On the existence and uniqueness of solutions for an incomplete second-order abstract Cauchy problem

by
F. Periago (Cartagena) and B. Straub (Sydney)

Abstract

We prove existence and uniqueness of classical solutions for an incomplete second-order abstract Cauchy problem associated with operators which have polynomially bounded resolvent. Some examples of differential operators to which our abstract result applies are also included.

1. Introduction. Let $(X,\|\cdot\|)$ be a complex Banach space and let $A: D(A) \subseteq X \rightarrow X$ be a closed linear operator. Consider the incomplete second-order abstract Cauchy problem

$$
(\mathrm{ACP})\left\{\begin{array}{l}
u^{\prime \prime}(t)+A u(t)=0 \quad \text { for } t>0 \\
u(0)=u_{0} \\
\sup _{t>0}\|u(t)\|<\infty
\end{array}\right.
$$

This problem was studied by Balakrishnan in [2, Theorem 6.1] in the case that A is sectorial and densely defined (see also [1, Theorem 3.8.3] or [9, Theorem 6.3.2]). We recall that A is said to be ω-sectorial with $0<\omega<\pi$ if the resolvent set $\varrho(A)$ of A contains a sector

$$
S_{\omega}=\{\lambda \in \mathbb{C} \backslash\{0\}:|\arg \lambda|<\omega\}
$$

and if there exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|(\lambda-A)^{-1}\right\| \leq C|\lambda|^{-1} \quad \text { for all } \lambda \in S_{\omega} \tag{1}
\end{equation*}
$$

Many important elliptic differential operators are sectorial, especially when they are considered in L^{p}-spaces (see, for instance, [8, Chapter 3]). However, (1) fails for the same elliptic operators when they are considered

[^0]in a space $C^{\alpha}(\bar{\Omega}), 0<\alpha<1$, of Hölder continuous functions, as shown in [8, Example 3.1.33] for the case of the Laplacian. For these operators we only have an estimate such as
\[

$$
\begin{equation*}
\left\|(\lambda-A)^{-1}\right\| \leq C|\lambda|^{\gamma} \quad \text { for all } \lambda \in S_{\omega} \text { and some }-1<\gamma<0 \tag{2}
\end{equation*}
$$

\]

More generally, we say that a closed linear operator A has polynomially bounded resolvent if $\varrho(A)$ contains a sector S_{ω} for some $0<\omega<\pi$, and there are constants $C>0$ and $n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$ such that

$$
\begin{equation*}
\left\|(\lambda-A)^{-1}\right\| \leq C(1+|\lambda|)^{n} \quad \text { for all } \lambda \in S_{\omega} \tag{3}
\end{equation*}
$$

It is not difficult to show that if $\varrho(A)$ contains S_{ω} and A satisfies (2), then $0 \in \varrho(A)$ and (3) holds for $n=0$.

The aim of this paper is to prove existence and uniqueness of classical solutions for (ACP) when A is an operator with polynomially bounded resolvent, possibly with non-dense domain. In Section 2 we provide a result that relates an analytic semigroup of growth order α to analytic C_{0}-semigroups on certain intermediate spaces. This is the key to the proof of our main theorem which is stated and proved in Section 3. Section 4 contains some examples of differential operators to which our abstract result can be applied.

Finally, we note that for initial values $x \in D\left(A^{n+1}\right)$, the result of Theorem 3 can be deduced using the fractional powers of [7, Theorem 5.4] and the ideas developed in [5, Section 2] that are needed to prove [5, Remark 2.14]. However, we present here a direct method which enables us to prove the result for a set of initial data larger than $D\left(A^{n+1}\right)$, as Example 1 shows. Note that the fractional powers of [7, Theorem 5.4] coincide with the operators C^{b} introduced in [15].
2. Analytic semigroups of growth order α. Semigroups of growth order α were introduced by G. Da Prato [3] in 1966 (see also [12, 14, 18]). It is well known that every semigroup of growth order α gives rise to a strongly continuous semigroup on an intermediate space. In this section we show that if the semigroup of growth order α is analytic, then the intermediate space can be chosen such that the corresponding C_{0}-semigroup is analytic as well. We first recall the basic definition.

Let $\alpha>0$. A family $(T(t))_{t>0}$ of bounded linear operators on X is said to be a semigroup of growth order α if it satisfies
$\left(\mathrm{A}_{1}\right) T(t+s)=T(t) T(s)$ for all $t, s>0$,
$\left(\mathrm{A}_{2}\right)$ for every $x \in X$, the mapping $t \mapsto T(t) x$ is continuous on $] 0, \infty[$,
$\left(\mathrm{A}_{3}\right)\left\|t^{\alpha} T(t)\right\|$ is bounded as $t \rightarrow 0$,
$\left(\mathrm{A}_{4}\right) T(t) x=0$ for all $t>0$ implies $x=0$, and
$\left(\mathrm{A}_{5}\right) X_{0}=\bigcup_{t>0} T(t) X$ is dense in X.

Note that for any such family $(T(t))_{t>0}$, the limit

$$
\nu_{0}=\lim _{t \rightarrow \infty} \frac{1}{t} \log \|T(t)\|
$$

exists and belongs to $[-\infty, \infty)$. Hence, for every $\nu>\nu_{0}$, there exists $M_{\nu} \geq 1$ such that

$$
\begin{equation*}
\left\|t^{\alpha} T(t)\right\| \leq M_{\nu} e^{\nu t} \quad \text { for all } t>0 \tag{4}
\end{equation*}
$$

The infinitesimal generator A_{0} of a semigroup $(T(t))_{t>0}$ of growth order α is defined as

$$
A_{0} x=\lim _{t \rightarrow 0} \frac{1}{t}(T(t) x-x)
$$

with domain $D\left(A_{0}\right)=\left\{x \in X: \lim _{t \rightarrow 0} t^{-1}(T(t) x-x)\right.$ exists $\}$. As noted in [12], the operator A_{0} is closable. Its closure $A=\bar{A}_{0}$ is called the complete infinitesimal generator of $(T(t))_{t>0}$.

