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Smooth operators in the commutant of a contraction
by

PASCALE VITSE (Québec)

Abstract. For a completely non-unitary contraction 7', some necessary (and, in cer-
tain cases, sufficient) conditions are found for the range of the H calculus, H*°(T'), and
the commutant, {T'}’, to contain non-zero compact operators, and for the finite rank oper-
ators of {T'} to be dense in the set of compact operators of {T'}’. A sufficient condition is
given for {T'}’ to contain non-zero operators from the Schatten-von Neumann classes Sp.

1. Introduction. For a given Hilbert space contraction T, we study
how “smooth” (compact, etc.) operators in the commutant {T} = {4 :
AT = TA} can be. The problem arises in several applications in control
theory, vector-valued Hankel operators or the theory of model operators.
Here it is treated in the framework of the Sz.-Nagy-Foiag functional model
and some answers are proposed in the language of the characteristic function
Ot of the contraction T'.

Let 'H be a separable Hilbert space, and L(H) the space of bounded lin-
ear operators on H. Let F and S, denote the subspaces of L(H) consisting
respectively of the finite-rank and compact operators. Let .S, (0 < p < 00)
denote the Schatten—von Neumann class consisting of the compact opera-
tors on H for which the sequence of singular numbers belongs to [P. Only
completely non-unitary (c.n.u.) contractions are considered. The questions
studied in this paper are the following. Let T" be a c.n.u. contraction on H.
When does {T'}’ contain non-zero finite-rank operators, non-zero compact
operators, or non-zero operators from the class S,? When is {T'}'NF dense in
{T}' N Sx? Some of these questions are also considered for the range space
of the functional calculus H>*(T) = {¢(T) : ¢ € H*>} instead of {T}'.
Clearly, H>(T) c {T}'.

For contractions of some specific classes, several facts are known about
the above problems. For instance, for operators from the class Cy (that is, for
c.n.u. contractions 7" for which the H* calculus ¢ — ¢(T") has a non-zero
kernel) the following is proved:
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(i) (Sz.-Nagy, [SN74]) Always, {T'}' N Se # {0}, but it may happen
that H*(T) N Soc = {0}.

(ii) (Nordgren, [Nor75]) If I —T*T € S then H*(T)N S # {0}; and
moreover, there exists a sequence (¢ ),>1 C H™ such that [|¢,|s < 1,
on(T) € Sy for n > 1, and (WOT)-lim¢,,(T) = I. Here I denotes the
identity operator and WOT stands for Weak Operator Topology.

Before answering the above questions, we recall some elements of the
Sz.-Nagy—-Foiag model. First, it is worth mentioning that every Hilbert space
contraction is an orthogonal sum of a unitary operator and a c.n.u. contrac-
tion, and that for the unitary part the questions related to the commutant
and functional calculus can be easily answered via the von Neumann spec-
tral theorem. In what follows, T is the unit circle of the complex plane,
T={z€C:|z| =1}, and D is the unit disc, D ={z € C: |z| < 1}.

For a given c.n.u. contraction 7', the main object of the functional model
approach is the characteristic function © = Op defined by

O(z) = [T + zDp-(I — 2T*) "' Drllp,, z€D.

Here Dy = (I — T*T)Y/? and D+ = (I — TT*)'/? are the defect operators
of T, Dr = clos Dr'H and Drp« = clos Dp+H are the defect spaces of T.
In fact, © is an analytic contractive-valued (||@(z)|| < 1, z € D) function
from Dr to Dr-; in particular, © belongs to H*°(L(Dr,Dr+)). The main
theorem of the model theory says that T is unitarily equivalent to the model
operator Mg defined on the model space Ko by the following formulas:

2
Ko = <clo§IA(12L)2T(2T)) © <Z>H2(DT)’
Mg € L(K@), M@f = P@Zf, f € Ko.

Here, for a Hilbert space E, L?(E) denotes the Bochner-Lebesgue space
of square integrable E-valued strongly measurable functions on T; H2(E)
denotes the Hardy space of E-valued analytic functions, H2(E) C L?(E);
A is the defect operator of @ defined by A(¢) = (I — O(£)*O(€))/?, which
for almost every £ € T is a bounded L(Dr)-valued function on T, that is,
A € L*(L(Dr)); and, finally, Po denotes the orthogonal projection from
L?(Dy+ @ Dr) onto Kg. More details on the model operators are given in
Section 1 below and a complete exposition can be found in the book [SNF67].
In principle, the notation here follows that of this book.

Some of our answers are valid for the general situation of an arbitrary
c.n.u. contraction 7', others for particular classes of contractions, mainly in
the case when the characteristic function has a scalar multiple. The following
theorems are the main results of this paper. T is always a c.n.u. contraction.
Inner and outer functions and the different classes of contractions are defined
in Subsection 2.2 below.
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THEOREM. Assume that H®(T) N Ss # {0}. Then O is a two-sided
inner function. In the case when T is an (SM)-contraction and I—T*T € Sy
the converse is also true.

This theorem reflects a feeling that the outer factor of @1 corresponds
to a part of the operator similar in some sense to a unitary one. It is well
known that, when a unitary operator has absolutely continuous spectrum,
the only compact operator in the commutant is zero.

The following result means that only the trace-class smoothness of D%
can guarantee the existence of non-zero compact H > functions of 7. Here
o(T) denotes the spectrum of T, and o, (7") the point spectrum of T', that
is, the set of eigenvalues of T'.

THEOREM. Let & C S be a symmetrically normed ideal of L(H). The
following are equivalent:

(i) For every c.n.u. contraction T € Cog such that D\o(T) is non-empty
and I —T*T € &, we have

H>®(T) N Sse # {0}.
(i) & = 5.

Passing to the commutant {7}’ we first prove that if I — T*T € S, and
D\ o(T) # 0, then {T}' N F # {0} if and only if D N o(T) is non-empty.
Next, we obtain the following criterion.

THEOREM. Let T € L(H) be a c.n.u. contraction. If T € Cy. U C 4
(equivalently, Or is either outer or x-outer) then {T} N S = {0}. If,
moreover, T € (SM) and I — T*T € S, then the converse is also true,
and in fact, {T} N Se = {0} implies that T € C11 (equivalently, Or is
two-sided outer).

In particular, if © € H* is a non-zero contractive-valued (scalar) func-
tion, then {Mg}' NS, = {0} if and only if © is outer, and H*>*(Mg) N S
= {0} if and only if © is not inner.

