On the existence and uniqueness of solutions for an incomplete second-order abstract Cauchy problem

by

F. PERIAGO (Cartagena) and B. STRAUB (Sydney)

Abstract. We prove existence and uniqueness of classical solutions for an incomplete second-order abstract Cauchy problem associated with operators which have polynomially bounded resolvent. Some examples of differential operators to which our abstract result applies are also included.

1. Introduction. Let $(X, \|\cdot\|)$ be a complex Banach space and let $A: D(A) \subseteq X \to X$ be a closed linear operator. Consider the incomplete second-order abstract Cauchy problem

(ACP)
$$\begin{cases} u''(t) + Au(t) = 0 & \text{for } t > 0, \\ u(0) = u_0, \\ \sup_{t>0} ||u(t)|| < \infty. \end{cases}$$

This problem was studied by Balakrishnan in [2, Theorem 6.1] in the case that A is sectorial and densely defined (see also [1, Theorem 3.8.3] or [9, Theorem 6.3.2]). We recall that A is said to be ω -sectorial with $0 < \omega < \pi$ if the resolvent set $\varrho(A)$ of A contains a sector

 $S_{\omega} = \{\lambda \in \mathbb{C} \setminus \{0\} : |\arg \lambda| < \omega\}$

and if there exists a constant C > 0 such that

(1)
$$\|(\lambda - A)^{-1}\| \le C|\lambda|^{-1} \quad \text{for all } \lambda \in S_{\omega}.$$

Many important elliptic differential operators are sectorial, especially when they are considered in L^p -spaces (see, for instance, [8, Chapter 3]). However, (1) fails for the same elliptic operators when they are considered

²⁰⁰⁰ Mathematics Subject Classification: 34K30, 47D06, 47F05.

Key words and phrases: incomplete second-order abstract Cauchy problem, operators with polynomially bounded resolvent, fractional powers, differential operators, semigroups of growth order α .

The first author was partially supported by Fundación Séneca, project PI-53/00809/FS/01, and by Ministerio de Ciencia y Tecnología, project BFM2000-1427, Spain. The second author gratefully acknowledges the support of the Australian Research Council.

in a space $C^{\alpha}(\overline{\Omega})$, $0 < \alpha < 1$, of Hölder continuous functions, as shown in [8, Example 3.1.33] for the case of the Laplacian. For these operators we only have an estimate such as

(2)
$$\|(\lambda - A)^{-1}\| \le C |\lambda|^{\gamma}$$
 for all $\lambda \in S_{\omega}$ and some $-1 < \gamma < 0$.

More generally, we say that a closed linear operator A has polynomially bounded resolvent if $\rho(A)$ contains a sector S_{ω} for some $0 < \omega < \pi$, and there are constants C > 0 and $n \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$ such that

(3)
$$\|(\lambda - A)^{-1}\| \le C(1 + |\lambda|)^n \text{ for all } \lambda \in S_{\omega}.$$

It is not difficult to show that if $\rho(A)$ contains S_{ω} and A satisfies (2), then $0 \in \rho(A)$ and (3) holds for n = 0.

The aim of this paper is to prove existence and uniqueness of classical solutions for (ACP) when A is an operator with polynomially bounded resolvent, possibly with non-dense domain. In Section 2 we provide a result that relates an analytic semigroup of growth order α to analytic C_0 -semigroups on certain intermediate spaces. This is the key to the proof of our main theorem which is stated and proved in Section 3. Section 4 contains some examples of differential operators to which our abstract result can be applied.

Finally, we note that for initial values $x \in D(A^{n+1})$, the result of Theorem 3 can be deduced using the fractional powers of [7, Theorem 5.4] and the ideas developed in [5, Section 2] that are needed to prove [5, Remark 2.14]. However, we present here a direct method which enables us to prove the result for a set of initial data larger than $D(A^{n+1})$, as Example 1 shows. Note that the fractional powers of [7, Theorem 5.4] coincide with the operators C^b introduced in [15].

2. Analytic semigroups of growth order α . Semigroups of growth order α were introduced by G. Da Prato [3] in 1966 (see also [12, 14, 18]). It is well known that every semigroup of growth order α gives rise to a strongly continuous semigroup on an intermediate space. In this section we show that if the semigroup of growth order α is analytic, then the intermediate space can be chosen such that the corresponding C_0 -semigroup is analytic as well. We first recall the basic definition.

Let $\alpha > 0$. A family $(T(t))_{t>0}$ of bounded linear operators on X is said to be a *semigroup of growth order* α if it satisfies

- (A₁) T(t+s) = T(t) T(s) for all t, s > 0,
- (A₂) for every $x \in X$, the mapping $t \mapsto T(t)x$ is continuous on $]0, \infty[$,
- (A₃) $||t^{\alpha}T(t)||$ is bounded as $t \to 0$,
- (A₄) T(t)x = 0 for all t > 0 implies x = 0, and
- (A₅) $X_0 = \bigcup_{t>0} T(t)X$ is dense in X.

