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Smooth operators in the commutant of a contraction

by

Pascale Vitse (Québec)

Abstract. For a completely non-unitary contraction T , some necessary (and, in cer-
tain cases, sufficient) conditions are found for the range of the H∞ calculus, H∞(T ), and
the commutant, {T}′, to contain non-zero compact operators, and for the finite rank oper-
ators of {T}′ to be dense in the set of compact operators of {T}′. A sufficient condition is
given for {T}′ to contain non-zero operators from the Schatten–von Neumann classes Sp.

1. Introduction. For a given Hilbert space contraction T , we study
how “smooth” (compact, etc.) operators in the commutant {T}′ = {A :
AT = TA} can be. The problem arises in several applications in control
theory, vector-valued Hankel operators or the theory of model operators.
Here it is treated in the framework of the Sz.-Nagy–Foiaş functional model
and some answers are proposed in the language of the characteristic function
ΘT of the contraction T .

Let H be a separable Hilbert space, and L(H) the space of bounded lin-
ear operators on H. Let F and S∞ denote the subspaces of L(H) consisting
respectively of the finite-rank and compact operators. Let Sp (0 < p < ∞)
denote the Schatten–von Neumann class consisting of the compact opera-
tors on H for which the sequence of singular numbers belongs to lp. Only
completely non-unitary (c.n.u.) contractions are considered. The questions
studied in this paper are the following. Let T be a c.n.u. contraction on H.
When does {T}′ contain non-zero finite-rank operators, non-zero compact
operators, or non-zero operators from the class Sp? When is {T}′∩F dense in
{T}′ ∩ S∞? Some of these questions are also considered for the range space
of the functional calculus H∞(T ) = {ϕ(T ) : ϕ ∈ H∞} instead of {T}′.
Clearly, H∞(T ) ⊂ {T}′.

For contractions of some specific classes, several facts are known about
the above problems. For instance, for operators from the class C0 (that is, for
c.n.u. contractions T for which the H∞ calculus ϕ 7→ ϕ(T ) has a non-zero
kernel) the following is proved:
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(i) (Sz.-Nagy, [SN74]) Always, {T}′ ∩ S∞ 6= {0}, but it may happen
that H∞(T ) ∩ S∞ = {0}.

(ii) (Nordgren, [Nor75]) If I −T ∗T ∈ S∞ then H∞(T )∩S∞ 6= {0}; and
moreover, there exists a sequence (ϕn)n≥1 ⊂ H∞ such that ‖ϕn‖∞ ≤ 1,
ϕn(T ) ∈ S∞ for n ≥ 1, and (WOT)-limϕn(T ) = I. Here I denotes the
identity operator and WOT stands for Weak Operator Topology.

Before answering the above questions, we recall some elements of the
Sz.-Nagy–Foiaş model. First, it is worth mentioning that every Hilbert space
contraction is an orthogonal sum of a unitary operator and a c.n.u. contrac-
tion, and that for the unitary part the questions related to the commutant
and functional calculus can be easily answered via the von Neumann spec-
tral theorem. In what follows, T is the unit circle of the complex plane,
T = {z ∈ C : |z| = 1}, and D is the unit disc, D = {z ∈ C : |z| < 1}.

For a given c.n.u. contraction T , the main object of the functional model
approach is the characteristic function Θ = ΘT defined by

Θ(z) = [−T + zDT ∗(I − zT ∗)−1DT ]|DT , z ∈ D.
Here DT = (I − T ∗T )1/2 and DT ∗ = (I − TT ∗)1/2 are the defect operators
of T , DT = closDTH and DT ∗ = closDT ∗H are the defect spaces of T .
In fact, Θ is an analytic contractive-valued (‖Θ(z)‖ ≤ 1, z ∈ D) function
from DT to DT ∗ ; in particular, Θ belongs to H∞(L(DT ,DT ∗)). The main
theorem of the model theory says that T is unitarily equivalent to the model
operator MΘ defined on the model space KΘ by the following formulas:

KΘ =
(

H2(DT ∗)
clos∆L2(DT )

)
	
(
Θ
∆

)
H2(DT ),

MΘ ∈ L(KΘ), MΘf = PΘzf, f ∈ KΘ.

Here, for a Hilbert space E, L2(E) denotes the Bochner–Lebesgue space
of square integrable E-valued strongly measurable functions on T; H2(E)
denotes the Hardy space of E-valued analytic functions, H2(E) ⊂ L2(E);
∆ is the defect operator of Θ defined by ∆(ξ) = (I −Θ(ξ)∗Θ(ξ))1/2, which
for almost every ξ ∈ T is a bounded L(DT )-valued function on T, that is,
∆ ∈ L∞(L(DT )); and, finally, PΘ denotes the orthogonal projection from
L2(DT ∗ ⊕ DT ) onto KΘ. More details on the model operators are given in
Section 1 below and a complete exposition can be found in the book [SNF67].
In principle, the notation here follows that of this book.

Some of our answers are valid for the general situation of an arbitrary
c.n.u. contraction T , others for particular classes of contractions, mainly in
the case when the characteristic function has a scalar multiple. The following
theorems are the main results of this paper. T is always a c.n.u. contraction.
Inner and outer functions and the different classes of contractions are defined
in Subsection 2.2 below.
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Theorem. Assume that H∞(T ) ∩ S∞ 6= {0}. Then ΘT is a two-sided
inner function. In the case when T is an (SM)-contraction and I−T ∗T ∈S∞
the converse is also true.

This theorem reflects a feeling that the outer factor of ΘT corresponds
to a part of the operator similar in some sense to a unitary one. It is well
known that, when a unitary operator has absolutely continuous spectrum,
the only compact operator in the commutant is zero.

The following result means that only the trace-class smoothness of D2
T

can guarantee the existence of non-zero compact H∞ functions of T . Here
σ(T ) denotes the spectrum of T , and σp(T ) the point spectrum of T , that
is, the set of eigenvalues of T .

Theorem. Let S ⊂ S∞ be a symmetrically normed ideal of L(H). The
following are equivalent :

(i) For every c.n.u. contraction T ∈ C00 such that D\σ(T ) is non-empty
and I − T ∗T ∈ S, we have

H∞(T ) ∩ S∞ 6= {0}.
(ii) S = S1.

Passing to the commutant {T}′ we first prove that if I −T ∗T ∈ S∞ and
D \ σ(T ) 6= ∅, then {T}′ ∩ F 6= {0} if and only if D ∩ σ(T ) is non-empty.
Next, we obtain the following criterion.

Theorem. Let T ∈ L(H) be a c.n.u. contraction. If T ∈ C1. ∪ C.1
(equivalently , ΘT is either outer or ∗-outer) then {T}′ ∩ S∞ = {0}. If ,
moreover , T ∈ (SM) and I − T ∗T ∈ S∞, then the converse is also true,
and in fact , {T}′ ∩ S∞ = {0} implies that T ∈ C11 (equivalently , ΘT is
two-sided outer).

In particular, if Θ ∈ H∞ is a non-zero contractive-valued (scalar) func-
tion, then {MΘ}′ ∩ S∞ = {0} if and only if Θ is outer, and H∞(MΘ) ∩ S∞
= {0} if and only if Θ is not inner.

Next, we pass to the question of the density of {T}′ ∩ F in {T}′ ∩ S∞
for T ∈ (SM) such that I −T ∗T ∈ S∞. It can be formulated in terms of the
restriction T0 of T to the invariant subspaceH0(T ) = {x ∈ H : ‖Tnx‖ → 0}.
Then T0 is a C0-contraction and density holds if and only if T0 is complete
(equivalently mT0 is a Blaschke product). In this case we always have a
linear approximation process, and H0(T ) coincides with ET = clos(

⋃{XH :
X ∈ {T}′ ∩ S∞}).

It is likely thatH0(T )=ET for any (SM)-contraction with I−T ∗T ∈ S∞.
But at the moment we can only prove that mT0 = mTE , where TE = T |ET .