Next, we pass to the question of the density of {T} N F in {T} N S
for T' € (SM) such that I —T*T € S . It can be formulated in terms of the
restriction Ty of T' to the invariant subspace Ho(7T) = {x € H : ||T"z|| — 0}.
Then Tj is a Cy-contraction and density holds if and only if T} is complete
(equivalently my, is a Blaschke product). In this case we always have a
linear approximation process, and Ho(7') coincides with E7 = clos(| J{XH :
X e{T} NSx}).

It is likely that Ho(T') = Er for any (SM)-contraction with I—T*T € S.
But at the moment we can only prove that mg, = mr,, where Tg = T|g,..

The last result deals with operators in the Schatten—von Neumann
ideals .S,.
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THEOREM. Let T be an (SM)-contraction such that I —T*T € S, with
1 <p<oo. Then {T}' NS, # {0} as soon as one of the following properties
1s satisfied:

(i) op(T) # 0, or equivalently ker O1(X\) # {0} for some X € D.

(ii) There exists a Beurling—Carleson set o C T such that H(o) # {0},
where H(o) stands for the maximal spectral subspace over o (see Section 5
for definitions).

Moreover if T € Cy then H>*(T) NS, # {0}.

The techniques used for the proofs of the above results are mostly based
on the Commutant Lifting Theorem (CLT for short), the cornerstone of
the theory of model operators. Via the CLT, the problems are reduced to
certain questions about vector-valued Hankel operators. In the case of two-
sided inner characteristic functions this reduction was known long ago (see
[Nik86]). For a more general case, a new formula is established below to link
compact operators in the commutant and Hankel operators (see Lemma 4.4).
Then Muhly’s and Peller’s theories of smooth Hankel operators are used.

The paper is organized as follows. Section 2 contains necessary prerequi-
sites on the Sz.-Nagy—Foiag functional model. Section 3 is devoted to smooth
operators in H>(T'). Section 4 deals with compact and finite rank operators
in {T'}’, and Section 5 is devoted to the Schatten-von Neumann classes S).

2. Some facts about the canonical model. Let © € H*°(L(H1,Hs))
be any contractive-valued function, where H1, Ho are two separable Hilbert
spaces. Then O is called pure if ||©(0)z| < ||z|| for all x € H;, x # 0. For
every contractive-valued @ € H*(L(H1,Hz)), there exists a unique pure
contractive-valued function ©° and a constant unitary operator U acting
between certain subspaces of H; and Ha respectively such that O(z) =
0°(z) @ U. This O is called the pure part of ©. Let © € H>®(L(Hy,H>))
be a contractive-valued function, and Mg be defined as in Section 1. Then
Mg is a c.n.u. contraction and the characteristic function of Mg coincides
with the pure part of ©.

2.1. The commutant lifting theorem (CLT). Here T is identified with
Meg. 1t is clear that for every ¢ € H the lifting formula ¢(Me) = Poy|ke
holds. As already mentioned, H>* (Mg) C {Mg}'. It is known that {Meg}' =
H>(Mpg) when O is a scalar inner function [Sar67]. In general, this is not the
case. The characterization of the c.n.u. contractions 7" such that H>(T) =
{T}" seems to be unknown and is a delicate problem. However the above
lifting formula extends to operators from {Mg}’ thanks to the CLT due to
Sz.-Nagy and Foiag [SNF67]. Namely, X € {Me}' if and only if there exists

2
an operator Y acting on (cloI:A(fQT(gT)) such that X = PoY|k,, Yz = 2Y,
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" Y<Z>H2(DT) - <Z>H2(DT).

Then Y is called a lifting of X. The space (ClOI:Z(fsz*D)T)) is actually the
space of the minimal isometric dilation of Mg.

Notice that in the case when © is a two-sided inner function (see below)
the two lifting conditions are equivalent to Y € H*(L(Drp+)) and ©*Y 6 €
H>(L(Dr)) and the CLT admits an alternative proof due to N. K. Nikolski
[Nik86], making use of Hankel operators. Moreover, if Y is a lifting of X,
then X = OHo+y|Kk,, as in this case Pg = OP_O*.

It follows that a lifting Y is an operator of multiplication by a block
matrix function of the type

® (o)

where
A€ H®(L(Dr+)), B1€L*(L(Drp«,clos ADr)), Cy€L>(L(clos ADr))
are operator-valued functions satisfying the following relations:

A1(§)0() = O(§Au(§),  Bi(§)O(E) + C1(§A(E) = A(£)An(§)

a.e. on T, for some Ay € H*(L(Dr)).
Any lifting of the zero operator is of the form Y = (
G € H>*(L(Dp+,Dr)). Moreover,

| X || = inf{||Y||oc : Y a lifting of X}

e (59

where Yj is any lifting of Y; the infimum is always attained. Notice that a
lifting of a function of Mg, X = p(Me) € {Mo}', ¢ € H*, corresponds to
Bl :0, A1 ZQDI, Cl ZQOI

Another parametrization of the liftings of the operators in {Mg}' is

oG 0

AC 0) for some

LG e H‘”(L(DT*,DT))},

A, 0
@) Y= (AA@*+BA* AAA—B@)’
where A € H*(L(Dr)), Ax € H®(L(Dy+)) satisfy ©A = A0, and B €
L>(L(A.Dr~, ADr)); see [NV9S].
2.2. Classes of contractions

Cop classes. Let T be a c.n.u. contraction. Then T' is of class Cyo. if T"
tends SOT (Strong Operator Topology) to zero (i.e. lim, .o |[|T™z| = 0 for
every x € H), and T is C, if ||T™x|| does not tend to 0 for every x # 0. For
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o, = 0,1, the contraction 1" is C ,, if T* is C,., and T' is Cyg if it is both
Cy. and Cg.

Let © be the characteristic function of 7. Then T is Cy. (resp. Cy,
(4., C4) if O is x-inner (resp. inner, x-outer, outer). Recall that a function
F € H*(L(H1,Hz)) is inner if the non-tangential limits on T are isometric
almost everywhere. It is outer if FH?(H;) is dense in H?(Hs), where F is
identified with the operator of multiplication by F'. The function F' is x-inner
(resp. x-outer) if F* is inner (resp. outer), where F*(z) = F(z)*. It is two-
sided inner (resp. two-sided outer) if F' is both inner and *-inner (resp. outer
and s-outer). Every function F' € H*(L(H1, H2)) admits a canonical inner-
outer factorization F' = Fiy, Fout through an intermediate Hilbert space (and
consequently, also a canonical *-outer-*-inner factorization).

