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If the [T, Id] automorphism is Bernoulli
then the [T, Id] endomorphism is standard

by

Christopher Hoffman (Seattle, WA) and
Daniel Rudolph (College Park, MD)

Abstract. For any 1-1 measure preserving map T of a probability space we can form
the [T, Id] and [T, T−1] automorphisms as well as the corresponding endomorphisms and
decreasing sequence of σ-algebras. In this paper we show that if T has zero entropy and
the [T, Id] automorphism is isomorphic to a Bernoulli shift then the decreasing sequence
of σ-algebras generated by the [T, Id] endomorphism is standard. We also show that if
T has zero entropy and the [T 2, Id] automorphism is isomorphic to a Bernoulli shift
then the decreasing sequence of σ-algebras generated by the [T, T−1] endomorphism is
standard.

1. Introduction. A decreasing sequence of σ-algebras is a measure
space (X,F0, µ), together with a sequence of σ-algebras F0 ⊃ F1 ⊃ F2 ⊃ . . .
A natural example of this arises from a sequence {Xi}i≥0 of independent
identically distributed random variables. Namely, set Fi = σ(Xi,Xi+1, . . .).
If the Xi take on the values 1 and −1 with probability 1/2, then this se-
quence has the property that Fi|Fi+1 has 2-point fibers of equal mass for
every i. A decreasing sequence of σ-algebras with this property is called
dyadic. This example has the property that

⋂Fi is trivial. A. Vershik, who
began the modern study of such decreasing sequences of σ-algebras [14],
refers to this example as the standard dyadic example.

Two decreasing sequences (X,Fi, µ) and (Y,Gi, ν) of σ-algebras are called
isomorphic if there exists a 1-1 measure preserving map Φ : X → Y such
that Φ(Fi) = Gi for all i. A decreasing sequence of σ-algebras that is iso-
morphic to the standard dyadic example is said to be standard. A dyadic
endomorphism is standard if it generates a standard decreasing sequence
of σ-algebras. In [13] Vershik showed that there exist dyadic sequences of
σ-algebras with trivial intersection that are not isomorphic to the standard
dyadic example. He also gave a necessary and sufficient condition for a dyadic
decreasing sequence of σ-algebras to be standard. An equivalent description
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of standardness for dyadic sequences is that there exists a sequence {Pi} of
partitions of X into two sets, each of measure 1/2, such that

(i) the partitions Pi are mutually independent, and
(ii) for each i, Fi =

∨∞
n=i Pn.

In this paper we will be working with decreasing sequences of σ-algebras
arising from two classes of endomorphisms. These are the [T, T−1] endomor-
phisms and the [T, Id] endomorphisms. These are often referred to as random
walks on a random scenery. Let T , the scenery process, be any 1-1 measure
preserving map on a probability space (Y, C, ν) such that T 2 is ergodic. Let
σ be the shift on (X,B, µ) where X = {−1, 1}N, B is the Borel σ-algebra,
and µ is product measure (1/2, 1/2). Let F = B ⊗ C. Define [T, T−1] on
(X × Y,F , µ× ν) by

[T, T−1](x, y) = (σx, T x0y).

The [T, Id] endomorphism has X = {0, 1}N, but is otherwise defined the
same as the [T, T−1] endomorphism.

The [T, T−1] endomorphism is 2-1, since any point (x, y) has the preim-
ages (−1x, Ty) and (1x, T−1y). Since each preimage has equal relative mea-
sure, the [T, T−1] endomorphism generates a dyadic decreasing sequence of
σ-algebras. Furthermore, since T 2 is ergodic,

⋂Fn is trivial [11]. Notice that
if T is the trivial 1-point transformation then [T, T−1] reduces to the shift
on (X,B, µ), and the corresponding decreasing sequence of σ-algebras is the
standard dyadic example.