The last result deals with operators in the Schatten–von Neumann
ideals Sp.
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Theorem. Let T be an (SM)-contraction such that I − T ∗T ∈ Sp with
1 ≤ p <∞. Then {T}′∩Sp 6= {0} as soon as one of the following properties
is satisfied :

(i) σp(T ) 6= ∅, or equivalently kerΘT (λ) 6= {0} for some λ ∈ D.
(ii) There exists a Beurling–Carleson set σ ⊂ T such that H(σ) 6= {0},

where H(σ) stands for the maximal spectral subspace over σ (see Section 5
for definitions).

Moreover if T ∈ C0 then H∞(T ) ∩ Sp 6= {0}.
The techniques used for the proofs of the above results are mostly based

on the Commutant Lifting Theorem (CLT for short), the cornerstone of
the theory of model operators. Via the CLT, the problems are reduced to
certain questions about vector-valued Hankel operators. In the case of two-
sided inner characteristic functions this reduction was known long ago (see
[Nik86]). For a more general case, a new formula is established below to link
compact operators in the commutant and Hankel operators (see Lemma 4.4).
Then Muhly’s and Peller’s theories of smooth Hankel operators are used.

The paper is organized as follows. Section 2 contains necessary prerequi-
sites on the Sz.-Nagy–Foiaş functional model. Section 3 is devoted to smooth
operators in H∞(T ). Section 4 deals with compact and finite rank operators
in {T}′, and Section 5 is devoted to the Schatten–von Neumann classes Sp.

2. Some facts about the canonical model. Let Θ ∈ H∞(L(H1,H2))
be any contractive-valued function, where H1, H2 are two separable Hilbert
spaces. Then Θ is called pure if ‖Θ(0)x‖ < ‖x‖ for all x ∈ H1, x 6= 0. For
every contractive-valued Θ ∈ H∞(L(H1,H2)), there exists a unique pure
contractive-valued function Θ0 and a constant unitary operator U acting
between certain subspaces of H1 and H2 respectively such that Θ(z) =
Θ0(z) ⊕ U . This Θ0 is called the pure part of Θ. Let Θ ∈ H∞(L(H1,H2))
be a contractive-valued function, and MΘ be defined as in Section 1. Then
MΘ is a c.n.u. contraction and the characteristic function of MΘ coincides
with the pure part of Θ.

2.1. The commutant lifting theorem (CLT). Here T is identified with
MΘ. It is clear that for every ϕ ∈ H∞ the lifting formula ϕ(MΘ) = PΘϕ|KΘ
holds. As already mentioned, H∞(MΘ) ⊂ {MΘ}′. It is known that {MΘ}′ =
H∞(MΘ) when Θ is a scalar inner function [Sar67]. In general, this is not the
case. The characterization of the c.n.u. contractions T such that H∞(T ) =
{T}′ seems to be unknown and is a delicate problem. However the above
lifting formula extends to operators from {MΘ}′ thanks to the CLT due to
Sz.-Nagy and Foiaş [SNF67]. Namely, X ∈ {MΘ}′ if and only if there exists

an operator Y acting on
( H2(DT∗ )

clos∆L2(DT )

)
such that X = PΘY |KΘ , Y z = zY ,
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and

Y

(
Θ
∆

)
H2(DT ) ⊂

(
Θ
∆

)
H2(DT ).

Then Y is called a lifting of X. The space
( H2(DT∗ )

clos∆L2(DT )

)
is actually the

space of the minimal isometric dilation of MΘ.
Notice that in the case when Θ is a two-sided inner function (see below)

the two lifting conditions are equivalent to Y ∈ H∞(L(DT ∗)) and Θ∗Y Θ ∈
H∞(L(DT )) and the CLT admits an alternative proof due to N. K. Nikolski
[Nik86], making use of Hankel operators. Moreover, if Y is a lifting of X,
then X = ΘHΘ∗Y |KΘ , as in this case PΘ = ΘP−Θ∗.

It follows that a lifting Y is an operator of multiplication by a block
matrix function of the type

(1) Y =
(
A1 0
B1 C1

)
,

where

A1∈H∞(L(DT ∗)), B1∈L∞(L(DT ∗ , clos∆DT )), C1∈L∞(L(clos∆DT ))

are operator-valued functions satisfying the following relations:

A1(ξ)Θ(ξ) = Θ(ξ)A0(ξ), B1(ξ)Θ(ξ) + C1(ξ)∆(ξ) = ∆(ξ)A0(ξ)

a.e. on T, for some A0 ∈ H∞(L(DT )).
Any lifting of the zero operator is of the form Y =

(
ΘG 0
∆G 0

)
for some

G ∈ H∞(L(DT ∗ ,DT )). Moreover,

‖X‖ = inf{‖Y ‖∞ : Y a lifting of X}

= inf
{∥∥∥∥Y0 +

(
ΘG 0
∆G 0

)∥∥∥∥ : G ∈ H∞(L(DT ∗ ,DT ))
}
,

where Y0 is any lifting of Y ; the infimum is always attained. Notice that a
lifting of a function of MΘ, X = ϕ(MΘ) ∈ {MΘ}′, ϕ ∈ H∞, corresponds to
B1 = 0, A1 = ϕI, C1 = ϕI.

Another parametrization of the liftings of the operators in {MΘ}′ is

(2) Y =
(

A∗ 0
∆AΘ∗ +B∆∗ ∆A∆−BΘ

)
,

where A ∈ H∞(L(DT )), A∗ ∈ H∞(L(DT ∗)) satisfy ΘA = A∗Θ, and B ∈
L∞(L(∆∗DT ∗ ,∆DT )); see [NV98].

2.2. Classes of contractions

Cαβ classes. Let T be a c.n.u. contraction. Then T is of class C0. if Tn

tends SOT (Strong Operator Topology) to zero (i.e. limn→∞ ‖Tnx‖ = 0 for
every x ∈ H), and T is C1. if ‖Tnx‖ does not tend to 0 for every x 6= 0. For
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α, β = 0, 1, the contraction T is C.α if T ∗ is Cα., and T is Cαβ if it is both
Cα. and C.β .

Let Θ be the characteristic function of T . Then T is C0. (resp. C.0,
C1., C.1) if Θ is ∗-inner (resp. inner, ∗-outer, outer). Recall that a function
F ∈ H∞(L(H1,H2)) is inner if the non-tangential limits on T are isometric
almost everywhere. It is outer if FH2(H1) is dense in H2(H2), where F is
identified with the operator of multiplication by F . The function F is ∗-inner
(resp. ∗-outer) if F t is inner (resp. outer), where F t(z) = F (z)∗. It is two-
sided inner (resp. two-sided outer) if F is both inner and ∗-inner (resp. outer
and ∗-outer). Every function F ∈ H∞(L(H1,H2)) admits a canonical inner-
outer factorization F = FinnFout through an intermediate Hilbert space (and
consequently, also a canonical ∗-outer-∗-inner factorization).

Let T ∈ L(H) be a contraction. Then H0 = {x ∈ H : ‖Tnx‖ → 0} is
an invariant subspace of T and the decomposition H = H0 ⊕ H⊥0 induces
a triangular decomposition of T , which is called the C0.-C1. decomposition
of T :

(3)
(
T0 ∗
0 T ′1

)
, T0 ∈ C0., T

′
1 ∈ C1..

It is the only decomposition of T satisfying (3). Applying the result to T ∗,
we find that T admits a unique triangular decomposition of the form

(4)
(
T1 ∗
0 T ′0

)
, T1 ∈ C.1, T ′0 ∈ C.0,

where T1 = T |H1 and H1 = {x ∈ H : T ∗nx → 0}⊥. It is called the C.1-C.0
decomposition of T .

C0-contractions. Let T ∈ L(H) be a contraction. By definition T ∈ C0

if T is c.n.u. and there exists a function u ∈ H∞, u 6= 0, such that u(T ) = 0.
For every T ∈ C0, there exists a minimal (annihilating) function mT (unique
within a unimodular constant); that is, mT is an inner function such that
mT (T ) = 0, and if u(T ) = 0 for some u ∈ H∞ \ {0}, then u/mT ∈ H∞ (see
[SNF67, Proposition III.4.4]).