The continuity set of $(T(t))_{t>0}$ is the set

$$
\begin{equation*}
\Omega=\{x \in X: T(t) x-x \rightarrow 0 \text { as } t \rightarrow 0, t>0\} \tag{5}
\end{equation*}
$$

Clearly, X_{0} is dense in Ω. Moreover, we have $D\left(A^{n+1}\right) \subseteq \Omega$, where n is the integer part of α (see [12, Lemma 3.3]).

Let $\nu>\nu_{0}$. Then by (4), for every $x \in \Omega$, the function $t \mapsto\left\|e^{-\nu t} T(t) x\right\|$ is bounded on $[0, \infty[$. It is well known that

$$
N(x)=\sup _{t>0}\left\|e^{-\nu t} T(t) x\right\| \quad \text { for all } x \in \Omega
$$

defines a norm on Ω and that the space $(\Omega, N(\cdot))$ is a Banach space. Note that $N(x) \geq\|x\|$ for all $x \in \Omega$. Hence, Ω is densely and continuously embedded into X.

Since the semigroup $T(\cdot)$ is strongly continuous on $] 0, \infty[$, the operators $T(t)$ with $t>0$ leave Ω invariant. Therefore, we can consider the restriction of $(T(t))_{t>0}$ to Ω. We set

$$
U(t)=\left.T(t)\right|_{\Omega} \quad \text { for all } t>0
$$

and $U(0)=I_{\Omega}$. By [10, Theorem 2.2], the operator family $(U(t))_{t \geq 0}$ forms a strongly continuous semigroup on Ω satisfying $N(U(t) x) \leq e^{\nu t} \bar{N}(x)$ for all $t \geq 0$ and $x \in \Omega$. Moreover, its generator B is the part of A_{0} in Ω, that is, $D(B)=\left\{x \in D\left(A_{0}\right): A_{0} x \in \Omega\right\}$ and $B x=A_{0} x$ for all $x \in D(B)$. As the next lemma shows, the operator B is also the part of A in Ω.

Lemma 1. Let $x \in D(A)$ be such that $A x \in \Omega$. Then $x \in D\left(A_{0}\right)$.
Proof. By [12, Lemma 3.1], the function $t \mapsto T(t) x, t>0$, is differentiable with

$$
\frac{d}{d t} T(t) x=A_{0} T(t) x=T(t) A x \quad \text { for all } t>0
$$

Since $A x \in \Omega$, the derivative $\frac{d}{d t} T(\cdot) x$ is continuous on $[0, \infty[$. It follows that

$$
\lim _{t \rightarrow 0} T(t) x=\lim _{t \rightarrow 0}\left(T(1) x-\int_{t}^{1} T(s) A x d s\right)=T(1) x-\int_{0}^{1} T(s) A x d s=y
$$

Since $T(t) y=\lim _{r \rightarrow 0} T(t) T(r) x=\lim _{r \rightarrow 0} T(t+r) x=T(t) x$ for all $t>0$, property $\left(\mathrm{A}_{4}\right)$ yields $y=x$. Hence $x \in \Omega$ and

$$
\lim _{t \rightarrow 0} \frac{1}{t}(T(t) x-x)=\lim _{t \rightarrow 0} \frac{1}{t} \int_{0}^{t} T(s) A x d s=A x
$$

In particular, $x \in D\left(A_{0}\right)$.
Following [16], if the semigroup $(T(t))_{t>0}$ of growth order α has an extension to a sector S_{δ} with $0<\delta \leq \pi / 2$ such that
$\left(\mathrm{A}_{1}^{\prime}\right) T(t+s)=T(t) T(s)$ for all $t, s \in S_{\delta}$,
(A_{2}^{\prime}) the mapping $t \mapsto T(t)$ is analytic on S_{δ},
$\left(\mathrm{A}_{3}^{\prime}\right)$ for each $0<\varepsilon<\delta$, there exist constants $M_{\varepsilon} \geq 1$ and $\nu \in \mathbb{R}$ such that

$$
\left\|t^{\alpha} T(t)\right\| \leq M_{\varepsilon} e^{\nu \operatorname{Re} t} \quad \text { for all } t \in \bar{S}_{\delta-\varepsilon} \backslash\{0\}
$$

then the family $(T(t))_{t \in S_{\delta}}$ is called an analytic semigroup of growth order α.
Let $(T(t))_{t \in S_{\delta}}$ be an analytic semigroup of growth order α on X, with generator A_{0} and complete infinitesimal generator $A=\bar{A}_{0}$. It follows from the above that there exists a Banach space that is densely and continuously embedded in X, on which A generates a strongly continuous semigroup. The aim of this section is to show that there exists a Banach space, also densely and continuously embedded in X, on which A generates a strongly continuous analytic semigroup.