The above construction, when carried out for X = {−1, 1}Z (or X =
{0, 1}Z), yields a 1-1 map we refer to as the [T, T−1] automorphism (or the
[T, Id] automorphism.) Kalikow proved in [10] that if T has positive entropy
then the [T, T−1] automorphism is not isomorphic to a Bernoulli shift. There
are zero entropy transformations T such that the [T, T−1] automorphism is
isomorphic to a Bernoulli shift, and other T such that the [T, T−1] automor-
phism is not isomorphic to a Bernoulli shift [2], [3], [10].

Building on Kalikow’s techniques, Heicklen and Hoffman proved that if T
has positive entropy then the decreasing sequence of σ-algebras generated by
the [T, T−1] endomorphism is not standard [7]. When T has zero entropy the
picture appears to be significantly more complicated. Feldman and Rudolph
proved that if T is rank 1 then the [T, T−1] endomorphism generates a
standard sequence of σ-algebras [5]. On the other hand Hoffman has given
an example of a zero entropy T such that the [T, T−1] endomorphism is not
standard [8].

Feldman and Rudolph’s result, combined with the work of Burton [1],
provides an example of an endomorphism which is standard, but is not
isomorphic to a Bernoulli shift. The following two theorems are the main
results of the present paper.
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Theorem 1.1. If T is zero entropy and the [T, Id] automorphism is iso-
morphic to a Bernoulli shift then the [T, Id] endomorphism generates a stan-
dard decreasing sequence of σ-algebras.

Theorem 1.2. If T is zero entropy and the [T 2, Id] automorphism is
isomorphic to a Bernoulli shift then the [T, T−1] endomorphism generates a
standard decreasing sequence of σ-algebras.

In [9] there is an example of a dyadic endomorphism whose two-sided
extensions are isomorphic to a Bernoulli shift, but the endomorphism does
not generate a standard decreasing sequence of σ-algebras. Thus the results
in this paper cannot be extended to general dyadic endomorphisms.

The rest of this paper is organized as follows. In Section 2 we lay out the
necessary notation and background. At the start of Section 3 we sketch the
proof of Theorem 1.2. Then we prove the two theorems.

2. Notation. In this section we set up the notation that we will be using
in this paper. We also describe the very weak Bernoulli condition for auto-
morphisms which Ornstein proved is equivalent to the automorphism being
isomorphic to a Bernoulli shift, as well as the criteria for endomorphisms
which Vershik proved are equivalent to the endomorphism being standard.

There is a natural relation between the 2n preimages of (x, y) under
[T, T−1]n, {−1, 1}n, and the branches of the rooted binary tree of height n.
In this relation a sequence b = (b1, . . . , bn) ∈ {−1, 1}n is associated with the
preimage (bn . . . b1x, T−

∑n
i=1 biy). We refer to a path from the root of the

binary tree of height n to the edge of the tree as a branch. Let M be any
map from {−1, 1}n to the branches of the binary tree of height n such that
if bi = b′i for all i ≤ j, then the branches agree on the j edges closest to the
root.

We now introduce some notation corresponding to the relationships de-
fined above. An n-branch is an element b ∈ {−1, 1}n. (For the [T, Id] endo-
morphisms an n-branch is an element b ∈ {0, 1}n.) A labeled n-tree W is a
function W : {−1, 1}n → P , where P is some finite set. The labeled n-tree
for a partition P over a point y ∈ Y assigns to each branch b the label
P (T−

∑
biy).

The primary tool used for studying standardness of decreasing sequences
of σ algebras is Vershik’s metric on labeled n-trees. In order to define it we
must first define the Hamming metric between two labeled n-trees. This is
given by

dn(W,W ′) =
|{b : W (b) 6= W ′(b)}|

2n
.

Fix a partition P and let W and W ′ be the labeled n-trees over y and y′

respectively. Let An be the set of all invertible maps a : {−1, 1}n → {−1, 1}n
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such that if bi = b′i for all i ≤ j then a(b)i = a(b′)i for all i ≤ j. By the
association of {−1, 1}n with the branches of the binary tree of height n
given above, any map a : {−1, 1}n → {−1, 1}n generates a map from the
branches of the binary tree to themselves. We call such a map a ∈ An a
tree automorphism, because the induced map on the binary tree is a graph
homomorphism. Define

vPn (y, y′) = inf
a∈An

dn(W ◦ a,W ′).