Recall that the spectrum σ(ϕ) of a contractive-valued function ϕ ∈ H∞
is defined by

σ(ϕ) = (clos{λ ∈ D : ϕ(λ) = 0}) ∪ supp(∆ϕ|T) ∪ supp(µs
ϕ),

where ∆ϕ = (1 − |ϕ|2)1/2 and µs
ϕ is the singular measure on T associated

to ϕ through its Nevanlinna–Riesz–Smirnov canonical factorization. Let T ∈
L(H) be a C0-contraction with minimal function mT . Then σ(T ) = σ(mT )
(see [SNF67, Theorem III.5.1]). In particular, σp(T ) = σ(mT )∩D = σ(T )∩D
consists of the zeros of mT , thus σ(T ) ∩ D is a (possibly empty) Blaschke
sequence. Recall also that a C0-contraction T is complete (i.e. H is spanned
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by the generalized eigenvectors of T , see Subsection 4.3) if and only if mT

is a Blaschke product.

Scalar multiples and (SM)-contractions. A function Θ∈H∞(L(H1, H2))
has a scalar multiple δ ∈ H∞, δ 6= 0, if there exists Ω ∈ H∞(L(H2,H1))
such thatΩΘ = δI and ΘΩ = δI. Obviously, we then have dimH1 = dimH2

and Θ is invertible at every point z ∈ D such that δ(z) 6= 0, and then

Θ(z)−1 =
1
δ(z)

Ω(z).

In particular, Θ−1 is a meromorphic function in D.
Let Θ ∈ H∞(L(H1,H2)) be a contractive-valued function having a scalar

multiple δ. If Θ = ΘinnΘout is the canonical inner-outer factorization of Θ,
then Θinn and Θout admit respectively δinn and δout as scalar multiples,
where δinn and δout are the inner and outer parts of δ. In particular, Θinn is
two-sided inner and Θout is two-sided outer. Similarly Θ admits an outer-
inner factorization, Θ = Θ′outΘ

′
inn, where δout and δinn are scalar multiples

of Θ′out and Θ′inn (see [SNF67, Theorem V.6.2]).
Let T ∈ L(H) be a c.n.u. contraction. We write T ∈ (SM) if ΘT has a

scalar multiple. If T has δ as a scalar multiple, then σp(T ) = σ(T ) ∩ D ⊂
{λ ∈ D : δ(λ) = 0}, and thus σ(T ) ∩ D is a (possibly empty) Blaschke
sequence; in particular D \ σ(T ) 6= ∅.

For T ∈ (SM), the components T0, T ′1 of the C0.-C1. decomposition (3)
are (SM)-contractions and the C0.-C1. decomposition is in fact a C0-C11

decomposition. If δ is a scalar multiple of ΘT , then δinn and δout are scalar
multiples of T0 and T ′1. Then mT0 is the minimal scalar multiple of T0. For
this reason a scalar multiple δ of ΘT is called minimal if its inner part
δinn coincides with mT0 . Similarly, the C.1-C.0 decomposition (4) of T is in
fact a C11-C0 decomposition and T1, T

′
0 ∈ (SM). Moreover, the invariant

subspaces H0 and H1 defined by (3) and (4) satisfy H0 ∩ H1 = {0} and
span(H0,H1) = H; and we have σ(T ) = σ(T0)∪ σ(T ′1) = σ(T1)∪ σ(T ′0) (see
[SNF67, Section VIII.2.1]). Moreover, the spectrum of a C11-contraction in
(SM) is contained in T (see [SNF67, Proposition VI.4.3]).

Weak contractions. T ∈ L(H) is called a weak contraction if D\σ(T ) 6= ∅
and I − T ∗T ∈ S1. A weak contraction T ∈ L(H) belongs to the class (SM)
([SNF67, Theorem VIII.1.1]). The contractions T0, T ′1, T1, T ′0 appearing in
the C0-C11 and C11-C0 decompositions of T are all weak contractions (see
[SNF67, Theorem VIII.2.1]).

3. Smooth operators in H∞(T ). In this section we first find some
necessary conditions for the spaces H∞(T ) ∩ S∞ not to be reduced to {0}.
Then we explore in which cases these conditions are sufficient. All contrac-
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tions will be supposed to be c.n.u. Therefore we may work equivalently with
T or its canonical modelMΘ, Θ = ΘT , as T and MΘ are unitarily equivalent.

Lemma 3.1. Let Θ ∈ H∞(L(H1,H2)) be a contractive-valued function,
and PΘ defined as in Section 1. For g ∈ L2(H1), we have

∥∥∥∥PΘ
(

0
g

)∥∥∥∥
2

= ‖g‖2 − ‖P+∆g‖2 = ‖Θg‖2 + ‖P−∆g‖2,

where P+ denotes the Riesz projection (i.e. onto the analytic part), and
P− = I − P+.

Proof. The well known block decomposition of PΘ,

(5) PΘ =
(
P+ −ΘP+Θ

∗ −ΘP+∆
−∆P+Θ

∗ I −∆P+∆

)
,

and the fact that ∆ is a positive selfadjoint operator satisfying∆2 = I−Θ∗Θ
lead to
∥∥∥∥PΘ

(
0
g

)∥∥∥∥
2

= ‖ΘP+∆g‖2 + ‖(I −∆P+∆)g‖2

= ‖P+∆g‖2 − ‖∆P+∆g‖2 + ‖(I −∆P+∆)g‖2
= ‖P+∆g‖2 − ‖∆P+∆g‖2 + ‖g‖2 − 2‖P+∆g‖2 + ‖∆P+∆g‖2
= ‖g‖2 − ‖P+∆g‖2,

and ‖g‖2 − ‖P+∆g‖2 = ‖Θg‖2 + ‖∆g‖2 − ‖∆g‖2 + ‖P−∆g‖2 = ‖Θg‖2 +
‖P−∆g‖2.

Lemma 3.2. Let Θ ∈ H∞(L(H1,H2)) be a contractive-valued function,
and MΘ ∈ L(KΘ) the model operator associated with Θ. Assume that there
exists ϕ ∈ H∞, ϕ 6= 0, such that ϕ(MΘ)∗M∗nΘ tends SOT to 0. Then Θ is
an inner function, or equivalently , M∗nΘ tends SOT to 0.

Notice that both Mn
Θ and M∗nΘ always tend WOT to 0. Indeed, if u, v ∈

KΘ ⊂ L2(DT ⊕DT ∗), then

〈Mn
Θu, v〉 = 〈PΘznu, v〉 = 〈znu, v〉 =

�

T
ξn〈u(ξ), v(ξ)〉 dµ(ξ) = ŵ(−n),

where w = 〈u(·), v(·)〉 ∈ L1; and therefore ŵ(−n) → 0 from the Riemann–
Lebesgue lemma. Thus, for every c.n.u. contraction T ∈ L(H), T n and T ∗n

tend WOT to 0.

Proof of Lemma 3.2. Let ϕ ∈ H∞. First we compute the SOT limit
of ϕ(MΘ)∗M∗nΘ in the general case. Let

(
f
g

)
∈ KΘ. Note that the function

znM∗nΘ
( f
g

)
converges in L2(H2⊕H1) to the function

( 0
g

)
. This follows from
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the facts that

M∗nΘ

(
f
g

)
=
(
P+z

nf
zng

)
,

and that ‖P+z
nf‖ =

∑
k≥n ‖f̂(k)‖2 tends to 0 in L2(H2). Then, for any

ϕ ∈ H∞,
∥∥ϕ(MΘ)∗M∗nΘ

(
f
g

)∥∥2
converges to the same limit as

∥∥∥∥PΘϕ
(

0
zng

)∥∥∥∥
2

= ‖ϕg‖2 − ‖P+∆z
nϕg‖2,

where the last equality comes from Lemma 3.1. As ∆ϕg ∈ L2(H1), the term
‖P+∆z

nϕg‖2 = ‖P+z
n∆ϕg‖2 tends to 0. Therefore

∥∥ϕ(MΘ)∗M∗nΘ
(
f
g

)∥∥
tends to ‖ϕg‖.

Now suppose that ϕ is such that ϕ(MΘ)∗M∗nΘ tends SOT to 0. Then,
for all

(
f
g

)
∈ KΘ, we have ‖ϕg‖ = 0, which implies that g = 0. It remains

to show that this result forces ∆ to be identically 0. Indeed, we then have

KΘ ⊂
(
H2(H2)

0

)
,

and therefore

K⊥Θ ⊃
(

0
clos∆L2(H1)

)
.