The continuity set Ω of $(T(t))_{t \in S_{\delta}}$ is given by (5). Let $0<\varepsilon \leq \delta$. We define the angular continuity set Ω_{ε} of $(T(t))_{t \in S_{\delta}}$ by

$$
\Omega_{\varepsilon}=\left\{x \in X: T(t) x-x \rightarrow 0 \text { as } t \rightarrow 0, t \in \bar{S}_{\delta-\varepsilon}^{0}\right\}
$$

where $\bar{S}_{\delta-\varepsilon}^{0}=\bar{S}_{\delta-\varepsilon} \backslash\{0\}$ and $\left.\bar{S}_{0}^{0}=\right] 0, \infty\left[\right.$. In particular, $\Omega_{\delta}=\Omega$. By $\left(\mathrm{A}_{2}^{\prime}\right)$ and the definition of the sets Ω_{ε}, it is clear that

$$
X_{0} \subseteq \Omega_{\varepsilon_{1}} \subseteq \Omega_{\varepsilon_{2}} \subseteq \Omega \subseteq X \quad \text { for all } 0<\varepsilon_{1}<\varepsilon_{2}<\delta
$$

Let $0<\varepsilon \leq \delta$ and $\nu>0$ be as in property $\left(\mathrm{A}_{3}^{\prime}\right)$. Given $x \in \Omega_{\varepsilon}$, we have

$$
N_{\varepsilon}(x)=\sup _{t \in \bar{S}_{\delta-\varepsilon}^{0}}\left\|e^{-\nu t} T(t) x\right\|<\infty
$$

This follows from the fact that $T(t) x \rightarrow x$ as $t \rightarrow 0$, together with the estimate $\left(\mathrm{A}_{3}^{\prime}\right)$. It is not difficult to see that the mapping $x \mapsto N_{\varepsilon}(x)$ defines a norm on Ω_{ε} and that the space $\left(\Omega_{\varepsilon}, N_{\varepsilon}(\cdot)\right)$ is a Banach space. Note that
if $0<\varepsilon_{1}<\varepsilon_{2} \leq \delta$, then $N_{\varepsilon_{1}}(x) \geq N_{\varepsilon_{2}}(x) \geq\|x\|$ for all $x \in \Omega_{\varepsilon_{1}}$. Hence, $\Omega_{\varepsilon_{1}}$ is continuously embedded in $\Omega_{\varepsilon_{2}}$ as well as in X.

Fix $0<\varepsilon<\delta$. Since the semigroup $T(\cdot)$ is strongly continuous on $\bar{S}_{\delta-\varepsilon}^{0}$, the operator $T(t)$ with $t \in \bar{S}_{\delta-\varepsilon}^{0}$ leaves Ω_{ε} invariant. Hence, we can consider the restriction of $T(t)$ to Ω_{ε}. We set

$$
U_{\varepsilon}(t)=\left.T(t)\right|_{\Omega_{\varepsilon}} \quad \text { for all } t \in \bar{S}_{\delta-\varepsilon}^{0}, \quad U_{\varepsilon}(0)=\left.I\right|_{\Omega_{\varepsilon}}
$$

Proposition 2. The operator family $\left\{U_{\varepsilon}(t): t \in \bar{S}_{\delta-\varepsilon}\right\}$ forms an analytic C_{0}-semigroup on Ω_{ε} satisfying $N_{\varepsilon}\left(U_{\varepsilon}(t)\right) \leq e^{\nu \operatorname{Ret}}$ for all $t \in \bar{S}_{\delta-\varepsilon}$. Its generator is the part of A in Ω_{ε}.

Proof. Clearly, the operators $U_{\varepsilon}(t)$ with $t \in \bar{S}_{\delta-\varepsilon}$ are linear operators on Ω_{ε} with

$$
\begin{aligned}
N_{\varepsilon}\left(U_{\varepsilon}(t) x\right) & =\sup _{s \in \bar{S}_{\delta-\varepsilon}^{0}}\left\|e^{-\nu s} T(s) T(t) x\right\|=\sup _{s \in \bar{S}_{\delta-\varepsilon}^{0}}\left\|e^{\nu t} e^{-\nu(s+t)} T(s+t) x\right\| \\
& \leq e^{\nu \operatorname{Re} t} \sup _{s \in t+\bar{S}_{\delta-\varepsilon}^{0}}\left\|e^{-\nu s} T(s) x\right\| \leq e^{\nu \operatorname{Re} t} N_{\varepsilon}(x)
\end{aligned}
$$

for all $x \in \Omega_{\varepsilon}$.
The definition implies that the family $U_{\varepsilon}(\cdot)$ has the semigroup property $U_{\varepsilon}(t+s)=U_{\varepsilon}(t) U_{\varepsilon}(s)$ for all $t, s \in \bar{S}_{\delta-\varepsilon}$.

Let $x \in \Omega_{\varepsilon}$. From $\left(\mathrm{A}_{3}^{\prime}\right)$ it follows that the function $t \mapsto e^{-\nu t} T(t) x$ is uniformly $\|\cdot\|$-continuous on $\bar{S}_{\delta-\varepsilon}$. Hence

$$
\begin{aligned}
& N_{\varepsilon}\left(U_{\varepsilon}(t) x-x\right)=\sup _{s \in \bar{S}_{\delta-\varepsilon}^{0}}\left\|e^{-\nu s} T(s)(T(t) x-x)\right\| \\
& \quad=\sup _{s \in \bar{S}_{\delta-\varepsilon}^{0}}\left\|e^{-\nu(s+t)} T(s+t) x-e^{-\nu s} T(s) x+\left(e^{\nu t}-1\right) e^{-\nu(s+t)} T(s+t) x\right\| \\
& \quad \leq \sup _{s \in \bar{S}_{\delta-\varepsilon}^{0}}\left\|e^{-\nu(s+t)} T(s+t) x-e^{-\nu s} T(s) x\right\|+\left|e^{\nu t}-1\right| N_{\varepsilon}(x) \rightarrow 0
\end{aligned}
$$