Note that for any such family $(T(t))_{t>0}$, the limit

$$\nu_0 = \lim_{t \to \infty} \frac{1}{t} \log \|T(t)\|$$

exists and belongs to $[-\infty, \infty)$. Hence, for every $\nu > \nu_0$, there exists $M_{\nu} \ge 1$ such that

(4)
$$||t^{\alpha}T(t)|| \le M_{\nu}e^{\nu t} \quad \text{for all } t > 0.$$

The infinitesimal generator A_0 of a semigroup $(T(t))_{t>0}$ of growth order α is defined as

$$A_0 x = \lim_{t \to 0} \frac{1}{t} (T(t)x - x)$$

with domain $D(A_0) = \{x \in X : \lim_{t\to 0} t^{-1}(T(t)x - x) \text{ exists}\}$. As noted in [12], the operator A_0 is closable. Its closure $A = \overline{A}_0$ is called the *complete infinitesimal generator* of $(T(t))_{t>0}$.

The continuity set of $(T(t))_{t>0}$ is the set

(5)
$$\Omega = \{ x \in X : T(t)x - x \to 0 \text{ as } t \to 0, \ t > 0 \}.$$

Clearly, X_0 is dense in Ω . Moreover, we have $D(A^{n+1}) \subseteq \Omega$, where n is the integer part of α (see [12, Lemma 3.3]).

Let $\nu > \nu_0$. Then by (4), for every $x \in \Omega$, the function $t \mapsto ||e^{-\nu t}T(t)x||$ is bounded on $[0, \infty[$. It is well known that

$$N(x) = \sup_{t>0} \|e^{-\nu t}T(t)x\| \quad \text{for all } x \in \Omega$$

defines a norm on Ω and that the space $(\Omega, N(\cdot))$ is a Banach space. Note that $N(x) \geq ||x||$ for all $x \in \Omega$. Hence, Ω is densely and continuously embedded into X.

Since the semigroup $T(\cdot)$ is strongly continuous on $]0, \infty[$, the operators T(t) with t > 0 leave Ω invariant. Therefore, we can consider the restriction of $(T(t))_{t>0}$ to Ω . We set

$$U(t) = T(t)|_{\Omega}$$
 for all $t > 0$

and $U(0) = I_{\Omega}$. By [10, Theorem 2.2], the operator family $(U(t))_{t\geq 0}$ forms a strongly continuous semigroup on Ω satisfying $N(U(t)x) \leq e^{\nu t} N(x)$ for all $t \geq 0$ and $x \in \Omega$. Moreover, its generator B is the part of A_0 in Ω , that is, $D(B) = \{x \in D(A_0) : A_0 x \in \Omega\}$ and $Bx = A_0 x$ for all $x \in D(B)$. As the next lemma shows, the operator B is also the part of A in Ω .

LEMMA 1. Let $x \in D(A)$ be such that $Ax \in \Omega$. Then $x \in D(A_0)$.

Proof. By [12, Lemma 3.1], the function $t \mapsto T(t)x$, t > 0, is differentiable with

$$\frac{d}{dt}T(t)x = A_0T(t)x = T(t)Ax \quad \text{for all } t > 0.$$

Since $Ax \in \Omega$, the derivative $\frac{d}{dt}T(\cdot)x$ is continuous on $[0, \infty]$. It follows that

$$\lim_{t \to 0} T(t)x = \lim_{t \to 0} \left(T(1)x - \int_{t}^{1} T(s)Ax \, ds \right) = T(1)x - \int_{0}^{1} T(s)Ax \, ds = y.$$

Since $T(t)y = \lim_{r\to 0} T(t) T(r)x = \lim_{r\to 0} T(t+r)x = T(t)x$ for all t > 0, property (A₄) yields y = x. Hence $x \in \Omega$ and

$$\lim_{t \to 0} \frac{1}{t} \left(T(t)x - x \right) = \lim_{t \to 0} \frac{1}{t} \int_{0}^{t} T(s) Ax \, ds = Ax.$$

In particular, $x \in D(A_0)$.

Following [16], if the semigroup $(T(t))_{t>0}$ of growth order α has an extension to a sector S_{δ} with $0 < \delta \leq \pi/2$ such that

 $(\mathbf{A}_1') \ T(t+s) = T(t) \ T(s) \text{ for all } t, s \in S_{\delta},$

 (A'_2) the mapping $t \mapsto T(t)$ is analytic on S_{δ} ,

(A'_3) for each $0 < \varepsilon < \delta$, there exist constants $M_{\varepsilon} \ge 1$ and $\nu \in \mathbb{R}$ such that

 $||t^{\alpha}T(t)|| \le M_{\varepsilon}e^{\nu\operatorname{Re} t} \quad \text{for all } t \in \overline{S}_{\delta-\varepsilon} \setminus \{0\},$

then the family $(T(t))_{t \in S_{\delta}}$ is called an analytic semigroup of growth order α .

Let $(T(t))_{t\in S_{\delta}}$ be an analytic semigroup of growth order α on X, with generator A_0 and complete infinitesimal generator $A = \overline{A}_0$. It follows from the above that there exists a Banach space that is densely and continuously embedded in X, on which A generates a strongly continuous semigroup. The aim of this section is to show that there exists a Banach space, also densely and continuously embedded in X, on which A generates a strongly continuous analytic semigroup.