In the case that {Fn} comes from a [T, T−1] endomorphism (or a [T, Id]
endomorphism), Vershik’s standardness criterion is the following.

Theorem 2.1 ([13]). Let P be any generating partition of Y . Then
{Fn} is standard iff �

vPn (y, y′) dν × ν → 0.

Remark 2.1. A proof of this can also be found in [6].

Now we describe Ornstein’s very weak Bernoulli condition for a trans-
formation (X̃, µ̃, T ). For any partition P̃ of X̃ and any a, b ∈ X̃ let

dP̃[0,N ](a, b) = |{i : i ∈ [0, N ] and P̃ (T i(a)) 6= P̃ (T i(b))}|/(N + 1).

For any two measures µ1 and µ2 on X̃ define

dP̃[0,N ](µ1, µ2) = inf
m

�
dP̃[0,N ](a, b) dm

where the inf is taken over all joinings of µ1 and µ2. (A joining of µ1 and µ2

is a measure on X̃ × X̃ which has µ1 and µ2 as its marginals.)
Also define µ̃a by

µ̃a(A) = µ̃{a′ ∈ A : P̃ (T i(a)) = P̃ (T i(a′)) for all i < 0}.
Definition 2.1. An invertible transformation (X̃, T, µ̃) with partition

P̃ is very weak Bernoulli with respect to P̃ if for every ε > 0 there exists an
N and a set G such that

(i) µ̃(G) > 1− ε, and
(ii) for any a, b ∈ G,

dP̃[0,N ](µ̃a, µ̃b) < ε.

Theorem 2.2 ([12]). A transformation is isomorphic to a Bernoulli shift
if and only if it is very weak Bernoulli with respect to every finite generating
partition.

For most of the proof we will be working with the [T 2, Id] automorphism
on the space (X ×Y,F , µ× ν) and the [T, T−1] endomorphism on the space
(X × Y,F , µ× ν). We will fix a finite generating partition P of Y under the
map T 2. Then P is also a finite generating partition of Y under the map T .
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The partition P̃ (x, y) = (x0, P (y)) is a finite generating partition of both
the [T, T−1] endomorphism and the [T 2, Id] automorphism.

3. Proof. First we give an outline of the proof of Theorem 1.2. In this
section we examine the very weak Bernoulli condition in the context of a
[T 2, Id] automorphism. We fix a T : Y → Y and a generating partition P
of Y . We will show that if the [T 2, Id] automorphism is very weak Bernoulli
then for large n and most points y, y′ ∈ Y there exists a map M : [−n, n]→
[−n, n] and a “large” subset T ⊂ [−n, n] with the following properties:

(i) M |T is “approximately linear”, and
(ii) for any t ∈ T we have P (T t(y)) = P (TM(t)(y′)).

Lemma 3.1 is a precise version of the above statement. Then in Lemmas 3.2
to 3.5 we show that since M is “approximately linear” we can construct a
tree automorphism a ∈ An such that for most branches

M
( n∑

i=1

bi

)
=

n∑

i=1

a(bi).(1)

When we combine condition (ii) with line (1) we will have shown that
vPn (y, y′) is small. Since the very weak Bernoulli condition implies we can do
this for most y and y′, Theorem 2.1 will show that the [T, T−1] endomor-
phism is standard.

The proofs of Theorems 1.2 and 1.1 are very similar. We give the proof of
Theorem 1.2 first because it is notationally simpler. Then we indicate how
to modify that proof to prove Theorem 1.1.

We need to make one last definition that will play an important role in
the proof. For M : [−n, . . . , n] → [−n, . . . , n] and Q a subset of [−n, . . . , n]
define the function S(k) by

S(k) = S(k,M,Q) = sup |M(i)−M(j)− (i− j)|
where the sup is taken over all i and j such that |i− j| = k and i and j are
in Q. This is a measure of how far M restricted to Q is from being linear
with slope 1.