as $t \rightarrow 0, t \in \bar{S}_{\delta-\varepsilon}^{0}$. This means that $U_{\varepsilon}(\cdot)$ is strongly continuous on $\bar{S}_{\delta-\varepsilon}$.
Take $\theta \in(-(\delta-\varepsilon), \delta-\varepsilon)$. By the above, the operator family $\left(U_{\varepsilon}\left(e^{i \theta} t\right)\right)_{t \geq 0}$ forms a strongly continuous semigroup on Ω_{ε}. We show next that its generator B_{θ} is the part of $e^{i \theta} A$ in Ω_{ε}, that is, B_{θ} is given by $B_{\theta} x=e^{i \theta} A x$ for all $x \in D\left(B_{\theta}\right)=\left\{x \in D(A): A x \in \Omega_{\varepsilon}\right\}$.

First, recall that $\|x\| \leq N_{\varepsilon}(x)$ for all $x \in \Omega_{\varepsilon}$. Hence, if $x \in D\left(B_{\theta}\right)$ then

$$
\left\|\frac{1}{t}\left(T\left(e^{i \theta} t\right) x-x\right)-B_{\theta} x\right\| \leq N_{\varepsilon}\left(\frac{1}{t}\left(U_{\varepsilon}\left(e^{i \theta} t\right) x-x\right)-B_{\theta} x\right) \rightarrow 0
$$

as $t \rightarrow 0$. Since by [19, Theorem 1], $\left(T\left(e^{i \theta} t\right)\right)_{t>0}$ is a semigroup of growth order α whose complete infinitesimal generator is $e^{i \theta} A$, this shows that $x \in$ $D(A)$ and $B_{\theta} x=e^{i \theta} A x$. Hence, B_{θ} is contained in the part of $e^{i \theta} A$ in Ω_{ε}.

Conversely, let $x \in D(A)$ be such that $A x \in \Omega_{\varepsilon}$. As Ω_{ε} is contained in the continuity set of the semigroup $\left(T\left(e^{i \theta} t\right)\right)_{t>0}$ of growth order α, it follows by [19, Theorem 1] and Lemma 1 that $\left\|t^{-1}\left(T\left(e^{i \theta} t\right) x-x\right)-e^{i \theta} A x\right\| \rightarrow 0$ as $t \rightarrow 0$. Since $A x \in \Omega_{\varepsilon},\left[12\right.$, Lemma 3.1] shows that the function $t \mapsto T\left(e^{i \theta} t\right) x$ is continuously differentiable in $\left[0, \infty\left[\right.\right.$ with $\frac{d}{d t} T\left(e^{i \theta} t\right) x=e^{i \theta} T\left(e^{i \theta} t\right) A x$ for all $t \geq 0$. Here, we set $T(0)=I_{X}$. This gives $T\left(e^{i \theta} t\right) x-x=\int_{0}^{t} e^{i \theta} T\left(e^{i \theta} r\right) A x d r$ for all $t \geq 0$. Then

$$
\begin{aligned}
N_{\varepsilon}(& \left.\frac{1}{t}\left(U_{\varepsilon}\left(e^{i \theta} t\right) x-x\right)-e^{i \theta} A x\right) \\
= & \left.\sup _{s \in \bar{S}_{\delta-\varepsilon}^{0}} \| e^{-\nu s} T(s)\left[\frac{1}{t}\left(T\left(e^{i \theta} t\right) x-x\right)-e^{i \theta} A x\right)\right] \| \\
= & \sup _{s \in \bar{S}_{\delta-\varepsilon}^{0}}\left\|\frac{1}{t} \int_{0}^{t} e^{-\nu s} e^{i \theta} T\left(s+e^{i \theta} r\right) A x d r-\frac{1}{t} \int_{0}^{t} e^{-\nu s} e^{i \theta} T(s) A x d r\right\| \\
\leq & \left.\sup _{s \in \bar{S}_{\delta-\varepsilon}^{0}} \frac{1}{t} \int_{0}^{t} \| e^{-\nu\left(s+e^{i \theta} r\right)} T\left(s+e^{i \theta} r\right) A x-e^{-\nu s} T(s) A x\right) \| d r \\
& +\sup _{s \in \bar{S}_{\delta-\varepsilon}^{0}} \frac{1}{t} \int_{0}^{t}\left|e^{\nu e^{i \theta} r}-1\right|\left\|e^{-\nu\left(s+e^{i \theta} r\right)} T\left(s+e^{i \theta} r\right) A x\right\| d r \\
\leq & \left.\sup _{s, r \in \bar{S}_{\delta-\varepsilon}^{0}} \| e^{-\nu s} T(s) A x-e^{-\nu r} T(r) A x\right) \|+\sup _{0 \leq r \leq t}\left|e^{\nu e^{i \theta} r}-1\right| N_{\varepsilon}(A x) \rightarrow 0
\end{aligned}
$$

as $t \rightarrow 0$ because the function $s \mapsto e^{-\nu s} T(s) A x$ is uniformly $\|\cdot\|$-continuous in $\bar{S}_{\delta-\varepsilon}$ and the function $s \mapsto e^{\nu e^{i \theta} s}$ is uniformly continuous on any compact interval $[0, \tau]$. Hence, $x \in D\left(B_{\theta}\right)$ and $B_{\theta} x=e^{i \theta} A x$.