The continuity set Ω of $(T(t))_{t\in S_{\delta}}$ is given by (5). Let $0 < \varepsilon \leq \delta$. We define the angular continuity set Ω_{ε} of $(T(t))_{t\in S_{\delta}}$ by

$$\Omega_{\varepsilon} = \{ x \in X : T(t)x - x \to 0 \text{ as } t \to 0, \ t \in \overline{S}^0_{\delta - \varepsilon} \},\$$

where $\overline{S}^0_{\delta-\varepsilon} = \overline{S}_{\delta-\varepsilon} \setminus \{0\}$ and $\overline{S}^0_0 =]0, \infty[$. In particular, $\Omega_{\delta} = \Omega$. By (A'_2) and the definition of the sets Ω_{ε} , it is clear that

$$X_0 \subseteq \Omega_{\varepsilon_1} \subseteq \Omega_{\varepsilon_2} \subseteq \Omega \subseteq X \quad \text{ for all } 0 < \varepsilon_1 < \varepsilon_2 < \delta.$$

Let $0 < \varepsilon \leq \delta$ and $\nu > 0$ be as in property (A'_3). Given $x \in \Omega_{\varepsilon}$, we have

$$N_{\varepsilon}(x) = \sup_{t \in \overline{S}^{0}_{\delta - \varepsilon}} \|e^{-\nu t} T(t) x\| < \infty$$

This follows from the fact that $T(t)x \to x$ as $t \to 0$, together with the estimate (A'_3). It is not difficult to see that the mapping $x \mapsto N_{\varepsilon}(x)$ defines a norm on Ω_{ε} and that the space $(\Omega_{\varepsilon}, N_{\varepsilon}(\cdot))$ is a Banach space. Note that

if $0 < \varepsilon_1 < \varepsilon_2 \le \delta$, then $N_{\varepsilon_1}(x) \ge N_{\varepsilon_2}(x) \ge ||x||$ for all $x \in \Omega_{\varepsilon_1}$. Hence, Ω_{ε_1} is continuously embedded in Ω_{ε_2} as well as in X.

Fix $0 < \varepsilon < \delta$. Since the semigroup $T(\cdot)$ is strongly continuous on $\overline{S}^0_{\delta-\varepsilon}$, the operator T(t) with $t \in \overline{S}^0_{\delta-\varepsilon}$ leaves Ω_{ε} invariant. Hence, we can consider the restriction of T(t) to Ω_{ε} . We set

$$U_{\varepsilon}(t) = T(t)|_{\Omega_{\varepsilon}}$$
 for all $t \in \overline{S}^0_{\delta - \varepsilon}$, $U_{\varepsilon}(0) = I|_{\Omega_{\varepsilon}}$.

PROPOSITION 2. The operator family $\{U_{\varepsilon}(t) : t \in \overline{S}_{\delta-\varepsilon}\}$ forms an analytic C_0 -semigroup on Ω_{ε} satisfying $N_{\varepsilon}(U_{\varepsilon}(t)) \leq e^{\nu \operatorname{Re} t}$ for all $t \in \overline{S}_{\delta-\varepsilon}$. Its generator is the part of A in Ω_{ε} .

Proof. Clearly, the operators $U_{\varepsilon}(t)$ with $t \in \overline{S}_{\delta-\varepsilon}$ are linear operators on Ω_{ε} with

$$N_{\varepsilon}(U_{\varepsilon}(t)x) = \sup_{s \in \overline{S}^{0}_{\delta-\varepsilon}} \|e^{-\nu s}T(s)T(t)x\| = \sup_{s \in \overline{S}^{0}_{\delta-\varepsilon}} \|e^{\nu t}e^{-\nu(s+t)}T(s+t)x\|$$
$$\leq e^{\nu \operatorname{Re} t} \sup_{s \in t + \overline{S}^{0}_{\delta-\varepsilon}} \|e^{-\nu s}T(s)x\| \leq e^{\nu \operatorname{Re} t}N_{\varepsilon}(x)$$

for all $x \in \Omega_{\varepsilon}$.

The definition implies that the family $U_{\varepsilon}(\cdot)$ has the semigroup property $U_{\varepsilon}(t+s) = U_{\varepsilon}(t)U_{\varepsilon}(s)$ for all $t, s \in \overline{S}_{\delta-\varepsilon}$.