Let T € L(H) be a contraction. Then Hy = {x € H : ||T™z| — 0} is
an invariant subspace of T' and the decomposition H = Ho @ Hp induces
a triangular decomposition of 7', which is called the Cy -C7. decomposition
of T:

(3) <1(;0 ;1,), Ty € Cy., Tll c(Cq.
It is the only decomposition of T" satisfying (3). Applying the result to T,
we find that T" admits a unique triangular decomposition of the form

T =
(4) < 01 Té)v Tl S C.lv T(; S C.U)

where T} = Ty, and Hy = {x € H : T*"x — 0}+. It is called the C 1-C g
decomposition of T

Co-contractions. Let T € L(H) be a contraction. By definition 7" € Cj
if T is c.n.u. and there exists a function u € H*, u # 0, such that u(T") = 0.
For every T' € (Y, there exists a minimal (annihilating) function mp (unique
within a unimodular constant); that is, mp is an inner function such that
mr(T) =0, and if u(T) = 0 for some v € H* \ {0}, then u/mp € H™ (see
[SNF67, Proposition I11.4.4]).

Recall that the spectrum o(p) of a contractive-valued function ¢ € H>
is defined by

o(p) = (clos{A € D : () = 0}) Usupp(Ay|r) U supp(py,),

where A, = (1 — [p|?)"/2 and p, is the singular measure on T associated
to ¢ through its Nevanlinna—Riesz—Smirnov canonical factorization. Let T' €
L(H) be a Cp-contraction with minimal function my. Then o(T') = o(mr)
(see [SNF67, Theorem II1.5.1]). In particular, o,(T') = o(mg)ND = o(T)ND
consists of the zeros of my, thus o(7') N D is a (possibly empty) Blaschke
sequence. Recall also that a Cy-contraction T is complete (i.e. H is spanned
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by the generalized eigenvectors of T, see Subsection 4.3) if and only if myp
is a Blaschke product.

Scalar multiples and (SM)-contractions. A function © € H*> (L(H1, Hs))
has a scalar multiple 6 € H>, § # 0, if there exists 2 € H*(L(Ha,H1))
such that 20 = §I and ©§2 = §1. Obviously, we then have dim H; = dim H-
and O is invertible at every point z € D such that 6(z) # 0, and then

In particular, ©~! is a meromorphic function in D.

Let ©® € H*(L(H1, H2)) be a contractive-valued function having a scalar
multiple 0. If @ = OjnOout is the canonical inner-outer factorization of @,
then Oj,, and O, admit respectively i, and douy as scalar multiples,
where dinn and doyy are the inner and outer parts of . In particular, Oy, is
two-sided inner and @,y is two-sided outer. Similarly © admits an outer-
inner factorization, ©® = @’ O/ . where 0oyt and d;,, are scalar multiples

out ~inn»

of © ., and O/ = (see [SNF67, Theorem V.6.2]).

Let T € L(H) be a c.n.u. contraction. We write T' € (SM) if O has a
scalar multiple. If T" has ¢ as a scalar multiple, then o,(T) = o(T) ND C
{A e D: 4o\ = 0}, and thus o(T) N D is a (possibly empty) Blaschke
sequence; in particular D\ o(7T') # 0.

For T € (SM), the components Ty, T of the Cy-Cy. decomposition (3)
are (SM)-contractions and the Cy-C7. decomposition is in fact a Cy-C11
decomposition. If ¢ is a scalar multiple of @, then d;,, and d,y; are scalar
multiples of Ty and T7. Then my, is the minimal scalar multiple of Ty. For
this reason a scalar multiple § of @ is called minimal if its inner part
dinn coincides with my,. Similarly, the C';-C o decomposition (4) of T is in
fact a C11-Cy decomposition and T1,7; € (SM). Moreover, the invariant
subspaces Ho and H; defined by (3) and (4) satisfy Ho N 'H; = {0} and
span(Ho, H1) = H; and we have o(T') = o(To) Uo(T]) = o(T1) Uo(T}) (see
[SNF67, Section VIIL.2.1]). Moreover, the spectrum of a Cj;-contraction in
(SM) is contained in T (see [SNF67, Proposition VI.4.3]).

Weak contractions. T € L(H) is called a weak contraction if D\o (T) # 0
and [ —T*T € S;. A weak contraction T' € L(H) belongs to the class (SM)
([SNF67, Theorem VIII.1.1]). The contractions Ty, Ty, 11, T}, appearing in
the Cy-C1; and C11-Cy decompositions of T' are all weak contractions (see
[SNF67, Theorem VIIL.2.1]).

3. Smooth operators in H>(T). In this section we first find some
necessary conditions for the spaces H*>*(T') N S not to be reduced to {0}.
Then we explore in which cases these conditions are sufficient. All contrac-
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tions will be supposed to be c.n.u. Therefore we may work equivalently with
T or its canonical model Mg, ©® = O, as T and Mg are unitarily equivalent.

LEMMA 3.1. Let © € H>®(L(H1,Hz2)) be a contractive-valued function,
and Pgo defined as in Section 1. For g € L*(H1), we have

Gl

= |lgll* = 1P+ Agl* = |©g]* + [ P- Ag]|?,
where Py denotes the Riesz projection (i.e. onto the analytic part), and
P_=1-P,.

Proof. The well known block decomposition of Pg,

5) p _ (Pr—6PO" —OP.A
© =\ —AP,O* T-AP.A)

and the fact that A is a positive selfadjoint operator satisfying A? = I—6*O

lead to
NE

I7o(9)] = 1eP. a0 + 1z - are 2

= [PrAg|* = AP Agl* +||(I — APy A)g]f?
= [P+ Agl]” — [APL Agl* + [lg]|* — 2] Py Agl]* + | APy Ag|®
= llg* = 1P+ Agl,

and [|g||? — [|P+Ag|*> = [|Og]* + | AglI* — [|Ag|* + |P-Ag|* = ||©g]* +
| P-Ag|*. =

LEMMA 3.2. Let © € H>®(L(H1,Hz2)) be a contractive-valued function,
and Mg € L(Kg) the model operator associated with ©. Assume that there
exists ¢ € H*, ¢ # 0, such that p(Me)*MpG" tends SOT to 0. Then O is
an inner function, or equivalently, Mg" tends SOT to 0.

Notice that both Mg and Mg" always tend WOT to 0. Indeed, if u,v €
Ko C L*(Dr @ Dr-), then

(Mu,v) = (Poz"u,v) = (2"u,v) = | £"(u(&), v(€)) du(€) = B(—n),
T
where w = (u(-),v(-)) € L'; and therefore w(—n) — 0 from the Riemann—

Lebesgue lemma. Thus, for every c.n.u. contraction 7' € L(H), T™ and T*"
tend WOT to 0.