As K⊥Θ =
(
Θ
∆

)
H2(H1) contains no non-zero z-invariant subspace, we neces-

sarily have ∆ = 0.

Theorem 3.3. Let T ∈ L(H) be a c.n.u. contraction. If H∞(T ) ∩ S∞
6= {0}, then ΘT ∈ H∞(L(DT ,DT ∗)) is a two-sided inner function, in par-
ticular DT and DT ∗ are of the same dimension.

Proof. It suffices to show that H∞(T ) ∩ S∞ 6= {0} implies that ΘT is
inner. Then we can apply the result to T ∗ and use the fact that ΘT ∗ = Θt

T .
Let MΘ ∈ L(KΘ) be the model of T . As MΘ is unitarily equivalent to T ,
H∞(T )∩S∞ 6= {0} if and only if H∞(MΘ)∩S∞ 6= {0}. Now, let ϕ(MΘ) ∈
S∞, ϕ 6= 0. As M∗nΘ tends WOT to 0, ϕ(MΘ)∗M∗nΘ tends SOT to 0. From
Lemma 3.2 we deduce that Θ is an inner function.

We are now interested in a converse to Theorem 3.3. Some additional
assumptions are necessary to prevent the spectrum from behaving badly.
The following lemmas concerning C0-contractions will be useful.

Lemma 3.4. Let T ∈ L(H) be a C0-contraction such that σ(T ) ∩ D is
non-empty. If λ ∈ σ(T )∩D, then the Riesz projection Pλ belongs to H∞(T ).

Proof. For an outline of proof, see [SNF67, Section III.7.1].

Now we consider C0-contractions T with compact defect DT (equiva-
lently I − T ∗T ∈ S∞). Such contractions are said to be essentially uni-
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tary with respect to Fredholm theory (because T ∈ C0, or more generally
D\σ(T ) 6= ∅, and I−T ∗T ∈ S∞ imply that T = U +K, where U is unitary
and K is compact).

Notice that for any c.n.u. contraction T such that D \ σ(T ) 6= ∅ and
I − T ∗T ∈ S∞, σ(T ) ∩ D coincides with σp(T ) and consists of an at most
countable sequence of normal (finite multiplicity) eigenvalues tending to T.
In particular, the set of so-called normal eigenvalues, σnp(T ), coincides with
σp(T ) and σ(T ) ∩ D.

Remark 3.5. If T ∈ L(H) is a c.n.u. contraction such that H∞(T ) ∩ F
6= {0} then T ∈ C0. Indeed, if ϕ(T ) ∈ F with ϕ ∈ H∞, ϕ 6= 0, then the
restriction of T to ϕ(T )H has a minimal annihilating function, say m, and
mϕ is a non-zero H∞ function annihilating T .

Now, we will see why, for an essentially unitary C0-contraction T , we
have H∞(T ) ∩ S∞ 6= {0}. We start with a lemma which will have larger
consequences. The method employed for the proof, which consists in using
an outer function in CA (H∞ functions continuous on D) equal to zero,
on a given set of Lebesgue measure zero, was introduced by B. Moore and
E. Nordgren to study the existence of compact operators in the weakly
closed algebra generated by an essentially unitary C0-operator [MN75]. An-
other ingredient of this lemma consists in the characterization of compact
Hankel operators in terms of their symbol; namely, for Φ ∈ L∞(L(H1,H2)),
the Hankel operator HΦ is compact if and only if Φ ∈ H∞(L(H1,H2)) +
C(T, S∞(H1,H2)), where C(T,X) stands for the space of X-valued continu-
ous functions on T (see [Muh69], [Muh71], [BP75]). Recall that HΦ is defined
by

HΦ : H2(H1)→ H2
−(H2) = L2(H2)	H2(H2), h 7→ P−Φh.

Lemma 3.6. Let T ∈ L(H) be a C0-contraction such that I−T ∗T ∈ S∞,
and mT the minimal function of T . Then there exists ϕ ∈ H∞ such that
ϕ(T ) 6= 0 and the Hankel operator HϕΘ∗T is compact. More precisely , we can
take ϕ = fmT /m1, where m1 is any non-trivial inner factor of mT such
that σ(m1)∩T is of Lebesgue measure zero, and f is any outer CA function
equal to zero on σ(m1) ∩ T.

Proof. Take a non-trivial factorization mT = m1m2 such that m1, m2

are inner and σ(m1) ∩ T is contained in a closed subset γ of T of Lebesgue
measure µ(γ) = 0. From a theorem of Fatou we obtain the existence of an
outer function f ∈ CA such that f |γ = 0. Set ϕ = fm2. Then ϕ/mT =
f/m1 6∈ H∞, and the minimality of mT implies that ϕ(T ) 6= 0. Now, there
exists an invariant subspace E ⊂ H of T such that m1 and m2 annihilate
T1 = T |E ∈ L(E) and T2 = PE⊥T |E⊥ ∈ L(E⊥) respectively, where PE⊥
denotes the orthogonal projection from H onto E⊥ (see [SNF67, Theorem
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III.6.3]). Moreover, there exist Θ1 ∈ H∞(L(DT ,K)), Θ2 ∈ H∞(L(K,DT ∗)),
where K is an auxiliary separable Hilbert space, such that Θ = Θ2Θ1 and
ΘT1 and ΘT2 coincide with the pure part of Θ1 and Θ2 respectively (see
[SNF67, Theorem VII.1.1 and Proposition VII.2.1]). Then, for i = 1, 2, the
function mi is a scalar multiple of ΘTi (see [Ber88, Proposition V.3.2 and
Corollary V.3.3]) and ΘTi is a two-sided inner function. The same properties
hold for Θi as Θi = ΘTi ⊕ Ui, where Ui is a unitary operator. Let Ω1 ∈
H∞(L(K,DT )) and Ω2 ∈ H∞(L(DT ∗ ,K)) be such that Θ1Ω1 = m1I and
Θ2Ω2 = m2I. Now,

ϕΘ∗ = fm2Θ
∗
1Θ
∗
2 = fΘ∗1(m2Θ

∗
2) = fΘ∗1Ω2.

The proof will be completed by showing that fΘ∗1 ∈ H∞(L(K,DT )) +
C(T, S∞(K,DT )), as this implies that HfΘ∗1 is compact, and then so is
HfΘ∗1Ω2 = HϕΘ∗ . Compactness of I − T ∗T implies that PE(I − T ∗T )|E
= I − T ∗1 T1 is compact; and thus Θ1(z) = A + K(z), z ∈ D, where A ∈
L(DT ,K) and K ∈ H∞(S∞(DT ,K)). Therefore it suffices to show that fΘ∗1
considered as a function on T is continuous at every point of T, as this fact
implies that K ∈ C(S∞(DT ,K)). As σ(ΘT1) = σ(T1) = σ(m1) ⊂ γ, the
function ΘT1 has a holomorphic continuation at every ξ ∈ T\γ, and so does
Θ1. It follows that fΘ∗1 is continuous at every ξ ∈ T\γ. Eventually, if ξ ∈ γ,
then f(ξ) = 0. As Θ∗1 is bounded on T, the continuity of f implies that of
fΘ∗1 at ξ.

Before giving a direct consequence of Lemma 3.6 we deduce the following
fact which will be useful later on (see Subsection 4.2).

Lemma 3.7. Let T ∈ (SM), T 6∈ C11, be such that I − T ∗T ∈ S∞. Then
there exists ψ ∈ H∞ such that HψΘ−1

T
is compact but

ψΘ−1
T 6∈ H∞(L(DT ∗ ,DT )).

More precisely , we can take ψ = fδ/m1, where δ is a minimal scalar multiple
of T , m1 is any non-trivial inner factor of δ such that σ(m1) ∩ T is of
Lebesgue measure zero, and f is any outer function in CA equal to zero on
σ(m1) ∩ T.