We have shown that for every $\theta \in(-(\delta-\varepsilon), \delta-\varepsilon)$, the operator $\left.e^{i \theta} A\right|_{\Omega_{\varepsilon}}$ with domain $D\left(\left.e^{i \theta} A\right|_{\Omega_{\varepsilon}}\right)=\left\{x \in D(A): A x \in \Omega_{\varepsilon}\right\}$ is the generator of the C_{0}-semigroup $\left(U_{\varepsilon}\left(e^{i \theta} t\right)\right)_{t \geq 0}$ on Ω_{ε}. But this means that the operator $\left.A\right|_{\Omega_{\varepsilon}}$ with domain $D\left(\left.A\right|_{\Omega_{\varepsilon}}\right)=\left\{x \in D(A): A x \in \Omega_{\varepsilon}\right\}$ is the generator of an analytic C_{0}-semigroup on Ω_{ε}. This semigroup is given by $\left(U_{\varepsilon}(t)\right)_{t \in \bar{S}_{\delta-\varepsilon}}$.

We note that the strong continuity of the semigroups $\left(U_{\varepsilon}(t)\right)_{t \in \bar{S}_{\delta-\varepsilon}}$ implies that the spaces Ω_{ε} are in fact densely and continuously embedded in each other with increasing ε and in X, since $\bigcup_{t>0} U_{\varepsilon}(t) \Omega_{\varepsilon} \subseteq X_{0} \subseteq \Omega_{\varepsilon}$ and $\bigcup_{t>0} U_{\varepsilon}(t) \Omega_{\varepsilon}$ is $N_{\varepsilon}(\cdot)$-dense in Ω_{ε}.
3. Existence and uniqueness of solutions. Suppose A is a densely defined, closed linear operator on the complex Banach space X, satisfying (3) for some $0<\omega<\pi / 2, C \geq 1$ and $n>-1$. Note that we explicitly assume
$\omega<\pi / 2$, that is, we do not require that $\varrho(A)$ contains a half plane. A straightforward argument using the power series expansion of the resolvent $(\lambda-A)^{-1}$ of A in $\lambda \in S_{\omega}$ shows that there exists a ball B_{d} of radius d centred at zero such that $B_{d} \subseteq \varrho(A)$ and

$$
\left\|(\lambda-A)^{-1}\right\| \leq C(1+|\lambda|)^{n} \quad \text { for all } \lambda \in B_{d} \cup S_{\omega} .
$$

Hence, we can define fractional powers $(-A)^{b}$ with $b \in \mathbb{C}$, as in [15].
Let $0<b<\pi /(2(\pi-\omega))$ and put $\varrho=\pi / 2-b(\pi-\omega)$. By [15, Proposition 2.12], the fractional power $-(-A)^{b}$ is the complete infinitesimal generator of an analytic semigroup $\left\{T_{b}(t): t \in S_{\varrho}\right\}$ of growth order $(n+1) / b$. More precisely, $T_{b}(\cdot)$ is a family of bounded linear operators on X satisfying
(i) $T_{b}(t+s)=T_{b}(t) T_{b}(s)$ for all $t, s \in S_{\varrho}$,
(ii) the mapping $t \mapsto T_{b}(t)$ is analytic in the sector S_{ϱ},
(iii) the operators $T_{b}(t)$ with $t \in S_{\varrho}$ are injective,
(iv) there exists $C_{b}>0$ such that for every $t \in S_{\varrho}$,

$$
\begin{equation*}
\left\|T_{b}(t)\right\| \leq C_{b}(\operatorname{Re} t-|\operatorname{Im} t| \tan (b(\pi-\omega)))^{-(n+1) / b} \tag{6}
\end{equation*}
$$

(v) the set $X_{b}=\bigcup_{t>0} T_{b}(t) X$ is dense in X.

We write $\Omega_{b}(A)$ and $\Omega_{b, \varepsilon}(A)$ with $0<\varepsilon \leq \varrho$ to denote the continuity set and the angular continuity sets of $T_{b}(\cdot)$, respectively. In the applications, the continuity sets play a very important role so that it is interesting to obtain lower and upper bounds for these sets. In addition to the inclusions given in Section 2, we have

$$
D\left(A^{n+1}\right) \subseteq \Omega_{b, \varepsilon}(A) \quad \text { for all } 0<\varepsilon \leq \varrho .
$$

This follows from the fact that the holomorphic $(-A)^{-(n+1)}$-regularised semigroup $\left(W_{b}(t)\right)_{t \in S_{e}}$ generated by $-(-A)^{n+1}(-A)^{b}(-A)^{-(n+1)}$ (see $[7$, Theorem 5.4 and Proposition 5.3]) is given by $W_{b}(t)=T_{b}(t)(-A)^{-(n+1)}$ for all $t \in S_{\varrho}$, and $W_{b}(0)=(-A)^{-(n+1)}$. By [6, Definition 21.3], for every $0<\varepsilon<\varrho, W_{b}(\cdot)$ is strongly continuous on $\bar{S}_{\varrho-\varepsilon}$. Hence $D\left(A^{n+1}\right) \subseteq \Omega_{b, \varepsilon}(A)$.

Let $0<\varepsilon \leq \varrho$. From the estimate (6), it follows that

$$
\begin{equation*}
\left\|T_{b}(t) x\right\| \leq C_{b}\left(\frac{\cos (b(\pi-\omega))}{\cos (\pi / 2-\varepsilon)}\right)^{(n+1) / b}|t|^{-(n+1) / b}\|x\| \quad \text { for all } t \in \bar{S}_{\varrho-\varepsilon}^{0} \tag{7}
\end{equation*}
$$

Hence we may choose $\nu=0$ and obtain $N_{b, \varepsilon}(x)=\sup _{t \in \bar{S}_{\underline{Q}-\varepsilon}^{0}}\left\|T_{b}(t) x\right\|$ as the norm on $\Omega_{b, \varepsilon}(A)$.