Proof of Lemma 3.2. Let ¢ € H*. First we compute the SOT limit
of o(Mg)*MJ" in the general case. Let (g) € Kgo. Note that the function

2" ME( J; ) converges in L?(Ha @ Hy) to the function (2). This follows from
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wm(f\ _ (Pz"f
Mo (9)_( 2”9 )

and that [|Py2"f|| = Yo, [If (K)||* tends to 0 in L?(Hs). Then, for any
¢ e H™,

the facts that

@(MQ)*Mé”(J;) H2 converges to the same limit as

_( 0
P@¢<2n9>

where the last equality comes from Lemma 3.1. As Apg € L?(H;), the term
|PLAZ"pg||? = ||PLz"Apg||? tends to 0. Therefore HgO(M@)*Mén(Z)H
tends to ||@g]|.

Now suppose that ¢ is such that o(Me)*MG" tends SOT to 0. Then,
for all (J;) € Ko, we have ||g|| = 0, which implies that g = 0. It remains
to show that this result forces A to be identically 0. Indeed, we then have

Ko C <H2%H2)>,

2
= |lpg|® — |1P+AZ"gg|?,

and therefore

1 0
K& > (clos AL?(Hy) ) '

As K = (i)H 2(H1) contains no non-zero z-invariant subspace, we neces-
sarily have A =0. m

THEOREM 3.3. Let T € L(H) be a c.n.u. contraction. If H*>®(T) N Sx
# {0}, then Op € H*(L(Dy,Dr+)) is a two-sided inner function, in par-
ticular Dy and Dp- are of the same dimension.

Proof. Tt suffices to show that H>*(T) N Ss # {0} implies that Op is
inner. Then we can apply the result to 7* and use the fact that O = O%.
Let Mg € L(Kg) be the model of T. As Mg is unitarily equivalent to T,
H>(T)N S # {0} if and only if H>*(Mg) N Sa # {0}. Now, let p(Mg) €
Seo, ¢ # 0. As MZ" tends WOT to 0, p(Me)*Mg"* tends SOT to 0. From
Lemma 3.2 we deduce that © is an inner function. m

We are now interested in a converse to Theorem 3.3. Some additional
assumptions are necessary to prevent the spectrum from behaving badly.
The following lemmas concerning Cy-contractions will be useful.

LEMMA 3.4. Let T € L(H) be a Cy-contraction such that o(T) N D is
non-empty. If X\ € o(T)ND, then the Riesz projection Py belongs to H>(T).

Proof. For an outline of proof, see [SNF67, Section I11.7.1]. m

Now we consider Cy-contractions 1" with compact defect Dp (equiva-
lently I — T*T € S ). Such contractions are said to be essentially uni-
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tary with respect to Fredholm theory (because T' € Cj, or more generally
D\o(T) # 0, and I —T*T € Sy imply that T'= U 4 K, where U is unitary
and K is compact).

Notice that for any c.n.u. contraction 7" such that D\ o(7) # 0 and
I -T*T € Sx, o(T) ND coincides with o,(7T") and consists of an at most
countable sequence of normal (finite multiplicity) eigenvalues tending to T.
In particular, the set of so-called normal eigenvalues, oy, (T"), coincides with
op(T) and o(T) N D.

REMARK 3.5. If T' € L(H) is a c.n.u. contraction such that H>(T) N F
# {0} then T' € Cy. Indeed, if p(T) € F with ¢ € H*®, ¢ # 0, then the
restriction of T' to ¢(7T')’H has a minimal annihilating function, say m, and
me is a non-zero H° function annihilating 7.

Now, we will see why, for an essentially unitary Cy-contraction T', we
have H*(T) N So # {0}. We start with a lemma which will have larger
consequences. The method employed for the proof, which consists in using
an outer function in C4 (H* functions continuous on D) equal to zero,
on a given set of Lebesgue measure zero, was introduced by B. Moore and
E. Nordgren to study the existence of compact operators in the weakly
closed algebra generated by an essentially unitary Cp-operator [MN75]. An-
other ingredient of this lemma consists in the characterization of compact
Hankel operators in terms of their symbol; namely, for @ € L (L(H1, H2)),
the Hankel operator Hg is compact if and only if @ € H*(L(Hq,Hz)) +
C(T, Se(H1,Hz)), where C(T, X ) stands for the space of X-valued continu-
ous functions on T (see [Muh69], [Muh71], [BP75]). Recall that Hg is defined
by

Hg : H*(Hy) — H2(H2) = L*(H2) © H*(Hz), h+ P_®h.

LEMMA 3.6. Let T' € L(H) be a Cy-contraction such that I —=T*T € S,
and mp the minimal function of T. Then there exists ¢ € H>® such that
©(T) # 0 and the Hankel operator H,ex is compact. More precisely, we can
take ¢ = fmrp/my, where my is any non-trivial inner factor of my such
that o(m1) N'T is of Lebesque measure zero, and f is any outer C4 function
equal to zero on o(mq) NT.

Proof. Take a non-trivial factorization my = mimsg such that mq, mo
are inner and o(m1) N'T is contained in a closed subset v of T of Lebesgue
measure p(y) = 0. From a theorem of Fatou we obtain the existence of an
outer function f € C4 such that f|, = 0. Set ¢ = fmg. Then ¢/mpr =
f/mi1 & H*, and the minimality of my implies that o(7T') # 0. Now, there
exists an invariant subspace £ C ‘H of T such that m; and mso annihilate
Ty =T|g € L(E) and Ty = Pg.T|p. € L(E') respectively, where Pp.
denotes the orthogonal projection from H onto E+ (see [SNF67, Theorem
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I11.6.3]). Moreover, there exist ©1 € H>*(L(Dr,K)), ©2 € H*(L(K, Dr+)),
where IC is an auxiliary separable Hilbert space, such that ©® = ©,0; and
Or, and Op, coincide with the pure part of ©; and @, respectively (see
[SNF67, Theorem VII.1.1 and Proposition VII.2.1]). Then, for ¢ = 1,2, the
function m; is a scalar multiple of O, (see [Ber88, Proposition V.3.2 and
Corollary V.3.3]) and O, is a two-sided inner function. The same properties
hold for ©; as O; = O, @ U;, where U; is a unitary operator. Let {2; €
H>(L(K,Dr)) and 22 € H*®(L(Dr~,K)) be such that @121 = m;I and
@202 == TTLQI. NOW,

PO = fm010; = fO1(m20;) = fO1L2.