Proof. Denote by T0 the C0-part of T appearing in the C0-C11 decompo-
sition of T . This T0 is the restriction of T to H0 6= {0} as T 6∈ C11. Therefore
σ(T0) ⊂ σ(T ) and I − T ∗0 T0 = PH0(I − T ∗T )|H0 is compact. On the other
hand, the characteristic function of T0 is the pure part of Θinn (see [SNF67,
Theorem VII.1.1 and Proposition VII.2.1]). If there exists h ∈ H∞ \ {0}
such that h(T ) = 0, then T is in fact C0 (i.e. T coincides with T0), and
the result is given by Lemma 3.6. Thus we can suppose that h(T ) 6= 0 for
every h ∈ H∞ \ {0}. Lemma 3.6 applied to T0 gives ϕ = fmT0/m1 such
that HϕΘ∗T0

is compact. Let ΘT = ΘoutΘinn be the outer-inner factorization
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of ΘT . In fact ΘT0 coincides with the pure part of Θinn (see [SNF67, The-
orem VII.1.1 and Proposition VII.2.1]); thus HϕΘ∗inn

is also compact. Let δ
be a minimal scalar multiple of ΘT , that is, δ = mT0δout with δout outer. Set

ψ = δoutϕ = f
mT0

m1
δout = f

δ

m1
.

Then ψΘ−1
T = ϕΘ∗innδoutΘ

−1
out; thus HψΘ−1

T
is compact. Further, if we sup-

pose that ψΘ−1
T = F ∈ H∞(L(DT ∗ ,DT )), then ψI = ΘTT = FΘT . There-

fore, ψ = δoutmT0/m1 is a scalar multiple of ΘT , which is impossible since
δoutmT0 is a minimal scalar multiple.

The first part of the following theorem is mostly known [Nor75] but we
give a proof for the sake of completeness.

Theorem 3.8. Let T ∈ L(H) be a C0-contraction such that I − T ∗T
∈ S∞. Then H∞(T ) ∩ S∞ 6= {0}. Moreover , H∞(T ) ∩ F 6= {0} if and only
if σ(T ) ∩ D 6= ∅.

Proof. To prove the first assertion we use Lemma 3.6 and get a function
ϕ ∈ H∞ such that ϕ(T ) 6= 0 and HϕΘ∗T is compact. As T is C0, its charac-
teristic function Θ is two-sided inner. Then PΘ = ΘP−Θ∗ and, identifying
T with its model operator MΘ, we deduce that ϕ(T ) = ΘHϕΘ∗T |KΘ is com-
pact. Now prove the second assertion. If H∞(T ) ∩ F 6= {0}, then T has
a non-trivial finite-dimensional invariant subspace, and therefore an eigen-
value. The converse is an immediate consequence of Lemma 3.4. Indeed, if
λ ∈ σ(T ) ∩ D, then Pλ ∈ H∞(T ) ∩ F .

Yet another proof is to observe directly that

mT (T ) = bλ(T )
mT

bλ
(T ) = 0,

whence
mT

bλ
(T ) ⊂ ker bλ(T ),

and ker bλ(T ) is finite-dimensional as λ is necessarily of finite type. Here bλ
denotes the elementary Blaschke factor,

bλ(z) =
|λ|
λ

λ− z
1− λz

.

Corollary 3.9. Let T ∈ L(H) be an (SM)-contraction such that I −
T ∗T ∈ S∞. Then H∞(T )∩S∞ 6= {0} if and only if ΘT is a two-sided inner
function.

Proof. If ΘT is inner, then T ∈ C0 and the result follows from Theorem
3.8. The converse is a consequence of Theorem 3.3.

Now, we consider C00-contractions T (that is, contractions having a two-
sided inner characteristic function) subject to restrictions of “smoothness” of
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the defect operator DT = (I−T ∗T )1/2. The following result means that only
the trace class smoothness of D2

T can guarantee the existence of compact
H∞ functions of T .

Theorem 3.10. Let S ⊂ S∞ be a symmetrically normed ideal of L(H).
The following are equivalent :

(i) For every c.n.u. contraction T ∈ C00 such that D \ σ(T ) 6= ∅ and
I − T ∗T ∈ S, we have

H∞(T ) ∩ S∞ 6= {0}.
(ii) S = S1.

We refer to [GK69] for properties of symmetrically normed ideals of
L(H). For the proof of Theorem 3.10 we need the following notion. Let
σ ⊂ D. Then σ is called a determining subset for (the H∞ norm on) D if
‖f‖∞ = supz∈σ |f(z)| for all f ∈ H∞ = H∞(D). The following lemma is a
result by N. K. Nikolski and S. A. Vinogradov (see [Nik71]).

Lemma 3.11. Suppose 0 < rn < 1 (n ≥ 1) satisfy lim rn = 1. There
exists a determining sequence for D, say (λn)n≥1, such that |λn|=rn (n≥1)
if and only if

∑
n≥1(1− rn) =∞.

Proof of Theorem 3.10. The fact that property (i) is true when S = S1

can be deduced from Theorem 3.8. Indeed, in this case T is a weak con-
traction in C00, and therefore T ∈ C0. To prove that (i) implies (ii) sup-
pose that S 6= S1. Take A ∈ S \ S1 and let A =

∑
n≥0 sn〈·, xn〉yn be a

Schmidt decomposition of A, that is, (sn)n≥0 is a sequence of positive num-
bers decreasing to 0, and (xn)n≥0 and (yn)n≥0 are orthonormal families in
H. As A 6∈ S1, we have

∑
n≥0 sn = ∞, and hence sn 6= 0 for all n ≥ 0.

With S being an ideal, we can suppose that (xn)n≥0 and (yn)n≥0 coincide
with the same orthonormal basis (en)n≥0 of H. Define T = diag(λn)n≥0

with respect to this basis, where we choose (λn)n≥0 ⊂ D to be a deter-
mining subset for D satisfying |λn|2 = 1 − sn, which is possible due to
Lemma 3.11, where we take rn =

√
1− sn. Under these conditions, T is

a c.n.u. C00-contraction and I − T ∗T =
∑

n≥0 sn〈·, en〉en ∈ S. But if
ϕ ∈ H∞, then ϕ(T ) = diag(ϕ(λn))n≥0, thus ϕ(T ) ∈ S∞ if and only if
limn→∞ ϕ(λn) = 0, which implies that ϕ = 0. Indeed, if (λn)n≥0 ⊂ D is
a determining sequence for D, then so is (λn)n≥N ⊂ D for every N ≥ 0.
Therefore ‖ϕ‖∞ = supn≥N |ϕ(λn)|, which tends to 0 as N →∞.

4. Smooth operators in the commutant

4.1. Finite-rank operators in the commutant

Theorem 4.1. Let T ∈ L(H) be a c.n.u. contraction such that D \
σ(T ) 6= ∅. Suppose I − T ∗T ∈ S∞. Then {T}′ ∩ F 6= {0} if and only if
D ∩ σ(T ) is non-empty. The condition D \ σ(T ) 6= ∅ cannot be omitted.
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Proof. First suppose that {T}′ ∩F 6= {0}. Let A ∈ {T}′ ∩F , A 6= 0. Set
E = AH ⊂ H. Then E 6= {0} is a finite-dimensional invariant subspace of T .
Therefore, T |E ∈ L(E) admits an eigenvalue λ. Then λ is also an eigenvalue
of T and has to be in D.

Now suppose D ∩ σ(T ) 6= ∅. Then σnp(T ) = σp(T ) = D ∩ σ(T ) 6= ∅,
therefore there exists λ ∈ D which is a normal eigenvalue of T . Consequently,
the corresponding Riesz projection Pλ 6= 0 is of finite rank. As Pλ belongs
to {T}′, we deduce that {T}′ ∩ F cannot be reduced to {0}.

Finally, consider the case when T = S, the shift operator on H2. Then
I − S∗S = 0 ∈ S∞ but σ(T ) ⊃ D. Moreover {S}′ = H∞(S) obviously
contains no non-zero finite-rank operator, and even no non-zero compact
operator.

4.2. Compact operators in the commutant. First, we note that the con-
dition {T}′ ∩ S∞ 6= {0} is not in general sufficient for ΘT to be a two-sided
inner function (in contrast to the case of H∞(T ), see Theorem 3.3). For
example, it is easy to see that if Θ is a scalar H∞ function and Θ = 0, then
MΘ can be identified with S ⊕ S∗, where S is the shift operator on H2,
and (

0 0
Γϕ 0

)
∈ {MΘ}′ ∩ S∞ for every ϕ ∈ H∞ + C(T)

where Γϕ denotes the Hankel operator on H2 with symbol ϕ. Thus we then
have {T}′ ∩ S∞ 6= {0}.