Let $x \in \Omega_{\varepsilon}$. From (A'_3) it follows that the function $t \mapsto e^{-\nu t}T(t)x$ is uniformly $\|\cdot\|$ -continuous on $\overline{S}_{\delta-\varepsilon}$. Hence

$$N_{\varepsilon}(U_{\varepsilon}(t)x - x) = \sup_{s \in \overline{S}^0_{\delta - \varepsilon}} \|e^{-\nu s}T(s)(T(t)x - x)\|$$

$$= \sup_{s \in \overline{S}^0_{\delta - \varepsilon}} \|e^{-\nu(s+t)}T(s+t)x - e^{-\nu s}T(s)x + (e^{\nu t} - 1)e^{-\nu(s+t)}T(s+t)x\|$$

$$\leq \sup_{s \in \overline{S}^0_{\delta - \varepsilon}} \|e^{-\nu(s+t)}T(s+t)x - e^{-\nu s}T(s)x\| + |e^{\nu t} - 1|N_{\varepsilon}(x) \to 0$$

as $t \to 0, t \in \overline{S}^0_{\delta-\varepsilon}$. This means that $U_{\varepsilon}(\cdot)$ is strongly continuous on $\overline{S}_{\delta-\varepsilon}$.

Take $\theta \in (-(\delta - \varepsilon), \delta - \varepsilon)$. By the above, the operator family $(U_{\varepsilon}(e^{i\theta}t))_{t\geq 0}$ forms a strongly continuous semigroup on Ω_{ε} . We show next that its generator B_{θ} is the part of $e^{i\theta}A$ in Ω_{ε} , that is, B_{θ} is given by $B_{\theta}x = e^{i\theta}Ax$ for all $x \in D(B_{\theta}) = \{x \in D(A) : Ax \in \Omega_{\varepsilon}\}.$

First, recall that $||x|| \leq N_{\varepsilon}(x)$ for all $x \in \Omega_{\varepsilon}$. Hence, if $x \in D(B_{\theta})$ then

$$\left\|\frac{1}{t}\left(T(e^{i\theta}t)x - x\right) - B_{\theta}x\right\| \le N_{\varepsilon}\left(\frac{1}{t}\left(U_{\varepsilon}(e^{i\theta}t)x - x\right) - B_{\theta}x\right) \to 0$$

as $t \to 0$. Since by [19, Theorem 1], $(T(e^{i\theta}t))_{t>0}$ is a semigroup of growth order α whose complete infinitesimal generator is $e^{i\theta}A$, this shows that $x \in D(A)$ and $B_{\theta}x = e^{i\theta}Ax$. Hence, B_{θ} is contained in the part of $e^{i\theta}A$ in Ω_{ε} . Conversely, let $x \in D(A)$ be such that $Ax \in \Omega_{\varepsilon}$. As Ω_{ε} is contained in the continuity set of the semigroup $(T(e^{i\theta}t))_{t>0}$ of growth order α , it follows by [19, Theorem 1] and Lemma 1 that $||t^{-1}(T(e^{i\theta}t)x - x) - e^{i\theta}Ax|| \to 0$ as $t \to 0$. Since $Ax \in \Omega_{\varepsilon}$, [12, Lemma 3.1] shows that the function $t \mapsto T(e^{i\theta}t)x$ is continuously differentiable in $[0, \infty[$ with $\frac{d}{dt}T(e^{i\theta}t)x = e^{i\theta}T(e^{i\theta}t)Ax$ for all $t \ge 0$. Here, we set $T(0) = I_X$. This gives $T(e^{i\theta}t)x - x = \int_0^t e^{i\theta}T(e^{i\theta}r)Ax dr$ for all $t \ge 0$. Then

$$\begin{split} N_{\varepsilon} &\left(\frac{1}{t} \left(U_{\varepsilon}(e^{i\theta}t)x - x\right) - e^{i\theta}Ax\right) \\ &= \sup_{s \in \overline{S}_{\delta-\varepsilon}^{0}} \left\| e^{-\nu s}T(s) \left[\frac{1}{t} \left(T(e^{i\theta}t)x - x\right) - e^{i\theta}Ax\right)\right] \right\| \\ &= \sup_{s \in \overline{S}_{\delta-\varepsilon}^{0}} \left\|\frac{1}{t} \int_{0}^{t} e^{-\nu s} e^{i\theta}T(s + e^{i\theta}r)Ax \, dr - \frac{1}{t} \int_{0}^{t} e^{-\nu s} e^{i\theta}T(s)Ax \, dr \right\| \\ &\leq \sup_{s \in \overline{S}_{\delta-\varepsilon}^{0}} \frac{1}{t} \int_{0}^{t} \left\| e^{-\nu(s + e^{i\theta}r)}T(s + e^{i\theta}r)Ax - e^{-\nu s}T(s)Ax) \right\| dr \\ &+ \sup_{s \in \overline{S}_{\delta-\varepsilon}^{0}} \frac{1}{t} \int_{0}^{t} \left| e^{\nu e^{i\theta}r} - 1 \right| \left\| e^{-\nu(s + e^{i\theta}r)}T(s + e^{i\theta}r)Ax \right\| dr \\ &\leq \sup_{\substack{s, r \in \overline{S}_{\delta-\varepsilon}^{0}}} \left\| e^{-\nu s}T(s)Ax - e^{-\nu r}T(r)Ax \right\| + \sup_{0 \le r \le t} \left| e^{\nu e^{i\theta}r} - 1 \right| N_{\varepsilon}(Ax) \to 0 \end{split}$$

as $t \to 0$ because the function $s \mapsto e^{-\nu s}T(s)Ax$ is uniformly $\|\cdot\|$ -continuous in $\overline{S}_{\delta-\varepsilon}$ and the function $s \mapsto e^{\nu e^{i\theta}s}$ is uniformly continuous on any compact interval $[0, \tau]$. Hence, $x \in D(B_{\theta})$ and $B_{\theta}x = e^{i\theta}Ax$.