The proof will be completed by showing that fO] € H*(L(K,Dr)) +
C(T, S (K, Dr)), as this implies that Hre: is compact, and then so is
Hforn, = Hye-. Compactness of I — T*T implies that Pr(I — T*T)|g
= I — T}T, is compact; and thus ©;(z) = A+ K(2), z € D, where A €
L(Dr,K) and K € H*®(So(Dr, K)). Therefore it suffices to show that fO7
considered as a function on T is continuous at every point of T, as this fact
implies that K € C(Soo(Dr,K)). As 0(Op,) = o(T1) = o(my) C 7, the
function Or, has a holomorphic continuation at every £ € T\ «y, and so does
O1. It follows that fO7 is continuous at every £ € T\ . Eventually, if £ € ~,
then f(£) = 0. As ©7 is bounded on T, the continuity of f implies that of
fOT at & m

Before giving a direct consequence of Lemma 3.6 we deduce the following
fact which will be useful later on (see Subsection 4.2).

LEMMA 3.7. Let T € (SM), T ¢ C4y, be such that I — T*T € So. Then
there exists v € H™> such that H¢9;1 is compact but

YO ¢ H*(L(Dr-,Dr)).

More precisely, we can take ) = fo0/mq, where § is a minimal scalar multiple
of T, my is any non-trivial inner factor of & such that o(myi) N'T is of
Lebesgue measure zero, and f is any outer function in C4 equal to zero on
o(my)NT.

Proof. Denote by Ty the Cy-part of T' appearing in the Cyp-C1; decompo-
sition of T'. This T is the restriction of T to Hy # {0} as T' & C11. Therefore
o(Ty) C o(T) and I —T5Ty = Py, (I —T*T)|n, is compact. On the other
hand, the characteristic function of Tp is the pure part of Oiyy, (see [SNF67,
Theorem VII.1.1 and Proposition VII.2.1]). If there exists h € H> \ {0}
such that A(T) = 0, then T is in fact Cy (i.e. T coincides with Tp), and
the result is given by Lemma 3.6. Thus we can suppose that h(T") # 0 for
every h € H* \ {0}. Lemma 3.6 applied to Ty gives ¢ = fmg,/m; such
that HS(,@;0 is compact. Let O = O,,tOinn be the outer-inner factorization
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of Or. In fact O, coincides with the pure part of Oy, (see [SNF67, The-
orem VIL.1.1 and Proposition VII.2.1]); thus H,ex is also compact. Let §
be a minimal scalar multiple of O, that is, § = mrp, dout With doye outer. Set

m 1)
1/) = 5outS0 = f To 5out = f .
mi

m1

Then w@;l = O SouOoL: thus Hd)@;l is compact. Further, if we sup-

inn out?
pose that wé);l = F € H*(L(Dr+,Dr)), then I = O7T = FOr. There-
fore, ¥ = doutmr,/m1 is a scalar multiple of @7, which is impossible since
dout™MT, is a minimal scalar multiple. m

The first part of the following theorem is mostly known [Nor75] but we
give a proof for the sake of completeness.

THEOREM 3.8. Let T € L(H) be a Cy-contraction such that I — T*T
€ Soo. Then H®(T) N Soc # {0}. Moreover, H>*(T) N F # {0} if and only
if o(T)ND # 0.

Proof. To prove the first assertion we use Lemma 3.6 and get a function
¢ € H> such that o(T) # 0 and H,e: is compact. As T is Cy, its charac-
teristic function @ is two-sided inner. Then Pg = ©OP_O* and, identifying
T with its model operator Mg, we deduce that ¢(T) = OH,e: |k, is com-
pact. Now prove the second assertion. If H*(T) N F # {0}, then T has
a non-trivial finite-dimensional invariant subspace, and therefore an eigen-
value. The converse is an immediate consequence of Lemma 3.4. Indeed, if
A €o(T)ND, then Py € H>*(T)N F.

Yet another proof is to observe directly that

mr(T) = bx(T) 7Z—/\T(T) =0,

whence
mr

ba

and ker by (T") is finite-dimensional as A is necessarily of finite type. Here by
denotes the elementary Blaschke factor,

Al A=z
b,\(Z) b\ 1_ Xz . n

COROLLARY 3.9. Let T € L(H) be an (SM)-contraction such that I —
T*T € Seo. Then H*(T)NSs # {0} if and only if Or is a two-sided inner
function.

(T) C kerby(T),

Proof. If O is inner, then T' € Cy and the result follows from Theorem
3.8. The converse is a consequence of Theorem 3.3. =

Now, we consider Cyg-contractions T (that is, contractions having a two-
sided inner characteristic function) subject to restrictions of “smoothness” of
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the defect operator Dy = (I —T*T)/2. The following result means that only
the trace class smoothness of D% can guarantee the existence of compact
H*® functions of T

THEOREM 3.10. Let & C So be a symmetrically normed ideal of L(H).
The following are equivalent:

(i) For every c.n.u. contraction T € Coyo such that D\ o(T) # 0 and

I -T*T €S, we have
H>(T) N Ss # {0}

We refer to [GK69] for properties of symmetrically normed ideals of
L(H). For the proof of Theorem 3.10 we need the following notion. Let
o C D. Then o is called a determining subset for (the H* norm on) D if
| flloo = sup,e, |f(2)] for all f € H* = H*(D). The following lemma is a
result by N. K. Nikolski and S. A. Vinogradov (see [Nik71]).

LEMMA 3.11. Suppose 0 < 7, < 1 (n > 1) satisfy limr, = 1. There
exists a determining sequence for D, say (An)n>1, such that |\,|=r, (n>1)
if and only if Y (1 —1r,) = oc.

Proof of Theorem 3.10. The fact that property (i) is true when & = S
can be deduced from Theorem 3.8. Indeed, in this case T is a weak con-
traction in Cyo, and therefore T' € Cy. To prove that (i) implies (ii) sup-
pose that & # S;. Take A € &\ Sy and let A = >~ sn(,%n)yn be a
Schmidt decomposition of A, that is, (sy),>0 is a sequence of positive num-
bers decreasing to 0, and (z,,)n>0 and (¥, )n>0 are orthonormal families in
H. As A & Sy, we have ) _ 5, = 00, and hence s,, # 0 for all n > 0.
With & being an ideal, we can suppose that (z,),>0 and (Y, )n>0 coincide
with the same orthonormal basis (e, ),>0 of H. Define T' = diag(\,)n>0
with respect to this basis, where we choose (A,,)n>0 C D to be a deter-
mining subset for D satisfying [A\,|?> = 1 — s,,, which is possible due to
Lemma 3.11, where we take r,, = /1 — s,,. Under these conditions, T is
a cn.u. Cgg-contraction and I — T*T = >~ sp(,en)en, € 6. But if
@ € H*, then ¢(T) = diag(¢(An))n>0, thus ¢(T) € Sy if and only if
lim,, o0 ¢(A,) = 0, which implies that ¢ = 0. Indeed, if (Ay)n>0 C D is
a determining sequence for D, then so is (A,)p>n C D for every N > 0.
Therefore ||¢||cc = sup,,sn |©(An)|, which tends to 0 as N — co. =