By $U_{b, \varepsilon}(\cdot)$ we denote the analytic C_{0}-semigroup of contractions on $\Omega_{b, \varepsilon}(A)$ as given by Proposition 2. That is, $U_{b, \varepsilon}(t)=\left.T_{b}(t)\right|_{\Omega_{b, \varepsilon}(A)}$ for all $t \in \bar{S}_{\varrho-\varepsilon}^{0}$, and $U_{b, \varepsilon}(0)=I_{\Omega_{b, \varepsilon}(A)}$.

If the operator A is non-densely defined and satisfies (2), then we consider the part A_{D} of A in the Banach space ($\left.X_{D}=\overline{D(A)},\|\cdot\|\right)$, that is, the operator
$A_{D}: D\left(A_{D}\right) \subseteq X_{D} \rightarrow X_{D}$ with domain $D\left(A_{D}\right)=\left\{x \in D(A): A x \in X_{D}\right\}$, defined as $A_{D} x=A x$ for $x \in D\left(A_{D}\right)$. The operator A_{D} is densely defined and satisfies (3) with $n=0$. Hence, we can construct fractional powers of A_{D} and the semigroups generated by them. We denote by $\Omega_{b}\left(A_{D}\right)$ and $\Omega_{b, \varepsilon}\left(A_{D}\right)$ the associated continuity sets.

We now turn our attention to (ACP) for the operator A above. By a solution of (ACP) we mean a $\|\cdot\|$-bounded function $u \in C^{2}(] 0, \infty[; X) \cap$ $C(] 0, \infty[; D(A))$ such that $u^{\prime \prime}(t)+A u(t)=0$ for all $t>0$, and $\lim _{t \rightarrow 0} u(t)$ $=u_{0}$.

Our main result reads as follows.
Theorem 3. (i) If A is densely defined and satisfies (3), then (ACP) has a unique solution for all $u_{0} \in \Omega_{1 / 2}(A)$.
(ii) If A is non-densely defined and satisfies (2), then (ACP) has a unique solution for all $u_{0} \in \Omega_{1 / 2}\left(A_{D}\right)$.

Proof. (i) From [15, Lemma 1.4], it follows that $(-A)^{1 / 2}(-A)^{1 / 2} x=$ $-A x$ for all $x \in D\left(A^{2 n+4}\right)$. By [15, Lemma 2.10], $\bigcup_{t>0} T_{1 / 2}(t) X \subseteq D\left(A^{\infty}\right)$. Hence, the function $u(t)=T_{1 / 2}(t) u_{0}$ is a solution of (ACP).

Assume that there is another solution v of (ACP). Since $0 \in \varrho(A)$, the operator $(-A)^{-(n+2)}$ is bounded. Hence, we may consider the function ψ given by $\psi(t)=(-A)^{-(n+2)} v(t)$ for all $t>0$, and the vector $\psi_{0}=(-A)^{-(n+2)} u_{0}$. Clearly ψ is a solution of (ACP) for the initial value ψ_{0}. Moreover, ψ is a solution of the corresponding abstract Cauchy problem in the Banach space $\left(D\left(A^{n+2}\right),\|\cdot\|_{n+2}\right)$, where $\|\cdot\|_{n+2}$ stands for the graph norm $\|x\|_{n+2}=\|x\|+\left\|A^{n+2} x\right\|$ for all $x \in D\left(A^{n+2}\right)$.

As mentioned above, we have the inclusion $D\left(A^{n+2}\right) \subseteq \Omega_{1 / 2, \varepsilon}$. Since the Banach spaces $D\left(A^{n+2}\right)$ and $\Omega_{1 / 2, \varepsilon}$ are both continuously embedded in X, it follows by the Closed Graph Theorem that this inclusion is continuous. Hence, ψ is a solution of the abstract Cauchy problem considered in the Banach space $\left(\Omega_{1 / 2, \varepsilon}, N_{1 / 2, \varepsilon}(\cdot)\right)$. Moreover, by Proposition 2, the part of A in $\Omega_{1 / 2, \varepsilon}$ is a sectorial operator. Therefore we may apply Balakrishnan's Theorem [2, Theorem 6.1] on sectorial operators to conclude that

$$
\psi(t)=U_{1 / 2, \varepsilon}(t) \psi_{0}=(-A)^{-(n+2)} T_{1 / 2}(t) u_{0} \quad \text { for all } t>0
$$

Since the operator $(-A)^{-(n+2)}$ is injective, this means $v=u$.
(ii) In the Banach space $X_{D}=\overline{D(A)}$, consider the problem

$$
\left(\mathrm{ACP}_{D}\right)\left\{\begin{array}{l}
u^{\prime \prime}(t)+A_{D} u(t)=0 \quad \text { for } t>0 \\
u(0)=u_{0} \\
\sup _{t>0}\|u(t)\|<\infty
\end{array}\right.
$$

By (i), the function $u_{D}(t)=T_{1 / 2}^{D}(t) u_{0}$ is the unique solution of $\left(\mathrm{ACP}_{D}\right)$. Here
$T_{1 / 2}^{D}(\cdot)$ denotes the semigroup associated with $-\left(-A_{D}\right)^{1 / 2}$. Clearly u_{D} is also a solution of (ACP). Let $v:] 0, \infty[\rightarrow D(A)$ be another solution of (ACP). Since $v(t) \in D(A)$ for all $t>0$, it follows that $v^{\prime}(t)=\lim _{h \rightarrow 0} t^{-1}(v(t+h)-$ $v(t)) \in X_{D}$ for all $t>0$ and, similarly, that $v^{\prime \prime}(t) \in X_{D}$ for all $t>0$. As $v(\cdot)$ solves (ACP), this implies $v(t) \in D\left(A_{D}\right)$ for all $t>0$, and therefore v is a solution of $\left(\mathrm{ACP}_{D}\right)$. Hence, $v=u_{D} . ■$