We have shown that for every $\theta \in (-(\delta - \varepsilon), \delta - \varepsilon)$, the operator $e^{i\theta}A|_{\Omega_{\varepsilon}}$ with domain $D(e^{i\theta}A|_{\Omega_{\varepsilon}}) = \{x \in D(A) : Ax \in \Omega_{\varepsilon}\}$ is the generator of the C_0 -semigroup $(U_{\varepsilon}(e^{i\theta}t))_{t\geq 0}$ on Ω_{ε} . But this means that the operator $A|_{\Omega_{\varepsilon}}$ with domain $D(A|_{\Omega_{\varepsilon}}) = \{x \in D(A) : Ax \in \Omega_{\varepsilon}\}$ is the generator of an analytic C_0 -semigroup on Ω_{ε} . This semigroup is given by $(U_{\varepsilon}(t))_{t\in\overline{S}_{\delta-\varepsilon}}$.

We note that the strong continuity of the semigroups $(U_{\varepsilon}(t))_{t\in\overline{S}_{\delta-\varepsilon}}$ implies that the spaces Ω_{ε} are in fact densely and continuously embedded in each other with increasing ε and in X, since $\bigcup_{t>0} U_{\varepsilon}(t)\Omega_{\varepsilon} \subseteq X_0 \subseteq \Omega_{\varepsilon}$ and $\bigcup_{t>0} U_{\varepsilon}(t)\Omega_{\varepsilon}$ is $N_{\varepsilon}(\cdot)$ -dense in Ω_{ε} .

3. Existence and uniqueness of solutions. Suppose A is a densely defined, closed linear operator on the complex Banach space X, satisfying (3) for some $0 < \omega < \pi/2$, $C \ge 1$ and n > -1. Note that we explicitly assume

 $\omega < \pi/2$, that is, we do not require that $\varrho(A)$ contains a half plane. A straightforward argument using the power series expansion of the resolvent $(\lambda - A)^{-1}$ of A in $\lambda \in S_{\omega}$ shows that there exists a ball B_d of radius d centred at zero such that $B_d \subseteq \varrho(A)$ and

$$\|(\lambda - A)^{-1}\| \le C(1 + |\lambda|)^n \quad \text{for all } \lambda \in B_d \cup S_\omega.$$

Hence, we can define fractional powers $(-A)^b$ with $b \in \mathbb{C}$, as in [15].

Let $0 < b < \pi/(2(\pi - \omega))$ and put $\rho = \pi/2 - b(\pi - \omega)$. By [15, Proposition 2.12], the fractional power $-(-A)^b$ is the complete infinitesimal generator of an analytic semigroup $\{T_b(t) : t \in S_{\rho}\}$ of growth order (n+1)/b. More precisely, $T_b(\cdot)$ is a family of bounded linear operators on X satisfying

- (i) $T_b(t+s) = T_b(t) T_b(s)$ for all $t, s \in S_{\varrho}$,
- (ii) the mapping $t \mapsto T_b(t)$ is analytic in the sector S_{ρ} ,
- (iii) the operators $T_b(t)$ with $t \in S_\rho$ are injective,
- (iv) there exists $C_b > 0$ such that for every $t \in S_{\varrho}$,

(6)
$$||T_b(t)|| \le C_b(\operatorname{Re} t - |\operatorname{Im} t| \tan(b(\pi - \omega)))^{-(n+1)/b},$$

(v) the set $X_b = \bigcup_{t>0} T_b(t)X$ is dense in X.

We write $\Omega_b(A)$ and $\Omega_{b,\varepsilon}(A)$ with $0 < \varepsilon \leq \varrho$ to denote the continuity set and the angular continuity sets of $T_b(\cdot)$, respectively. In the applications, the continuity sets play a very important role so that it is interesting to obtain lower and upper bounds for these sets. In addition to the inclusions given in Section 2, we have

$$D(A^{n+1}) \subseteq \Omega_{b,\varepsilon}(A) \quad \text{ for all } 0 < \varepsilon \le \varrho.$$

This follows from the fact that the holomorphic $(-A)^{-(n+1)}$ -regularised semigroup $(W_b(t))_{t\in S_{\varrho}}$ generated by $-(-A)^{n+1}(-A)^b(-A)^{-(n+1)}$ (see [7, Theorem 5.4 and Proposition 5.3]) is given by $W_b(t) = T_b(t)(-A)^{-(n+1)}$ for all $t \in S_{\varrho}$, and $W_b(0) = (-A)^{-(n+1)}$. By [6, Definition 21.3], for every $0 < \varepsilon < \varrho$, $W_b(\cdot)$ is strongly continuous on $\overline{S}_{\varrho-\varepsilon}$. Hence $D(A^{n+1}) \subseteq \Omega_{b,\varepsilon}(A)$.