Now, we give a characterization of operators Y on H2(DT ∗)⊕∆L2(DT )
given by formula (1) which are liftings of compact operators in {MΘ}′.

Lemma 4.2. Let T ∈ L(H) be a c.n.u. contraction and Θ = ΘT . If
X ∈ {MΘ}′ is represented via the CLT by X = PΘY |KΘ , then X is compact
if and only if the operator PΘY acting on

(
H2(DT ∗)

clos∆L2(DT )

)

is compact.

Proof. This is an immediate consequence of the condition

Y

(
Θ
∆

)
H2(DT ) ⊂

(
Θ
∆

)
H2(DT ).

Lemma 4.3. Let T ∈ L(H) be an (SM)-contraction and Θ = ΘT . Let
X ∈ {MΘ}′ be represented via the CLT by X = PΘY |KΘ , where Y is the
lifting of X with parameters A1, B1, C1 given by formula (1). If X is
compact , then C1 = 0.
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Proof. If X is compact, it follows from Lemma 4.2 that PΘY is compact.
Then PΘY |0⊕∆L2(DT ) is also compact. If g ∈ ∆L2(DT ), then

Y

(
0
g

)
=
(

0
C1g

)
.

According to Lemma 3.1 we have
∥∥∥∥PΘY

(
0
g

)∥∥∥∥
2

= ‖ΘC1g‖2 + ‖P−∆C1g‖2 ≥ ‖ΘC1g‖2.

Therefore the map g ∈ ∆L2(DT ) 7→ ΘC1g is compact. Let δ ∈ H∞ be a
scalar multiple of Θ, and Ω ∈ H∞(L(DT ∗ ,DT )) be such that ΩΘ = δ. Then
g 7→ ΩΘC1g = δC1g is compact, which implies that C1(ξ)∆(ξ) = 0 for a.e.
ξ ∈ T. Indeed, if there exists g0 such that ‖δ(ξ)C1(ξ)g0(ξ)‖ ≥ ε > 0 on a
set of positive measure then the operator h 7→ δC1g0h cannot be compact.
Therefore C1 = 0 as C1 ∈ L∞(L(∆L2(DT ))).

Lemma 4.4. Let T ∈ L(H) be an (SM)-contraction and Θ = ΘT . Let
X ∈ {MΘ}′ be represented via the CLT by X = PΘY |KΘ , where Y is the
lifting of X with parameters A1, B1, C1 given by (1). If C1 = 0 then

(6) PΘY =
(
Θ
∆

)
P−Θ

−1A∗P∗,

where P∗ stands for the orthogonal projection from H2(DT ∗) ⊕ ∆L2(DT )
onto H2(DT ∗) and A∗ ∈ H∞(L(DT ∗)) is such that Θ−1A∗Θ ∈ H∞(L(DT )).
Conversely , if PΘY satisfies (6), with A∗∈H∞(L(DT ∗)) such that Θ−1A∗Θ
∈ H∞(L(DT )), then X = PΘY |KΘ ∈ {MΘ}′.

Proof. Suppose X ∈ {MΘ}′ ∩ S∞ and Y is a lifting of X with pa-
rameters A,A∗ and B given by (2). The fact that C1 = 0 in (1) means
that ∆A∆ = BΘ. As T ∈ (SM), Θ is invertible a.e. on T and we can
write B = ∆A∆Θ−1. Then we use the following two intertwining relations:
ΘA = A∗Θ and Θ∆ = ∆∗Θ. We deduce thatB = ∆AΘ−1∆∗ = ∆Θ−1A∗∆∗
and B∆∗ = ∆AΘ−1(1−ΘΘ∗) = ∆A(Θ−1−Θ∗). Therefore ∆AΘ∗+B∆∗ =
∆AΘ−1 = ∆Θ−1A∗ and Y has the following form:

(7) Y =
(

A∗ 0
∆Θ−1A∗ 0

)
.

We compute PΘY using the block matrix decomposition (5) and the follow-
ing identities:

1−ΘP+Θ
∗ −ΘP+∆

2Θ−1 = Θ(1− P+Θ
∗Θ − P+∆

2)Θ−1

= Θ(1− P+)Θ−1 = ΘP−Θ
−1,

−∆P+Θ
∗ + (1−∆P+∆)∆Θ−1 = ∆(−P+Θ

∗Θ + 1− P+∆
2)Θ−1

= ∆(1− P+)Θ−1.
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The result follows. The converse is clear because Y , as defined by (7), with
A∗ ∈ H∞(L(DT ∗)) such that Θ−1A∗Θ ∈ H∞(L(DT ∗)), satisfies the re-
quired conditions for Y to be a lifting.

Corollary 4.5. Let T ∈ L(H) be an (SM)-contraction and Θ = ΘT .
Let X ∈ {MΘ}′. Then X is compact if and only if

(8) X =
(
Θ
∆

)
P−Θ

−1A∗P∗|KΘ

for some A∗∈H∞(L(DT ∗)) satisfying Θ−1A∗Θ ∈ H∞(L(DT ∗)) and Θ−1A∗
∈ H∞(L(DT ∗ ,DT )) + C(T, S∞(DT ∗ ,DT )), where P∗ stands for the orthogo-
nal projection from H2(DT ∗)⊕∆L2(DT ) onto H2(DT ∗). In this case, X 6= 0
if and only if Θ−1A∗ 6∈ H∞(L(DT ∗ ,DT )).

Proof. If X is compact we get the expression of X by Lemmas 4.2 and
4.4. As the operator

(
Θ
∆

)
is an isometry the compactness of such an X

is equivalent to the compactness of HΘ−1A∗ and also to Θ−1A∗ belonging
to H∞(L(DT ∗ ,DT )) + C(T, S∞(DT ∗ ,DT )). Moreover, X = 0 is equivalent
to P−Θ−1A∗ = 0. Conversely, if X is defined by (8) the last assertion of
Lemma 4.4 tells us that X is in {MΘ}′.

Remark 4.6. The conclusions of Lemmas 4.3 and 4.4 and of Corollary
4.5 remain valid if we replace the condition T ∈ (SM) by the weaker condi-
tion that ΘT (ξ) be invertible a.e. on T.

For T ∈ (SM), the following theorem gives a necessary and sufficient
condition for {T}′ ∩ S∞ 6= {0} in terms of ΘT , namely ΘT must be neither
outer nor ∗-outer.

Theorem 4.7. Let T ∈ L(H) be a c.n.u. contraction. If T ∈ C1. ∪ C.1
(equivalently ΘT is either outer or ∗-outer) then {T}′∩S∞ = {0}. If more-
over T ∈ (SM) and I − T ∗T ∈ S∞, then the converse is also true, and in
fact , {T}′ ∩ S∞ = {0} implies that T ∈ C11.

Proof. To prove the first assertion suppose that there exists a non-zero
K ∈ {T}′ ∩ S∞. As Tn tends WOT to 0, we deduce that KT n tends SOT
to 0. But KTn = TnK for all n ≥ 0. Therefore Tn|ImK tends SOT to 0. As
ImK 6= {0}, T 6∈ C1.. The same reasoning applies to T ∗, thus T ∗ 6∈ C1., or
equivalently T ∈ C.1.

Now suppose that T ∈ (SM), I −T ∗T ∈ S∞ and T 6∈ C11. As T ∈ (SM),
that means T 6∈ C1. ∪C.1. Therefore Θ = ΘT is not outer. By Corollary 4.5,
it remains to find A∗ ∈ H∞(L(DT ∗)) such that Θ−1A∗Θ ∈ H∞(L(DT ))
and Θ−1A∗ ∈ H∞(L(DT ∗ ,DT )) + C(T, S∞(DT ∗ ,DT )), but P−Θ−1A∗ 6= 0.
But we know from Lemma 3.7 that there exists u ∈ H∞ such that uΘ−1 ∈
H∞(L(DT ∗ ,DT )) + C(S∞(DT ∗ ,DT )) with uΘ−1 6∈ H∞(L(DT ∗ ,DT )). The
choice of A∗ = uI gives the result.
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4.3. Finite-rank approximation of compact operators in the commutant.
In this subsection we are interested in the density of finite-rank operators in
the commutant of a given c.n.u. contraction T ∈ L(H) in the space {T}′∩S∞
of compact operators from the commutant.