Remark 1. As mentioned in the introduction, Theorem 3 with initial datum $u_{0} \in D\left(A^{n+1}\right)$ can be deduced from Theorem 5.4 of [7] and the ideas needed in the proof of Remark 2.14 of [5]. However, $D\left(A^{n+1}\right)$ is, in general, strictly contained in $\Omega_{1 / 2}(A)$ as the following example shows.

Example 1. Let $\left(X_{1},\|\cdot\|_{1}\right)$ and $\left(X_{2},\|\cdot\|_{2}\right)$ be complex Banach spaces. Suppose A_{1} is an operator in X_{1} with polynomially bounded resolvent and such that $-\left(-A_{1}\right)^{1 / 2}$ is the complete generator of an analytic semigroup of growth order α for some $\alpha>0$. Denote by $T_{1}(\cdot)$ this semigroup associated with $-\left(-A_{1}\right)^{1 / 2}$. Let A_{2} be an unbounded, densely defined, sectorial operator in X_{2} such that $0 \in \varrho\left(A_{2}\right)$. Then the fractional power $-\left(-A_{2}\right)^{1 / 2}$ is the generator of an equibounded analytic C_{0}-semigroup, say $T_{2}(\cdot)$. Consider the Banach space $X=X_{1} \times X_{2}$ endowed with the norm

$$
\|x\|=\max \left\{\left\|x_{1}\right\|_{1},\left\|x_{2}\right\|_{2}\right\} \quad \text { for all } x=\left(x_{1}, x_{2}\right) \in X
$$

and the operator A in X with domain $D(A)=D\left(A_{1}\right) \times D\left(A_{2}\right)$ and defined by

$$
A\left(x_{1}, x_{2}\right)=\left(A_{1} x_{1}, A_{2} x_{2}\right) \quad \text { for all }\left(x_{1}, x_{2}\right) \in D(A)
$$

Then $-A$ is an operator with polynomially bounded resolvent and $-(-A)^{1 / 2}$ is the complete infinitesimal generator of the analytic semigroup $T(\cdot)=$ $T_{1}(\cdot) \times T_{2}(\cdot)$ of growth order α. Since the continuity set of $T_{2}(\cdot)$ is equal to X_{2} and A_{2} is unbounded, the continuity set of $T(\cdot)$ strictly contains $D\left(A^{k}\right)$ for all $k \geq 1$.
4. Applications to partial differential equations. In this section, we give a few concrete examples of differential operators which satisfy (2) or (3) and, consequently, to which Theorem 3 can be applied.

Let $0<\alpha<1, m \in \mathbb{N}$, and Ω be a bounded domain in \mathbb{R}^{n} with smooth boundary. In the space $C^{\alpha}(\bar{\Omega})$ of Hölder continuous functions consider the operator $B: D(B) \subseteq C^{\alpha}(\bar{\Omega}) \rightarrow C^{\alpha}(\bar{\Omega})$ given by

$$
B u(x)=\sum_{|\beta| \leq 2 m} a_{\beta}(x) D^{\beta} u(x) \quad \text { for all } x \in \bar{\Omega}
$$

with domain $D(B)=\left\{u \in C^{2 m+\alpha}(\bar{\Omega}):\left.D^{\beta} u\right|_{\partial \Omega}=0\right.$ for all $\left.|\beta| \leq m-1\right\}$. Here, β is a multiindex in $(\mathbb{N} \cup\{0\})^{n},|\beta|=\sum_{j=1}^{n} \beta_{j}$ and $D^{\beta}=\prod_{j=1}^{n}\left(\frac{1}{i} \frac{\partial}{\partial x_{j}}\right)^{\beta_{j}}$.

We assume that the coefficients $a_{\beta}: \bar{\Omega} \rightarrow \mathbb{C}$ of B satisfy the following conditions:
(a) $a_{\beta}(x) \in \mathbb{R}$ for all $x \in \bar{\Omega}$ and $|\beta|=2 m$,
(b) $a_{\beta} \in C^{\alpha}(\bar{\Omega})$ for all $|\beta| \leq 2 m$, and
(c) there is a constant $M>0$ such that

$$
M^{-1}|\xi|^{2 m} \leq \sum_{|\beta|=2 m} a_{\beta}(x) \xi^{\beta} \leq M|\xi|^{2 m} \quad \text { for all } \xi \in \mathbb{R}^{n} \text { and } x \in \bar{\Omega} .
$$

In [17, Satz 1] it is proved that for $\sigma>0$ sufficiently large, the operator $A=-(B+\sigma)$ satisfies (2) with $\gamma=\alpha /(2 m)-1$ and $\pi / 2<\omega<\pi$. Note that A is not densely defined since $D(A)=D(B) \subseteq C_{0}^{\alpha}(\bar{\Omega})=\left\{u \in C^{\alpha}(\bar{\Omega})\right.$: $\left.\left.u\right|_{\partial \Omega}=0\right\}$. So, Theorem 3(ii) applies to A.