Lemma 3.1. If [T 2, Id] is very weak Bernoulli with respect to P̃ then
for any ε > 0 and any c there exist N , n0 and G ⊂ Y with the following
property. For any n > N and y, y′ ∈ G there exist M : [−n, n] → [−n, n]
and Q ⊂ [−c√n, c√n ] such that

(i) yt = y′M(t) for all t ∈ Q,

(ii) |Q| > (2c− ε)√n,
(iii) S(k) = S(k,M,Q) < k.51 for all k,
(iv) i+M(i) = 0 mod 2,
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(v) M(j)− j < n0 for all j ∈ [−c√n, c√n], and
(vi) ν(G) > 1− ε.
Before we begin the proof we will comment on the sense in which the

set Q which satisfies condition (ii) is a “large” subset of [−n, n]. If c is large
and ε is small then by the central limit theorem the fraction

∣∣∣
{
b ∈ {−1, 1}n :

n∑

i=1

bi ∈ Q
}∣∣∣
/

2n

is close to one. It is in this sense that Q is a “large” subset of [−n, n].

Proof of Lemma 3.1. First we show how to get G that satisfies the sixth
condition, and M and Q that satisfy the first four conditions. Then we show
how to adapt it so that they satisfy all six. Let Q0 be a constant which will
be defined later. If [T 2, Id] is very weak Bernoulli with respect to P̃ then for
any ε > 0 there exists an n and a set G ⊂ Y with the following property. If
y, y′ ∈ G there exist sets W,W ′ ⊂ {−1, 1}Z and a measure preserving map
m : W →W ′ such that for any x ∈W if m(x) = x′ then

(2) |{i ∈ [−c√n/2, c√n/2] : P̃ ([T 2, Id]i(x, y)) 6= P̃ ([T 2, Id]i(x′, y′))}|
< ε
√
n/(2Q0 + 1).

Restrict W to x such that the fraction of t ∈ [−c√n/2, c√n/2] such that
there exist −c√n ≤ t1 ≤ t ≤ t2 ≤ c

√
n with t2 − t1 > Q0 and

∣∣∣
t2∑

i=t1

(x1)i−(t2−t1)/2
∣∣∣≥ .5(t2−t1).51 or

∣∣∣
t2∑

i=t1

(x2)i−(t2−t1)/2
∣∣∣≥ .5(t2−t1).51

is less than ε/(2c). By the law of iterated logarithms and the ergodic theorem
we can choose Q0 and n large enough so that µ(W ) > 1− ε.

Now pick any x ∈ W . In order to define Q we first define Q′ by letting
Q′C be the set of all t satisfying either

(a) there exist −c√n/2 ≤ t1 ≤ t ≤ t2 ≤ c
√
n/2 such that t2 − t1 > Q0

and |∑t2
i=t1 (x1)i − (t2 − t1)/2| ≥ .5(t2 − t1).51, or

(b) there exist −c√n/2 ≤ t1 ≤ t ≤ t2 ≤ c
√
n/2 such that t2 − t1 > Q0

and |∑t2
i=t1 (x2)i − (t2 − t1)/2| ≥ .5(t2 − t1).51, or

(c) there exists t′ such that |t′ − t| < Q0 and P̃ ([T 2, Id]t
′
(x, y)) 6=

P̃ ([T 2, Id]t
′
(x′, y′)).

If i ∈ [−c√n, c√n ], even, and there is a t ∈ Q′ so that i = 2
∑t−1

j=0 xj then

i ∈ Q. Then set M(i) to be 2
∑t−1

j=0 x
′
j . Also let i ∈ Q if i+ 1, i− 1 ∈ Q. In

this case set M(i) = M(i− 1) + 1. Condition (i) of the lemma is satisfied by
condition (c) in the definition of Q′C . Conditions (ii) and (iii) of the lemma
are satisfied by conditions (a) and (b) in the definition of Q′C . Condition
(iv) of the lemma is satisfied by the definition of M .
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Now we show how to use the above approach to get a map that satisfies
condition (v). Find n0 and G0 so that M satisfies the first three conditions
with ε/10. Set

G = {y : the density of j ∈ [−c√n/n0, c
√
n/n0] such that T jn0(y) 6∈ G0

is less than ε/5},
where n is large enough so that m(G) > 1 − ε. This is possible because of
the ergodic theorem. Define Q by the previous paragraphs on intervals of
the form [jn0, (j + 1)n0].