Let $0 < \varepsilon \leq \varrho$. From the estimate (6), it follows that

(7)
$$||T_b(t)x|| \le C_b \left(\frac{\cos(b(\pi-\omega))}{\cos(\pi/2-\varepsilon)}\right)^{(n+1)/b} ||t|^{-(n+1)/b} ||x||$$
 for all $t \in \overline{S}^0_{\varrho-\varepsilon}$.

Hence we may choose $\nu = 0$ and obtain $N_{b,\varepsilon}(x) = \sup_{t \in \overline{S}_{\varrho-\varepsilon}^0} ||T_b(t)x||$ as the norm on $\Omega_{b,\varepsilon}(A)$.

By $U_{b,\varepsilon}(\cdot)$ we denote the analytic C_0 -semigroup of contractions on $\Omega_{b,\varepsilon}(A)$ as given by Proposition 2. That is, $U_{b,\varepsilon}(t) = T_b(t)|_{\Omega_{b,\varepsilon}(A)}$ for all $t \in \overline{S}^0_{\varrho-\varepsilon}$, and $U_{b,\varepsilon}(0) = I_{\Omega_{b,\varepsilon}(A)}$.

If the operator A is non-densely defined and satisfies (2), then we consider the part A_D of A in the Banach space $(X_D = \overline{D(A)}, \|\cdot\|)$, that is, the operator $A_D: D(A_D) \subseteq X_D \to X_D$ with domain $D(A_D) = \{x \in D(A) : Ax \in X_D\}$, defined as $A_D x = Ax$ for $x \in D(A_D)$. The operator A_D is densely defined and satisfies (3) with n = 0. Hence, we can construct fractional powers of A_D and the semigroups generated by them. We denote by $\Omega_b(A_D)$ and $\Omega_{b,\varepsilon}(A_D)$ the associated continuity sets.

We now turn our attention to (ACP) for the operator A above. By a solution of (ACP) we mean a $\|\cdot\|$ -bounded function $u \in C^2(]0, \infty[;X) \cap C(]0, \infty[;D(A))$ such that u''(t) + Au(t) = 0 for all t > 0, and $\lim_{t\to 0} u(t) = u_0$.

Our main result reads as follows.

THEOREM 3. (i) If A is densely defined and satisfies (3), then (ACP) has a unique solution for all $u_0 \in \Omega_{1/2}(A)$.

(ii) If A is non-densely defined and satisfies (2), then (ACP) has a unique solution for all $u_0 \in \Omega_{1/2}(A_D)$.

Proof. (i) From [15, Lemma 1.4], it follows that $(-A)^{1/2}(-A)^{1/2}x = -Ax$ for all $x \in D(A^{2n+4})$. By [15, Lemma 2.10], $\bigcup_{t>0} T_{1/2}(t)X \subseteq D(A^{\infty})$. Hence, the function $u(t) = T_{1/2}(t)u_0$ is a solution of (ACP).

Assume that there is another solution v of (ACP). Since $0 \in \rho(A)$, the operator $(-A)^{-(n+2)}$ is bounded. Hence, we may consider the function ψ given by $\psi(t) = (-A)^{-(n+2)}v(t)$ for all t > 0, and the vector $\psi_0 = (-A)^{-(n+2)}u_0$. Clearly ψ is a solution of (ACP) for the initial value ψ_0 . Moreover, ψ is a solution of the corresponding abstract Cauchy problem in the Banach space $(D(A^{n+2}), \|\cdot\|_{n+2})$, where $\|\cdot\|_{n+2}$ stands for the graph norm $\|x\|_{n+2} = \|x\| + \|A^{n+2}x\|$ for all $x \in D(A^{n+2})$.

As mentioned above, we have the inclusion $D(A^{n+2}) \subseteq \Omega_{1/2,\varepsilon}$. Since the Banach spaces $D(A^{n+2})$ and $\Omega_{1/2,\varepsilon}$ are both continuously embedded in X, it follows by the Closed Graph Theorem that this inclusion is continuous. Hence, ψ is a solution of the abstract Cauchy problem considered in the Banach space $(\Omega_{1/2,\varepsilon}, N_{1/2,\varepsilon}(\cdot))$. Moreover, by Proposition 2, the part of Ain $\Omega_{1/2,\varepsilon}$ is a sectorial operator. Therefore we may apply Balakrishnan's Theorem [2, Theorem 6.1] on sectorial operators to conclude that

$$\psi(t) = U_{1/2,\varepsilon}(t)\psi_0 = (-A)^{-(n+2)}T_{1/2}(t)u_0$$
 for all $t > 0$.

Since the operator $(-A)^{-(n+2)}$ is injective, this means v = u.