If B ∈ L(H) and λ ∈ σp(B), we denote by Cλ(B) =
⋃
N≥1 ker(B − λ)N

the root manifold corresponding to the eigenvalue λ of B. We denote by

(9) C(B) =
⋃

λ∈σp(B)

Cλ(B)

the set consisting of all generalized eigenvectors (root vectors) of B. Now B
is said to be complete if the family of generalized eigenvectors of B is total
in X, so that X = closC(B).

Let T ∈ L(H) be a c.n.u. contraction, and define ET to be the total
image of {T}′ ∩ S∞, that is,

(10) ET = clos
(⋃
{XH : X ∈ {T}′ ∩ S∞}

)
.

Then ET is hyperinvariant for T , that is, invariant for every X ∈ {T}′. We
set TE = T |ET .

Lemma 4.8. In the notation above, if {T}′ ∩F is SOT dense in {T}′ ∩
S∞ then TE is complete.

Proof. Let X ∈ {T}′∩S∞ and (Xn)n≥1 ⊂ {T}′∩F be such that Xnx→
Xx for all x ∈ H. For every n ≥ 1, XnH is a finite-dimensional subspace of
ET , invariant for T and TE . Therefore, XnH is generated by some general-
ized eigenvectors of TE . Thus XnH ⊂ spanC(TE) and ET ⊂ spanC(TE).

Lemma 4.9. Let T ∈ L(H) be a c.n.u. contraction such that D\σ(T ) 6= ∅
and I − T ∗T ∈ S∞, TE = T |ET . Then λ ∈ σp(T ) if and only if λ ∈
σp(TE) and for all λ ∈ σp(T ), Cλ(T ) = Cλ(TE). Therefore spanC(TE) =
spanC(T ).

Proof. If D \ σ(T ) 6= ∅ and I − T ∗T ∈ S∞, then σ(T ) ∩ D = σp(T ) =
σnp(T ) and for every λ ∈ σp(T ), the Riesz projection Pλ is of finite rank
and Cλ(T ) = PλH. As Pλ ∈ {T}′, Cλ(T ) ⊂ ET and Cλ(T ) = Cλ(TE).

The following corollary is an obvious consequence of Lemmas 4.8 and
4.9.

Corollary 4.10. Let T ∈ L(H) be a c.n.u. contraction such that D \
σ(T ) 6= ∅ and I − T ∗T ∈ S∞, TE = T |ET . If {T}′ ∩ F is SOT dense in
{T}′∩S∞ then ET = spanC(T ), that is, ET is generated by the generalized
eigenvectors of T .

Recall that for a c.n.u. contraction T ∈ L(H),

(11) H0(T ) = {x ∈ H : ‖Tnx‖ → 0}.
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Recall also that if T ∈ (SM) then the C0. part T0 = T |H0(T ) of T is in fact a
C0-contraction. Moreover ΘT0 is the pure part of the inner factor Θinn of ΘT
and the minimal function mT0 of T0 is the minimal scalar multiple of Θinn.

Lemma 4.11. Let T ∈ L(H) be an (SM)-contraction. Let ET and H0(T )
be defined by (10) and (11). Then ET ⊂ H0. In particular TE = T |ET is a
C0-contraction and mTE divides mT0 .

Proof. Let X ∈ {T}′ ∩ S∞. We know that Tn tends WOT to 0. But
TnX = XTn and X is compact, therefore TnX = XTn tends SOT to 0.
Thus XH ⊂ H0(T ). Consequently, ET ⊂ H0(T ). As ET is invariant for
T , it is invariant for T0, thus TE = T0|ET is a C0-contraction and m(TE)
divides mT (see [SNF67, Proposition III.6.1]).

The following theorem is a completed version of the theorem given in
Section 1.

Theorem 4.12. Let T ∈ L(H) be an (SM)-contraction such that I −
T ∗T ∈ S∞. Set Θ = ΘT , and let Θ = ΘoutΘinn be the outer-inner factoriza-
tion of Θ. Let ET and H0(T ) be defined by (10) and (11), and TE = T |ET .
The following are equivalent :

(i) {T}′ ∩ F is dense in {T}′ ∩ S∞.
(ii) {T}′ ∩ F is SOT dense in {T}′ ∩ S∞.
(iii) {MΘinn}′ ∩ F is (SOT ) dense in {MΘinn}′ ∩ S∞.
(iv) Θinn has a Blaschke scalar multiple.
(v) T0 = T |H0 is complete.
(vi) The minimal function mTE of TE is a Blaschke product.

Moreover , if (i)–(vi) are satisfied , then we have the following linear approx-
imation:

lim
n→∞

‖Bn(T )A−A‖ = 0, ∀A ∈ {T}′ ∩ S∞,

where B =
∏
k≥1 bλk is the minimal scalar multiple of Θinn, Bn =

∏
k>n bλk ,

and Bn(T )A ∈ {T}′ ∩ F for all n ≥ 1.

Remark 4.13. (1) Let T ∈ L(H) be a c.n.u. contraction such that D \
σ(T ) 6= ∅ and I − T ∗T ∈ S∞, and let T0 be the C0. part of T . Then
C(T ) = C(T0) = C(TE), in other words the generalized eigenvectors of T ,
T0 and TE are all the same. Indeed, if λ ∈ σ(T ), then the associated Riesz
projection Pλ is in {T}′ ∩F . Thus Cλ(T ) = ImPλ ⊂ E and C(λ) ⊂ E. The
fact that E is invariant gives the conclusion.

(2) In the situation of Theorem 4.12 this means that mT0 and mTE can
differ within a singular inner factor only. If moreover mT0 is a Blaschke
product, then so is mTE (because mTE divides mT0), therefore mTE = mT0

and ET = spanC(TE) = spanC(T0) = H0(T ) (as a C0-contraction having
a Blaschke minimal function is complete), in other words T0 = TE .
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(3) It is likely that the latter equality remains true even if mT0 is not
a Blaschke product. Nevertheless we can only prove that mT0 = mTE for
every (SM)-contraction with compact defect.

Proof of Theorem 4.12. We prove that (iv)⇔(v)⇒(vi)⇒(i)⇒(ii)⇒(iv).
The equivalence (iii)⇔(iv) then follows from the equivalence (i)⇔(ii)⇔(iv)
applied to MΘinn .

The equivalence (v)⇔(iv) is clear because a C0-contraction is complete
if and only if its minimal function is a Blaschke product, and the minimal
function of T0 is the minimal scalar multiple of Θinn.

We shall see now that (vi)⇒(i). Let mTE = B =
∏
k≥1 bλk and Bn =∏

k>n bλk , n ≥ 1. As |Bn(ξ)| = 1 a.e. on T we have
�

T
|Bn(ξ)− 1|2 dµ(ξ) =

�

T
|Bn(ξ)|2 dµ(ξ) + 1− 2<

( �

T
Bn(ξ) dµ(ξ)

)

= 2(1−Bn(0))→ 0.

This implies that ‖Bn(T )x−x‖ → 0 for every x ∈ ET , so ‖Bn(T )X−X‖ =
‖XBn(T )−X‖ → 0 for every X ∈ {T}′ ∩ S∞. But Bn(T )X ∈ {T}′ ∩ F as

Bn(T )XH ⊂ ker
B

Bn
(T ) ⊂ span{Cλk(T ) : 1 ≤ k < n}

and each Cλk(TE) is finite-dimensional (all eigenvalues are of finite type).
This also proves the last assertion of the theorem.

(i)⇒(ii) is obvious. Now, we show that (ii)⇒(iv). Suppose (ii) and sup-
pose that the minimal scalar multiple of Θ has a non-trivial singular part.
We shall work with the model MΘ of T to show that this leads to a con-
tradiction. We know that if A ∈ {T}′ ∩ F , then AH is a finite-dimensional
invariant subspace of T , and hence AH ⊂ C(T ) and B(T )A = 0, where
C(T ) is defined according to (9). Condition (ii) implies that B(MΘ)A = 0
for every A ∈ {MΘ}′ ∩ S∞.