Thus for most points we get a map M : [−n, n]→ [−n, n]. Now we want
to construct the homomorphism A so that for most branches

∑
A(b)m =

M(
∑
bm). This will show that vPn (y, y′) is small. Ideally we would like to

construct a tree automorphism A such that for each j ≤ n and each b′ ∈
{−1, 1}j ,

j∑

m=1

A(b′)m =
1

2n−j
∑

M
( n∑

m=1

bm

)
(3)

where the first sum on the right hand side is taken over all b ∈ {−1, 1}n
with bm = b′m for all m = 1, . . . , j. If we could construct such an A then by
setting j = n we see that

n∑

m=1

A(b)m = M
( m∑

m=1

bm

)

for all b ∈ {−1, 1}n. No such A can exist as the left hand side of (3) is an
integer, but the right hand side need not be. What we will do is construct
the tree automorphism A′ such that for certain values of j (which will be
labeled hi) and for elements of {−1, 1}j the two sides of line (3) are close to
equal. We will do this in such a way that

∑
A(b)m = M

(∑
bm

)

for most b ∈ {−1, 1}j .
Assume ε > 0 and c > 0 are fixed and the values N and n0 and set G are

as found in Lemma 3.1. We now proceed to approximate M by a product
of tree automorphisms. Let L be a large integer to be defined later. Define
a sequence of heights hi = b(3iL)1.5c, where bxc is the greatest integer less
than or equal to x. We partition the interval [−n, n] into intervals of the
form Ii,j = [(j − .5)3iL, (j + .5)3iL) for each i. These partitions are nested.

Set di,j = 0 if hi−1 ≥ (n0)3. For the interval Ii,j , where i is the smallest
integer so that hi ≥ (n0)3, set

di,j = 2
⌊

.5
|Ii,j ∩Q|

∑

Ii,j∩Q
(M(k)− k)

⌋
.
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So di,j is the average amount that M moves an element of Ii,j . Assuming
that di+1,j has been defined for all j we now define di,j . For an interval Ii,j
which is contained in Ii+1,j′ we set

di,j = 2
⌊

.5
|Ii,j ∩Q|

∑

Ii,j∩Q
(M(k)− k)

⌋
− di+1,j′ .

In this case di,j is the average amount that M moves an element of Ii,j ∩Q
minus the average amount that M moves an element of Ii+1,j′∩Q. For each i
and k ∈ Ii,j define di(k) = di,j .

Now we want to construct the homomorphism A so that
∑
A(b)m =

M(
∑
bm) for most branches. Given a pair i, j and di,j we construct a tree

homomorphism Ai,j that is the identity on branches b such that
∑n

m=hi+1 bm
6∈ Ii,j . We also construct Ai,j such that most of the branches that satisfy∑n

m=hi+1 bm ∈ Ii,j also satisfy
∑hi

m=hi−1+1 (A(b)m − bm) = di,j . We will then
form A by the composition of the Ai,j so that

∑
A(b)m = M(bm) for most b.

Lemma 3.2. For any i, j, and even d there exists a tree homomorphism
Ai,j such that

(i) Ai,j(b)m = bm for all b and all m such that
∑n

m=hi+1 bm 6∈ Ii,j ,
(ii) Ai,j(b)m = bm for all b and all m > hi and m ≤ hi−1, and

(iii)
|{b :

∑n
m=hi+1 bm ∈ Ii,j and

∑hi
m=hi−1+1Ai,j(b)m − bm 6= d}|

|{b :
∑n

m=hi+1 bm ∈ Ii,j}|
< d/(hi − hi−1)1/2.

