.2.12]. By Lemma 4.2, we infer that C(2)|(ran p′) is unitarily
equivalent to C(2)|(ran q′). But the former coincides with the irreducible A1

and the latter B|(ranQ). Thus B|(ranQ) is irreducible, which contradicts
our assumption. This proves that X1 = 0. Similarly, we have Xn = 0 for all
n ≥ 2 and hence X = 0 as asserted.

We are now ready for the proof of Theorem 4.1.

Proof of Theorem 4.1. The necessity follows from the paragraph before
the statement of the theorem. For the sufficiency, we assume that V (W ∗(T )′)
is isomorphic to N(k1)

+ ⊕ (N+ ∪ {∞})(k2), where 0 ≤ k1, k2 ≤ ∞. Let P be
a projection in some Mk(W ∗(T )′) = W ∗(T (k))′ (k is a natural number)
such that [P ] is one of the free generators of V (W ∗(T )′). By Lemma 4.3,
T (k)|(ranP ) is irreducible (here we embed W ∗(T )′ into Mk(W ∗(T )′) under
the canonical embedding A 7→

(
A
0

0
0

)
, which results in the identification

of V (W ∗(T )′) and V (Mk(W ∗(T )′)); cf. [13, Lemma 6.2.10]). Using Zorn’s
lemma, we can find a maximal family of mutually orthogonal projections
{Pj}nj=1, 1 ≤ n ≤ ∞, in W ∗(T (k))′ such that T (k)|(ranPj) is irreducible for
all j. Letting Q =

∑
j Pj , we will show that Q = I(k), the identity operator

on H(k).
Assume that this is not the case. Since Q is a projection in W ∗(T (k))′,

the operators T1 ≡ T (k)|(ranQ) and T2 ≡ T (k)|(ran(I(k) − Q)) are acting
on nontrivial spaces. Moreover, T1 is the direct sum of irreducible oper-
ators and T2 has no reducing subspace on which it is irreducible. Hence
we may apply Lemma 4.4 to infer that W ∗(T (k))′ = W ∗(T1)′ ⊕W ∗(T2)′.
Therefore, V (W ∗(T (k))′) ∼= V (W ∗(T1)′) ⊕ V (W ∗(T2)′) (cf. [13, Proposi-
tion 6.2.1]). Since both V (W ∗(T (k))′) = V (W ∗(T )′) and V (W ∗(T1)′) are
torsion-free semigroups, the same is true for V (W ∗(T2)′). Let R be a pro-
jection in W ∗(T (m)

2 ) (m is a natural number) for which [R] is one of the free
generators of V (W ∗(T2)′). From Lemma 4.3, we know that T (m)

2 |(ranR)
is irreducible. Arguing as above, we can find a nonzero projection Q1 in
W ∗(T (m)

2 )′ such that T3 ≡ T
(m)
2 |(ranQ1) is the direct sum of irreducible

operators and T4 ≡ T (m)
2 |(ran(I −Q1)) has no reducing subspace on which

it is irreducible.
Applying Lemma 4.4, we find that W ∗(T (m)

2 )′ = W ∗(T3)′ ⊕ W ∗(T4)′.
Thus Q1 commutes with every operator in W ∗(T (m)

2 )′, that is, Q1 is in
W ∗(T2

(m))′′ = W ∗(T (m)
2 ) by the von Neumann double commutant theorem.
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Therefore,Q1 is of the form S(m), where S is a nonzero projection inW ∗(T2),
and hence T3 = T

(m)
2 |(ranQ1) = (T2|(ranS))(m). Since T3 is the direct sum

of irreducible operators, the same is true for T2|(ranS) by Proposition 3.6.
This contradicts the fact that T2 has no reducing subspace on which it is
irreducible. Hence we must have Q = I(k). Thus T (k) is a direct sum of
irreducible operators. By Proposition 3.6, the same is true for T .

We end this paper by noting that Theorem 4.1 cannot be generalized to
arbitrary C∗-algebras, that is, a (unital) C∗-algebra A with V (A) isomor-
phic to N(k1)

+ ⊕ (N+ ∪ {∞})(k2), 0 ≤ k1, k2 ≤ ∞, may not be ∗-isomorphic
to
∑
i⊕Mni(C), where 1 ≤ ni ≤ ∞. An example of such a C∗-algebra is

A = {λI+K : λ ∈ C, K a compact operator on H}, where H is an infinite-
dimensional separable Hilbert space. It can be verified that V (A) is isomor-
phic to N+ ∪ {∞} (cf. [13, Examples 6.1.4]), but A is not ∗-isomorphic to
B(H) since their K0-groups are different (cf. [13, Examples 6.2.3]). Whether
there are examples of such von Neumann algebras seems to be unknown.
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