(ii) In the Banach space $X_D = \overline{D(A)}$, consider the problem

(ACP_D)
$$\begin{cases} u''(t) + A_D u(t) = 0 & \text{for } t > 0, \\ u(0) = u_0, \\ \sup_{t>0} ||u(t)|| < \infty. \end{cases}$$

By (i), the function $u_D(t) = T_{1/2}^D(t)u_0$ is the unique solution of (ACP_D). Here

 $T_{1/2}^D(\cdot)$ denotes the semigroup associated with $-(-A_D)^{1/2}$. Clearly u_D is also a solution of (ACP). Let $v: [0, \infty[\to D(A)$ be another solution of (ACP). Since $v(t) \in D(A)$ for all t > 0, it follows that $v'(t) = \lim_{h\to 0} t^{-1}(v(t+h) - v(t)) \in X_D$ for all t > 0 and, similarly, that $v''(t) \in X_D$ for all t > 0. As $v(\cdot)$ solves (ACP), this implies $v(t) \in D(A_D)$ for all t > 0, and therefore v is a solution of (ACP_D). Hence, $v = u_D$.

REMARK 1. As mentioned in the introduction, Theorem 3 with initial datum $u_0 \in D(A^{n+1})$ can be deduced from Theorem 5.4 of [7] and the ideas needed in the proof of Remark 2.14 of [5]. However, $D(A^{n+1})$ is, in general, strictly contained in $\Omega_{1/2}(A)$ as the following example shows.

EXAMPLE 1. Let $(X_1, \|\cdot\|_1)$ and $(X_2, \|\cdot\|_2)$ be complex Banach spaces. Suppose A_1 is an operator in X_1 with polynomially bounded resolvent and such that $-(-A_1)^{1/2}$ is the complete generator of an analytic semigroup of growth order α for some $\alpha > 0$. Denote by $T_1(\cdot)$ this semigroup associated with $-(-A_1)^{1/2}$. Let A_2 be an unbounded, densely defined, sectorial operator in X_2 such that $0 \in \varrho(A_2)$. Then the fractional power $-(-A_2)^{1/2}$ is the generator of an equibounded analytic C_0 -semigroup, say $T_2(\cdot)$. Consider the Banach space $X = X_1 \times X_2$ endowed with the norm

 $||x|| = \max\{||x_1||_1, ||x_2||_2\}$ for all $x = (x_1, x_2) \in X$

and the operator A in X with domain $D(A) = D(A_1) \times D(A_2)$ and defined by

$$A(x_1, x_2) = (A_1x_1, A_2x_2)$$
 for all $(x_1, x_2) \in D(A)$.

Then -A is an operator with polynomially bounded resolvent and $-(-A)^{1/2}$ is the complete infinitesimal generator of the analytic semigroup $T(\cdot) = T_1(\cdot) \times T_2(\cdot)$ of growth order α . Since the continuity set of $T_2(\cdot)$ is equal to X_2 and A_2 is unbounded, the continuity set of $T(\cdot)$ strictly contains $D(A^k)$ for all $k \geq 1$.

4. Applications to partial differential equations. In this section, we give a few concrete examples of differential operators which satisfy (2) or (3) and, consequently, to which Theorem 3 can be applied.

Let $0 < \alpha < 1$, $m \in \mathbb{N}$, and Ω be a bounded domain in \mathbb{R}^n with smooth boundary. In the space $C^{\alpha}(\overline{\Omega})$ of Hölder continuous functions consider the operator $B: D(B) \subseteq C^{\alpha}(\overline{\Omega}) \to C^{\alpha}(\overline{\Omega})$ given by

$$Bu(x) = \sum_{|\beta| \le 2m} a_{\beta}(x) D^{\beta}u(x) \quad \text{for all } x \in \overline{\Omega},$$

with domain $D(B) = \{ u \in C^{2m+\alpha}(\overline{\Omega}) : D^{\beta}u|_{\partial\Omega} = 0 \text{ for all } |\beta| \le m-1 \}.$ Here, β is a multiindex in $(\mathbb{N} \cup \{0\})^n$, $|\beta| = \sum_{j=1}^n \beta_j$ and $D^{\beta} = \prod_{j=1}^n \left(\frac{1}{i} \frac{\partial}{\partial x_j}\right)^{\beta_j}.$ We assume that the coefficients $a_{\beta} : \overline{\Omega} \to \mathbb{C}$ of B satisfy the following conditions:

(a) $a_{\beta}(x) \in \mathbb{R}$ for all $x \in \overline{\Omega}$ and $|\beta| = 2m$, (b) $a_{\beta} \in C^{\alpha}(\overline{\Omega})$ for all $|\beta| \leq 2m$, and (c) there is a constant M > 0 such that

$$M^{-1}|\xi|^{2m} \le \sum_{|\beta|=2m} a_{\beta}(x)\xi^{\beta} \le M|\xi|^{2m} \quad \text{for all } \xi \in \mathbb{R}^n \text{ and } x \in \overline{\Omega}.$$

In [17, Satz 1] it is proved that for $\sigma > 0$ sufficiently large, the operator $A = -(B + \sigma)$ satisfies (2) with $\gamma = \alpha/(2m) - 1$ and $\pi/2 < \omega < \pi$. Note that A is not densely defined since $D(A) = D(B) \subseteq C_0^{\alpha}(\overline{\Omega}) = \{u \in C^{\alpha}(\overline{\Omega}) : u|_{\partial\Omega} = 0\}$. So, Theorem 3(ii) applies to A.