Proof. The homomorphism A will be defined inductively. First define
A(b)m = bm for all m > hi and all b. For all b such that

∑n
m=hi+1 bm 6∈ Ii,j

define A(b)m = bm for all m. For branches b such that
∑n

m=hi+1 bm ∈ Ii,j
and j such that hi−1 ≤ j < hi define A(b)j as follows. If

∑hi
m=j+1A(b)m − bm

6= d then define A(b)j = −bj . Otherwise set A(b)j = bj . For j ≤ hi−1 let
A(b)j = bj .

For any j the fraction of branches b such that
∑n

m=hi+1 bm ∈ Ii,j where∑hi
m=j A(b)m − bm 6= d is the same as the fraction of simple random walks

on the integers that have not reached d in hi − j steps. This probability is
bounded by d/(hi − j)1/2.

Now we can use the di,j to define homomorphisms Ai,j . We define A by
first applying the Ai,j with i = 0, then applying the Ai,j with i = 1, etc.
Now we want to show that for most branches

∑
A(b)m = M(

∑
bm).

Lemma 3.3. di,j < 2(3i+1L).51.

Proof. Pick any k′ ∈ Ii,j ∩Q. We can rewrite M(k)−k as ((M(k)−k)−
(M(k′)− k′)) + (M(k′)− k′). For the smallest i such that hi ≥ (n0)3 we can
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bound M(k′) − k′ by n0 < (3i+1L).51. For all other i the M(k′) − k′ terms
in the two sums cancel. The first four terms are bounded by (M(k)− k)−
(M(k′) − k′) < S(k − k′) < (3i+1L).51. Since an average cannot be greater
than the largest term, di < 2(3i+1L).51.

Lemma 3.4. For any i,
∑

j

∣∣∣
{
b :

n∑

m=1

bm ∈ Ii,j and
n∑

m=hi+1

bm 6∈ Ii,j
}∣∣∣ < 2 · 2n

(3iL).1
.

Proof. Suppose there exists a j such that
n∑

m=hi+1

bm ∈ [(j − .5)3iL+ (3iL).8, (j + .5)3iL− (3iL).8](4)

and
∣∣∣
hi∑

m=1

bm

∣∣∣ < (3iL).8.(5)

Then
∑n

m=1 bm,
∑n

m=hi+1 bm ∈ Ii,j . The fraction of branches that do not
satisfy line (4) is less than (3iL).8/.5(3iL) = 2(3iL)−.2. The branches that
do not satisfy line (5) are at least (3iL).8/(3iL).75 standard deviations away
from the mean. Thus by Chebyshev’s inequality they make up a fraction at
most 1/(3iL).1 of the branches.

Lemma 3.5. For any ε > 0 there exist δ and c with the following prop-
erty. For any n, n0, M : [−c√n, c√n ] → [−c√n, c√n ], and Q ⊂ [−c√n,
c
√
n ] which satisfies

(i) |Q| > (2c− δ)√n,
(ii) S(k) = S(k,M,Q) < k.51 for all k,

(iii) M(j)− j < n0 for all j ∈ [−c√n, c√n], and
(iv) i+M(i) = 0 mod 2,

there exists a tree homomorphism A such that
∣∣∣
{
b :

n∑

m=1

A(b)m 6= M
( n∑

m=1

bm

)}∣∣∣ < ε2n.

Proof. GivenM define di,j and from them Ai,j . Let A be the composition
of all the Ai,j . Consider the set of branches that satisfy

(a) M(
∑n

m=1 bm)−∑n
m=1 bm =

∑
di(
∑n

m=1 bm), and
(b)

∑hi
m=hi−1+1 (A(b)m − bm) = di(

∑n
m=1 bm) for all i.