4. Smooth operators in the commutant
4.1. Finite-rank operators in the commutant

THEOREM 4.1. Let T € L(H) be a c.n.u. contraction such that D\
o(T) # 0. Suppose I — T*T € So. Then {T} NF # {0} if and only if
DNo(T) is non-empty. The condition D\ o(T) # () cannot be omitted.
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Proof. First suppose that {T'}' NF # {0}. Let A € {T} NF, A #0. Set
E = AH C H. Then E # {0} is a finite-dimensional invariant subspace of T'.
Therefore, T'|g € L(E) admits an eigenvalue A. Then ) is also an eigenvalue
of T" and has to be in D.

Now suppose D N o(T) # 0. Then o, (T) = 0,(T) = DNo(T) # 0,
therefore there exists A € D which is a normal eigenvalue of T'. Consequently,
the corresponding Riesz projection Py # 0 is of finite rank. As P, belongs
to {T'}’, we deduce that {T'}' N F cannot be reduced to {0}.

Finally, consider the case when T = S, the shift operator on H?. Then
I —5*S =0 € Sy but o(T') D D. Moreover {S} = H*(S) obviously
contains no non-zero finite-rank operator, and even no non-zero compact
operator. m

4.2. Compact operators in the commutant. First, we note that the con-
dition {T'}' N So # {0} is not in general sufficient for O7 to be a two-sided
inner function (in contrast to the case of H*(T'), see Theorem 3.3). For
example, it is easy to see that if © is a scalar H*° function and © = 0, then
Mg can be identified with S @ S*, where S is the shift operator on H?,
and

(O O>6{M@}’ﬂ5’oo for every ¢ € H> +C(T)
r, o

where I, denotes the Hankel operator on H? with symbol ¢. Thus we then
have {T'} N So # {0}.

Now, we give a characterization of operators Y on H?(Dp~) ® AL?(Dr)
given by formula (1) which are liftings of compact operators in {Mg}'.

LEMMA 4.2. Let T € L(H) be a c.n.u. contraction and @ = Op. If
X € {Mg}' is represented via the CLT by X = PoY |k, then X is compact
if and only if the operator PeY acting on

( clojjzA(IZ;T(;gT) )

Proof. This is an immediate consequence of the condition

Y(Z)HQ(DT) C <Z>H2(DT). .

LEMMA 4.3. Let T € L(H) be an (SM)-contraction and © = Op. Let
X € {Mg}' be represented via the CLT by X = PoY |k, where Y is the
lifting of X with parameters Ay, Bi, Ci given by formula (1). If X is
compact, then Cq = 0.

18 compact.
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Proof. If X is compact, it follows from Lemma 4.2 that PgY is compact.
Then P@Y|0®m is also compact. If g € AL?(Dr), then

Y<2> - <C?g>'

According to Lemma 3.1 we have

2
[Py (9)] = 1619l + 1P-acigl? = loC191

Therefore the map g € AL?(Dr) — ©C1g is compact. Let § € H*> be a
scalar multiple of ©, and 2 € H*(L(Dr-~,Dr)) be such that 260 = . Then
g+— 20C g = 6C1g is compact, which implies that C1(£)A() = 0 for a.e.
¢ € T. Indeed, if there exists go such that [|6(£)C1(€)go(§)]] > € > 0 on a
set of positive measure then the operator h — §Cggh cannot be compact.
Therefore C; =0 as Cy € L*°(L(AL?(Dr))). =

LEMMA 4.4. Let T € L(H) be an (SM)-contraction and © = Op. Let
X € {Mg}' be represented via the CLT by X = PoY |k, where Y is the
lifting of X with parameters Ay, By, Cy given by (1). If C1 =0 then

(6) PoY = (Z)PQ_IA*P*,

where P, stands for the orthogonal projection from H?*(Dr-) & AL?(Dr)
onto H*(Dr+) and A, € H*®(L(Dp~)) is such that ©~*A,0 € H>®(L(Dr)).
Conwversely, if PoY satisfies (6), with A, € H®(L(Dr-)) such that @1 A, 6
€ H>*(L(Dr)), then X = PoY |k, € {Mo}'.

Proof. Suppose X € {Mo} N S and Y is a lifting of X with pa-
rameters A, A, and B given by (2). The fact that C; = 0 in (1) means
that AAA = BO. As T' € (SM), © is invertible a.e. on T and we can
write B = AAAG~!. Then we use the following two intertwining relations:
OA=A,0and OA = A,O0. We deduce that B = AAO~ 1A, = AO 1A, A,
and BA, = AAO71(1-6060*) = AA(O~! —O*). Therefore AAO*+ BA, =
AAO~1 = AO7 1A, and Y has the following form:

@ Y= (AQ/EA* 8)

We compute PgY using the block matrix decomposition (5) and the follow-
ing identities:
1-6P,O6*—0OP, A0 =0(1 - P,O*O — P.AYO!
=0(1-P )0t =6P 6071,
—AP,O* + (1 - AP, A)AO™! = A(-P,0*O + 1 — P, A*)O!
=A(l-Ppe™ .
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The result follows. The converse is clear because Y, as defined by (7), with
A, € H®(L(Dr+)) such that ©~1A,0 € H>®(L(Dr-)), satisfies the re-
quired conditions for Y to be a lifting. m

COROLLARY 4.5. Let T € L(H) be an (SM)-contraction and © = Or.
Let X € {Mg}'. Then X is compact if and only if

A

for some A, € H*®(L(Dr-)) satisfying @1 A,0 € H*®(L(Dr~)) and O~ A,
€ H>*(L(Dp+,Dr))+C(T, Soo (D7+, Dr)), where Py stands for the orthogo-
nal projection from H?(Dp+)®AL%(Dr) onto H*(Dr-). In this case, X # 0
if and only if ©~1A, ¢ H>®(L(Dr~,Dr)).

Proof. If X is compact we get the expression of X by Lemmas 4.2 and
4.4. As the operator (i) is an isometry the compactness of such an X
is equivalent to the compactness of Hg-1,4,_ and also to © 1A, belonging
to H*®(L(Dy+,Dr)) + C(T, Soo(Dr+,Dr)). Moreover, X = 0 is equivalent
to P_.O71A, = 0. Conversely, if X is defined by (8) the last assertion of
Lemma 4.4 tells us that X is in {Mg}'. =

REMARK 4.6. The conclusions of Lemmas 4.3 and 4.4 and of Corollary
4.5 remain valid if we replace the condition 7" € (SM) by the weaker condi-
tion that @7 (&) be invertible a.e. on T.