As -A satisfies the conditions of [13], we can also construct fractional powers and the semigroups generated by them as given there. It is not difficult to see that $\Omega_{1/2}(A_D)$ coincides with the set $\Omega_{1/2}(-A)$ of [13]. Moreover, we have the following upper and lower bounds for $\Omega_{1/2}(-A)$. By [13, Theorem 3.9(iii) and (vii)],

$$D((-A)^b) \subseteq \Omega_{1/2}(-A) \subseteq X_D$$
 for all $b > 1 + \gamma = \frac{\alpha}{2m}$,

and setting $C_{0,0}^{1+\alpha}(\overline{\Omega}) = \{ u \in C^{1+\alpha}(\overline{\Omega}) : D^{\beta}u|_{\partial\Omega} = 0 \text{ for all } |\beta| \leq 1 \}$, by [4, Satz 3.3 a)], we have

$$C_{0,0}^{1+\alpha}(\overline{\Omega}) \subseteq D((-A)^b)$$
 for all $\frac{\alpha}{2m} < b < \frac{1}{2m}$.

Note that for $b > \alpha/(2m)$, the fractional powers $(-A)^b$ defined in [13] coincide with the ones introduced in [4] and [17]. Hence, since $X_D \subseteq C_0^{\alpha}(\overline{\Omega})$, we have

$$C_{0,0}^{1+\alpha}(\overline{\Omega}) \subseteq \Omega_{1/2}(-A) \subseteq C_0^{\alpha}(\overline{\Omega}).$$

As a class of operators with polynomially bounded resolvent we mention the generators of integrated semigroups. Let $\alpha \geq 0$. If A is the densely defined generator of an α -times integrated semigroup $S^{\alpha}(\cdot)$ satisfying $||S^{\alpha}(t)|| \leq Mt^{\beta}e^{\omega t}$ for some constants $M \geq 1$, $\omega \geq 0$, $\beta \geq 0$, and all $t \geq 0$, then it can be proved (see [11]) that for all $\sigma > 0$ the operator $A - \omega - \sigma$ satisfies (3), in general with $0 < \omega \leq \pi/2$. Concrete examples of differential operators that are generators of integrated semigroups can be found in [1, Chapter 8].

References

- W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser, 2001.
- [2] A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10 (1960), 419–437.

- [3] G. Da Prato, Semigruppi di crescenza n, Ann. Scuola Norm. Sup. Pisa 20 (1966), 753–782.
- H. Kielhöfer, Existenz und Regularität von Lösungen semilinearer parabolischer Anfangs-Randwertprobleme, Math. Z. 142 (1975), 131–160.
- [5] R. deLaubenfels, Incomplete iterated Cauchy problems, J. Math. Anal. Appl. 168 (1992), 552–579.
- [6] —, Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Math. 1570, Springer, Berlin, 1994.
- [7] R. deLaubenfels, F. Yao and S. Wang, Fractional powers of operators of regularized type, J. Math. Anal. Appl. 199 (1996), 910–930.
- [8] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.
- C. Martínez and M. Sanz, The Theory of Fractional Powers of Operators, North-Holland Math. Stud. 187, Elsevier, Amsterdam, 2001.
- [10] I. Miyadera, S. Ohary and N. Okazawa, Generation theorems of semi-groups of linear operators, Publ. RIMS Kyoto Univ. 8 (1972/73), 509–555.
- [11] J. M. A. M. van Neerven and B. Straub, On the existence and growth of mild solutions of the abstract Cauchy problem for operators with polynomially bounded resolvent, Houston J. Math. 24 (1998), 137–171.
- [12] N. Okazawa, A generation theorem for semigroups of growth order α, Tôhoku Math. J. 26 (1974), 39–51.
- [13] F. Periago and B. Straub, A functional calculus for almost sectorial operators and applications to abstract evolution equations, J. Evol. Equ. 2 (2002), 41–68.
- [14] P. E. Sobolevskii, On semigroups of growth α , Soviet Math. Dokl. 12 (1971), 202–205.
- [15] B. Straub, Fractional powers of operators with polynomially bounded resolvent and the semigroups generated by them, Hiroshima Math. J. 24 (1994), 529–548.
- [16] N. Tanaka, Holomorphic C-semigroups and holomorphic semigroups, Semigroup Forum 38 (1989), 253–261.
- [17] W. von Wahl, Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 11 (1972), 231–258.
- [18] A. V. Zafievskii, On semigroups with singularities summable with a power-weight at zero, Soviet Math. Dokl. 11 (1970), 1408–1411.
- [19] X. W. Zhang, Characteristic conditions for the complete infinitesimal generators of analytic semigroups of growth order α, Acta Math. Sci. Ser. B Engl. Ed. 20 (2000), 97–103.

Departamento de Matemática Aplicada y Estadística School of Mathematics Universidad Politécnica de Cartagena C/ Paseo Alfonso XIII 30203 Cartagena, Spain E-mail: f.periago@upct.es

Received September 3, 2002

(5019)