Let δ be a minimal scalar multiple of Θ. Assuming that δ contains a non-
trivial singular inner factor we obtain a contradiction to the above property
of B(MΘ). Let m1 be a non-trivial singular factor of δ such that σ(m1) has
Lebesgue measure zero, and f ∈ CA an outer function equal to zero on σ(m1).
According to Lemma 3.7, if we set ψ = fδ/m1 then HψΘ−1 is compact.
Then, Corollary 4.5 says that the operator X =

(
Θ
∆

)
P−Θ−1ψP∗|KΘ is in

{MΘ}′ ∩ S∞. Suppose ψΘ−1 = G ∈ H∞(L(DT ∗ ,DT )), then

ψI = f
δ

m1
I = ΘG,

and hence fδ/m1 is a scalar multiple of Θinn, which is impossible since δ is
a minimal scalar multiple. Therefore, ψΘ−1 6∈ H∞(L(DT ∗ ,DT )).
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Now, consider B(MΘ)X. As

Y =
(

ψI 0
ψ∆Θ−1 0

)

is a lifting of X (see the proof of Lemma 4.4), a lifting of B(MΘ)X is
(

Bψ 0
Bψ∆Θ−1 0

)
.

Thus

B(MΘ)X =
(
Θ
∆

)
P−Θ

−1BψP∗|KΘ .

Clearly, BψΘ−1 is still in H∞(L(DT ∗ ,DT )) + C(T, S∞(DT ∗ ,DT )) but is
not in H∞(L(DT ∗ ,DT )) by the same minimality reason as above. Thus
B(MΘ)X is a non-zero operator. This gives a contradiction to the above
property of B(MΘ).

5. Schatten–von Neumann operators in the commutant. The
following theorem contains some sufficient conditions for {T}′ ∩ Sp 6= {0}.
The meaning of these conditions is that there exist some part of the operator
T which has “thin” spectrum. To express this “thinness” we make use of the
notions of maximal spectral subspace and of Beurling–Carleson subsets of
the unit circle. Recall that, for a compact set σ ⊂ C, the maximal spectral
subspace H(σ) over σ is defined by the following requirements:

(i) H(σ) ⊂ H is an invariant subspace for T such that σ(T |H(σ)) ⊂ σ;
(ii) if E is another T -invariant subspace with σ(T |E) ⊂ σ then E ⊂

H(σ).

It is known that for c.n.u. contractions of the class (SM), the maximal
spectral subspaces H(σ) exist for all closed sets σ ⊂ D (see [SNF67]). More-
over, if δ is a minimal scalar multiple of ΘT and σ∩T is a subset of Lebesgue
measure 0, then H(σ) 6= {0} if and only if δσ 6= 1, where

δσ(z) =
( ∏

λn∈σ∩D
bλn(z)

)
exp
(
−

�

σ∩T

ξ + z

ξ − z dµδ(ξ)
)
,

and

δ =
(∏

n≥1

bλn(z)
)

exp
(
−

�

T

ξ + z

ξ − z dµδ(ξ)
)

is the canonical factorization of δ (the measure µδ = log(1/|δ|)dµ + µs
δ

contains both absolutely continuous and singular parts); here µ denotes the
Lebesgue measure on T. Therefore, for a subset σ ⊂ T of Lebesgue measure
zero, H(σ) 6= {0} if and only if µs

δ(σ) > 0.
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Recall also that a closed subset σ ⊂ T is called a Beurling–Carleson set
if �

T
log(dist(ξ, σ)) dµ(ξ) > −∞,

or equivalently, if µ(σ) = 0 and
∑

k≥1 |Ik| log |Ik|−1 < ∞, where (Ik)k≥1 is
the sequence of complementary arcs of σ. For more information on Beurling–
Carleson sets see, for example, V. Havin and B. Jöricke [HJ94, Section II.3.1].

Theorem 5.1. Let T be an (SM)-contraction such that I − T ∗T ∈ Sp
with 1 ≤ p < ∞. Then {T}′ ∩ Sp 6= {0} as soon as one of the following
properties is satisfied :

(i) σp(T ) 6= ∅, or equivalently kerΘ(λ) 6= {0} for some λ ∈ D.
(ii) There exists a Beurling–Carleson set σ ⊂ T such that H(σ) 6= {0}.

Moreover if T ∈ C0 then H∞(T ) ∩ Sp 6= {0}.
Before starting the proof, we give modified versions of Lemmas 3.6 and

3.7 for the Sp classes.

Lemma 5.2. Let T ∈ L(H) be a C0-contraction such that I − T ∗T ∈ Sp
(1 ≤ p <∞) and mT the minimal function of T . Assume that there exists a
Beurling–Carleson set σ ⊂ T such that (mT )σ is non-constant. Then there
exists ϕ ∈ H∞ such that ϕ(T ) 6= 0 and the Hankel operator HϕΘ∗T belongs
to Sp. More precisely , we can take ϕ = fmT /m1, where m1 = (mT )σ and
f is any outer C∞A function equal to zero on σ.

For the proof the following characterization of Hankel operators from
the class Sp in terms of their symbols is used. Let Φ ∈ L∞(L(H1,H2)) and
1 ≤ p < ∞. Then HΦ ∈ Sp if and only if P−Φ ∈ B1/p

p (Sp), where B1/p
p (Sp)

denotes the Besov class with values in Sp (see [Pel82]).

Proof of Lemma 5.2. The proof is similar to that of Lemma 3.6. The
only difference is that f can be chosen to be an outer function in C∞A =
CA ∩C∞ such that |f(ξ)| = o((dist(ξ, σ))N) as ξ tends to σ, for every N ≥ 1
(see [HJ94, Section II.3.1] for the existence of such a function). Here C∞
stands for the space of infinitely differentiable functions on T. We denote
by C∞(X) the space of X-valued C∞ functions. Then, in the notation of
Lemma 3.6, fΘ1(z)∗ = fA∗ + fK(z)∗, where fΘ∗1 ∈ C∞(L(K,DT )) and
consequently K ∈ C∞(Sp(DT ,K)). On the other hand, it is easy to see that
C∞(X) ⊂ B1/p

p (X) for any Banach space X and any 0 < p <∞. Therefore,
by Peller’s theorem the Hankel operator HfΘ∗1 is in Sp, and the same holds
for HfΘ∗ .

Lemma 5.3. Let T ∈ (SM), T 6∈ C11, be such that I − T ∗T ∈ Sp, 1 ≤ p
<∞, and let δ be a minimal scalar multiple of T . Assume that there exists
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a Beurling–Carleson set σ ⊂ T such that δσ is non-constant. Then there
exists ψ ∈ H∞ such that HψΘ−1

T
is in Sp but ψΘ−1

T 6∈ H∞(L(DT ∗ ,DT )).
More precisely , we can take ψ = fδ/m1, where m1 = (δinn)σ, δinn being the
inner part of δ, and f is any outer C∞A function equal to zero on σ.

Proof. The proof follows that of Lemma 3.7 with the obvious modifica-
tions, in particular Lemma 3.6 is replaced by Lemma 5.2.

Proof of Theorem 5.1. If (i) is satisfied, then the Riesz projection Pλ
belongs to {T}′ ∩ F . If (ii) is satisfied, identify T with its model operator
MΘ and define X by

X =
(
Θ
∆

)
P−Θ

−1ψP∗|KΘ ,

where ψ is defined as in Lemma 5.3. Then, as in the proof of Theorem 4.7,
X is a compact operator in {T}′ which is also non-zero and in Sp due to
Lemma 5.3.

In the case when Θ is a scalar H∞ function, Theorem 5.1 extends to all p,
0 < p < ∞, as the characterization of Hankel operators of class Sp is valid
for 0 < p <∞ in the case when the symbols are scalar-valued (see [Pel83]).
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Québec, Canada G1K 7P4
E-mail: pvitse@mat.ulaval.ca

Received October 1, 2001
Revised version June 13, 2002 (4815)