(8) X = <Q)P_@1A*P*]K@

For T € (SM), the following theorem gives a necessary and sufficient
condition for {T'} N Sy # {0} in terms of O, namely O must be neither
outer nor *-outer.

THEOREM 4.7. Let T € L(H) be a c.n.u. contraction. If T € Cy, U C 4
(equivalently Ot is either outer or x-outer) then {T} NSs = {0}. If more-
over T € (SM) and I — T*T € Sy, then the converse is also true, and in
fact, {T} N Se = {0} implies that T € C1;.

Proof. To prove the first assertion suppose that there exists a non-zero
K e {T} N Sx. As T" tends WOT to 0, we deduce that KT™ tends SOT
to 0. But KT™ = T" K for all n > 0. Therefore T" |1, x tends SOT to 0. As
Im K # {0}, T ¢ C1.. The same reasoning applies to T, thus T* ¢ C1_, or
equivalently T € C ;.

Now suppose that T € (SM), I —=T*T € Soc and T &€ C11. As T € (SM),
that means T' ¢ C; UC ;. Therefore @ = O is not outer. By Corollary 4.5,
it remains to find A, € H*(L(Dz~)) such that ©~1A4,0 € H*®(L(Dr))
and @_114* S HOO(L(DT*,DT)) + C(T, Soo<DT*7DT))7 but P_Q_lA* 7& 0.
But we know from Lemma 3.7 that there exists u € H™ such that u©~! €
H*®(L(Dr+,Dr)) + C(Seo(Dr+, Dr)) with u®@~ ¢ H*(L(Dr-,Dr)). The
choice of A, = ul gives the result. m
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4.3. Finite-rank approximation of compact operators in the commutant.
In this subsection we are interested in the density of finite-rank operators in
the commutant of a given c.n.u. contraction 7' € L(H) in the space {T'}' NS
of compact operators from the commutant.

If B € L(H) and A € 0,,(B), we denote by Cx(B) = |y~ ker(B — AV
the root manifold corresponding to the eigenvalue A of B. We denote by

(9) CB)= ] B

A€oy (B)

the set consisting of all generalized eigenvectors (root vectors) of B. Now B
is said to be complete if the family of generalized eigenvectors of B is total
in X, so that X = clos C'(B).

Let T € L(H) be a c.n.u. contraction, and define Ep to be the total
image of {T'}' N S, that is,

(10) Er = clos (U{XH X e {T)Y N Soo}).

Then E7 is hyperinvariant for T', that is, invariant for every X € {T'}’. We
set TE = T‘ET

LEMMA 4.8. In the notation above, if {T'}' NF is SOT dense in {T'}' N
Se then Tg is complete.

Proof. Let X € {T} NS and (X,)n>1 C {T} NF be such that X,z —
X for all z € H. For every n > 1, X,’H is a finite-dimensional subspace of

Er, invariant for T and Tg. Therefore, X,,H is generated by some general-
ized eigenvectors of Tg. Thus X,,H C span C(Tg) and Er C spanC(Tg). =

LEMMA 4.9. Let T € L(H) be a c.n.u. contraction such that D\o(T') # ()
and I —T*T € Sy, Tg = T|g,. Then X € op(T) if and only if X €
op(Tg) and for all X € op,(T), C\(T) = C\(Tg). Therefore spanC(Tg) =
span C(T).

Proof. ¥ D\ o(T) # 0 and I — T*T € S, then o(T)ND = 0,(T) =
onp(T) and for every A\ € o,(T), the Riesz projection Py is of finite rank
and C)\(T) =P yH. As P € {T}/, C)\(T) C Er and C)\(T) = C)\(TE). [

The following corollary is an obvious consequence of Lemmas 4.8 and
4.9.

COROLLARY 4.10. Let T € L(H) be a c.n.u. contraction such that D\
o(T)# 0 and I —T*T € So, Te = T|g,. If {T} NF is SOT dense in
{T} NSy then Er =span C(T), that is, Er is generated by the generalized
etgenvectors of T. m

Recall that for a c.n.u. contraction T € L(H),

(11) Ho(T) = {x € H : | T x| — 0}.
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Recall also that if T' € (SM) then the Co. part Ty = T'|4, () of T is in fact a
Co-contraction. Moreover O, is the pure part of the inner factor Oi,, of Or
and the minimal function mxz, of Tp is the minimal scalar multiple of Ojyy,.

LEMMA 4.11. Let T € L(H) be an (SM)-contraction. Let Ep and Ho(T)
be defined by (10) and (11). Then Ex C Hy. In particular Tg = T|g, is a
Co-contraction and mr, divides mr,.

Proof. Let X € {T} N Ss. We know that 7" tends WOT to 0. But
TrX = XT™ and X is compact, therefore T"X = XT" tends SOT to 0.
Thus XH C Ho(T). Consequently, Ex C Ho(T). As Er is invariant for
T, it is invariant for Tp, thus Tg = Ty|g, is a Cp-contraction and m(Tg)
divides mr (see [SNF67, Proposition II11.6.1]). m

The following theorem is a completed version of the theorem given in
Section 1.

THEOREM 4.12. Let T' € L(H) be an (SM)-contraction such that I —
T*T € So. Set © = Op, and let © = OuyuOinn be the outer-inner factoriza-
tion of O. Let Ep and Ho(T') be defined by (10) and (11), and Tg = T|g, .
The following are equivalent:

(i) {T} NF is dense in {T} N S

(ii) {T}Y NF is SOT dense in {T}' ﬂ Soo

(iii) {Me,,,} NF is (SOT) dense in {M@} N Seo

(iv) Oinn has a Blaschke scalar multiple.

(v) Ty = T|n, is complete.

(vi) The minimal function my, of Tk is a Blaschke product.

Moreover, if (1)—(vi) are satisfied, then we have the following linear approx-
mation:
lim |B,(T)A—Al|=0, VAe{T} NS,

where B = ]~ bx, is the minimal scalar multiple of Oinn, Bn = [[};5., Oxs
and B,(TYA € {TY NF for alln > 1.

REMARK 4.13. (1) Let T' € L(H) be a c.n.u. contraction such that D\
o(T) # 0 and I — T*T € S, and let Ty be the Cy. part of T. Then
C(T) = C(Ty) = C(Tk), in other words the generalized eigenvectors of T,
Ty and T are all the same. Indeed, if A € o(T'), then the associated Riesz
projection Py is in {T'} NF. Thus C\(T) = Im Py C F and C(\) C E. The
fact that FE is invariant gives the conclusion.