These two conditions imply
n∑

m=1

A(b)m = M
( n∑

m=1

bm

)
.
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To bound the fraction of branches that do not satisfy the first condition
notice that if Ij,0∩Q = Ij,0 then M(k)−k is constant over Ij,0. This implies
thatM(k)−k =

∑
di(k) for any k ∈ Ij,0. Since |Q| > (2c−δ)√n, the number

of k ∈ [−c√n, c√n ] such that I0(k) ∩ Q = I0(k) is at least (2c − Lδ)√n.
With any choice of δ and of c sufficiently large the number of branches that
do not land on such a k is less than 2Lδ2n.

If
∑

A(b)m − bm = di

( n∑

m=hi+1

bm

)
for all i(6)

and
n∑

hi+1

bm ∈ Ii
( n∑

m=1

bm

)
for all i(7)

then b satisfies (b). The fraction of branches that do not satisfy (6) can be
bounded by Lemmas 3.2 and 3.3. By Lemma 3.3 we have di,j < 2(3i+1L).51.
Thus the fraction of branches that do not satisfy (6) for a given i is bounded
by

di,j(hi − hi−1)−.5 ≤ 2(3i+1L).51((3iL)1.5 − (3i−1L)1.5)−.5

≤ 2(3i+1L).51(2L)−.75(3i−1)−.75

≤ CL−.24(3i)−.24.

Thus the number of branches that do not satisfy condition (b) for any i is
less than

∑
i CL

−.243−.24i2n < 30L−.24C2n.
The fraction of branches that do not satisfy (7) can be bounded by

Lemma 3.4. This says that for a given i the number of branches that do not
satisfy (7) is less than 2n(L−.13−.1i). Thus the number of branches that do
not satisfy (7) for any i is less than

∑
i 2n(L−.13−.1i) < 10C1(L−.1)2n. Thus

by choosing L large enough and then c large enough and δ small enough the
fraction of branches that do not satisfy conditions (a) and (b) can be made
arbitrarily small.

Now we just need to combine these lemmas to prove our two results.

Proof of Theorem 1.2. Combining Lemmas 3.1 and 3.5 we deduce that
for any ε > 0 there is a set G ⊂ Y such that µ(G) > 1− ε and vPn (y, y′) < ε
for any y, y′ ∈ G. Thus

�
vPn (y, y′) dν × ν → 0.

By Vershik’s standardness criteria the decreasing sequence of σ-algebras
generated by the [T, Id] endomorphism is standard.

Proof of Theorem 1.1. We can construct a map M ′ by the methods of
Lemma 3.1. To get M that satisfies the hypothesis of Lemma 3.5 define
M(n − 2i) = M ′(n − i) for all i ∈ [0, n]. Then Lemma 3.5 gives us a tree
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homomorphism A. It is naturally associated with a tree homomorphism A′

that has the property that
∑
A′(b)m = M ′(

∑
bm) for most b. Thus for

most y and y′ this shows that vPn (y, y′) < ε. Thus by Vershik’s standard-
ness criteria the decreasing sequence of σ-algebras generated by the [T, Id]
endomorphism is standard.

4. Open questions. We conclude by posing two open questions related
to our results. It is easy to check that condition (ii) in Lemma 3.5 could be
changed to S(k) < k1−α for any α > 0. The proof would only require
changing the definition of hi to hi = (3Li)2−α/2. It is possible to weaken the
condition to S(k) < k/(log k)1+α for any α > 0. Since every zero entropy
loosely Bernoulli transformation that we know of has this property for some
α > 0 it is natural to ask the following question.

Question 4.1. Does there exist a zero entropy loosely Bernoulli trans-
formation T that does not satisfy Lemma 3.1 with condition (iii) replaced by
S(k) = S(k,M,Q) < k/(log k)?

If there is no such T then the methods of this paper should be able
to be extended to show that if T is zero entropy loosely Bernoulli then the
[T, T−1] and [T, Id] endomorphisms generate a standard decreasing sequence
of σ-algebras. If there is such a T then we can ask the following question.

Question 4.2. Does there exist a zero entropy loosely Bernoulli trans-
formation T such that the [T, Id] or [T, T−1] endomorphisms do not generate
a standard decreasing sequence of σ-algebras?
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