As $-A$ satisfies the conditions of [13], we can also construct fractional powers and the semigroups generated by them as given there. It is not difficult to see that $\Omega_{1 / 2}\left(A_{D}\right)$ coincides with the set $\Omega_{1 / 2}(-A)$ of [13]. Moreover, we have the following upper and lower bounds for $\Omega_{1 / 2}(-A)$. By [13, Theorem 3.9(iii) and (vii)],

$$
D\left((-A)^{b}\right) \subseteq \Omega_{1 / 2}(-A) \subseteq X_{D} \quad \text { for all } b>1+\gamma=\frac{\alpha}{2 m},
$$

and setting $C_{0,0}^{1+\alpha}(\bar{\Omega})=\left\{u \in C^{1+\alpha}(\bar{\Omega}):\left.D^{\beta} u\right|_{\partial \Omega}=0\right.$ for all $\left.|\beta| \leq 1\right\}$, by $[4$, Satz 3.3 a)], we have

$$
C_{0,0}^{1+\alpha}(\bar{\Omega}) \subseteq D\left((-A)^{b}\right) \quad \text { for all } \frac{\alpha}{2 m}<b<\frac{1}{2 m} .
$$

Note that for $b>\alpha /(2 m)$, the fractional powers $(-A)^{b}$ defined in [13] coincide with the ones introduced in [4] and [17]. Hence, since $X_{D} \subseteq C_{0}^{\alpha}(\bar{\Omega})$, we have

$$
C_{0,0}^{1+\alpha}(\bar{\Omega}) \subseteq \Omega_{1 / 2}(-A) \subseteq C_{0}^{\alpha}(\bar{\Omega}) .
$$

As a class of operators with polynomially bounded resolvent we mention the generators of integrated semigroups. Let $\alpha \geq 0$. If A is the densely defined generator of an α-times integrated semigroup $S^{\alpha}(\cdot)$ satisfying $\left\|S^{\alpha}(t)\right\|$ $\leq M t^{\beta} e^{\omega t}$ for some constants $M \geq 1, \omega \geq 0, \beta \geq 0$, and all $t \geq 0$, then it can be proved (see [11]) that for all $\sigma>0$ the operator $A-\omega-\sigma$ satisfies (3), in general with $0<\omega \leq \pi / 2$. Concrete examples of differential operators that are generators of integrated semigroups can be found in [1, Chapter 8$]$.

References

[1] W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser, 2001.
[2] A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10 (1960), 419-437.
[3] G. Da Prato, Semigruppi di crescenza n, Ann. Scuola Norm. Sup. Pisa 20 (1966), 753-782.
[4] H. Kielhöfer, Existenz und Regularität von Lösungen semilinearer parabolischer Anfangs-Randwertprobleme, Math. Z. 142 (1975), 131-160.
[5] R. deLaubenfels, Incomplete iterated Cauchy problems, J. Math. Anal. Appl. 168 (1992), 552-579.
[6] -, Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Math. 1570, Springer, Berlin, 1994.
[7] R. deLaubenfels, F. Yao and S. Wang, Fractional powers of operators of regularized type, J. Math. Anal. Appl. 199 (1996), 910-930.
[8] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.
[9] C. Martínez and M. Sanz, The Theory of Fractional Powers of Operators, NorthHolland Math. Stud. 187, Elsevier, Amsterdam, 2001.
[10] I. Miyadera, S. Ohary and N. Okazawa, Generation theorems of semi-groups of linear operators, Publ. RIMS Kyoto Univ. 8 (1972/73), 509-555.
[11] J. M. A. M. van Neerven and B. Straub, On the existence and growth of mild solutions of the abstract Cauchy problem for operators with polynomially bounded resolvent, Houston J. Math. 24 (1998), 137-171.
[12] N. Okazawa, A generation theorem for semigroups of growth order α, Tôhoku Math. J. 26 (1974), 39-51.
[13] F. Periago and B. Straub, A functional calculus for almost sectorial operators and applications to abstract evolution equations, J. Evol. Equ. 2 (2002), 41-68.
[14] P. E. Sobolevskiĭ, On semigroups of growth α, Soviet Math. Dokl. 12 (1971), 202205.
[15] B. Straub, Fractional powers of operators with polynomially bounded resolvent and the semigroups generated by them, Hiroshima Math. J. 24 (1994), 529-548.
[16] N. Tanaka, Holomorphic C-semigroups and holomorphic semigroups, Semigroup Forum 38 (1989), 253-261.
[17] W. von Wahl, Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 11 (1972), 231-258.
[18] A. V. Zafievskiĭ, On semigroups with singularities summable with a power-weight at zero, Soviet Math. Dokl. 11 (1970), 1408-1411.
[19] X. W. Zhang, Characteristic conditions for the complete infinitesimal generators of analytic semigroups of growth order α, Acta Math. Sci. Ser. B Engl. Ed. 20 (2000), 97-103.

Departamento de Matemática Aplicada y Estadística
Universidad Politécnica de Cartagena
C/ Paseo Alfonso XIII
30203 Cartagena, Spain
E-mail: f.periago@upct.es

School of Mathematics The University of New South Wales Sydney, NSW 2052, Australia
E-mail: bernd@maths.unsw.edu.au

[^0]: 2000 Mathematics Subject Classification: 34K30, 47D06, 47F05.
 Key words and phrases: incomplete second-order abstract Cauchy problem, operators with polynomially bounded resolvent, fractional powers, differential operators, semigroups of growth order α.

 The first author was partially supported by Fundación Séneca, project PI53/00809/FS/01, and by Ministerio de Ciencia y Tecnología, project BFM2000-1427, Spain. The second author gratefully acknowledges the support of the Australian Research Council.