(2) In the situation of Theorem 4.12 this means that mg, and mp, can
differ within a singular inner factor only. If moreover mp, is a Blaschke
product, then so is my, (because mr, divides mr,), therefore my, = mp,
and Ep = span C(Tg) = spanC(Ty) = Ho(T') (as a Cp-contraction having
a Blaschke minimal function is complete), in other words Ty = Tg.
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(3) It is likely that the latter equality remains true even if mp, is not
a Blaschke product. Nevertheless we can only prove that mzp, = mp, for
every (SM)-contraction with compact defect.

Proof of Theorem 4.12. We prove that (iv)<(v)=(vi)=(i
The equivalence (iii)<>(iv) then follows from the equivalence (
applied to Mg

)= (ii)=(iv).
i) (i) (iv)
The equivalence (v)<(iv) is clear because a Cy-contraction is complete
if and only if its minimal function is a Blaschke product, and the minimal
function of Ty is the minimal scalar multiple of ©;,,.
We shall see now that (vi)=-(i). Let mp, = B = [[,~; by, and B, =
[I5n0r n> 1. As [By(&)] = 1 a.e. on T we have -

J1Ba(€) = 12 du(€) = §IBa(&) 2 du(€) + 1 20( | Bu(&) du())

T T T
= 2(1 — By(0)) — 0.

This implies that || B, (T)x —z|| — 0 for every x € Ep, so ||B,(T)X — X|| =
|IXBn(T) — X|| — 0 for every X € {T}' NSw. But B,(T)X € {T} NF as

B, (T)XH C ker BE(T) Cspan{Cy,(T): 1 <k <n}
and each Cy, (Tg) is finite-dimensional (all eigenvalues are of finite type).
This also proves the last assertion of the theorem.

(i)=-(ii) is obvious. Now, we show that (ii)=-(iv). Suppose (ii) and sup-
pose that the minimal scalar multiple of © has a non-trivial singular part.
We shall work with the model Mg of T to show that this leads to a con-
tradiction. We know that if A € {T'}' N F, then AH is a finite-dimensional
invariant subspace of T, and hence AH C C(T) and B(T)A = 0, where
C(T) is defined according to (9). Condition (ii) implies that B(Mg)A = 0
for every A € {Mg}' N Sy

Let § be a minimal scalar multiple of ©. Assuming that § contains a non-
trivial singular inner factor we obtain a contradiction to the above property
of B(Mg). Let m; be a non-trivial singular factor of § such that o(m1) has
Lebesgue measure zero, and f € C4 an outer function equal to zero on o(my).
According to Lemma 3.7, if we set ¢ = fd/m; then H,g-1 is compact.
Then, Corollary 4.5 says that the operator X = (2)P_8_1wP*\K9 is in
{Mg}' N Se. Suppose YO~ = G € H®(L(Dr+,Dr)), then

z/;I:fiI:c—)G,
mi

and hence fd/m; is a scalar multiple of @y, which is impossible since § is
a minimal scalar multiple. Therefore, O ~! ¢ H*®(L(Dr~,Dr)).
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Now, consider B(Mg)X. As

(w0
Y‘(m@—l 0)

is a lifting of X (see the proof of Lemma 4.4), a lifting of B(Mg)X is
By 0
ByA6-! o)

B(Me)X = <Z>P9_1BwP*\K9.

Thus

Clearly, By©~1! is still in H®(L(Dr+,Dr)) + C(T, Soo(Dr+,D7)) but is
not in H*(L(Dr~,Dr)) by the same minimality reason as above. Thus
B(Mg)X is a non-zero operator. This gives a contradiction to the above
property of B(Mg). =

5. Schatten—von Neumann operators in the commutant. The
following theorem contains some sufficient conditions for {T'}' NS, # {0}.
The meaning of these conditions is that there exist some part of the operator
T which has “thin” spectrum. To express this “thinness” we make use of the
notions of maximal spectral subspace and of Beurling—Carleson subsets of
the unit circle. Recall that, for a compact set o C C, the maximal spectral
subspace H (o) over o is defined by the following requirements:

(i) H(o) C H is an invariant subspace for T' such that o(T|g(,)) C 0;
(i) if F is another T-invariant subspace with o(T|g) C o then E C
H(o).

It is known that for c.n.u. contractions of the class (SM), the maximal
spectral subspaces H (o) exist for all closed sets ¢ C D (see [SNF67]). More-
over, if § is a minimal scalar multiple of @1 and o NT is a subset of Lebesgue
measure 0, then H (o) # {0} if and only if d, # 1, where

2= (T o) em(~ § £ aulo)

£E—z
An€EcND oNT

and

5= ( 1T bA,,L(z)) eXp<—§r g J_r z dua(ﬁ))

n>1

is the canonical factorization of § (the measure pus = log(1/[6|)dp + p3
contains both absolutely continuous and singular parts); here u denotes the
Lebesgue measure on T. Therefore, for a subset ¢ C T of Lebesgue measure
zero, H(o) # {0} if and only if p5 (o) > 0.
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Recall also that a closed subset o C T is called a Beurling-Carleson set
if
Jlog(dist(¢, o)) du(€) > —o0,
T
or equivalently, if (o) = 0 and >, [Ix|log |Ix| ! < oo, where (I))g>1 is
the sequence of complementary arcs of . For more information on Beurling—
Carleson sets see, for example, V. Havin and B. Joricke [HJ94, Section I1.3.1].

THEOREM 5.1. Let T be an (SM)-contraction such that I —T*T € S,
with 1 < p < co. Then {T}' NS, # {0} as soon as one of the following
properties is satisfied:

(i) op(T) # 0, or equivalently ker ©(X) # {0} for some X € D.
(ii) There exists a Beurling—Carleson set o C T such that H(c) # {0}.

Moreover if T € Cy then H>*(T) NS, # {0}.

Before starting the proof, we give modified versions of Lemmas 3.6 and
3.7 for the S, classes.

LEMMA 5.2. Let T € L(H) be a Cy-contraction such that I —T*T € S,
(1 <p < o0) and myp the minimal function of T. Assume that there exists a
Beurling—Carleson set o C T such that (mr), is non-constant. Then there
exists o € H* such that o(T) # 0 and the Hankel operator H,e: belongs
to Sp. More precisely, we can take ¢ = fmyp/my, where mqy = (mr), and
[ is any outer C° function equal to zero on o.

For the proof the following characterization of Hankel operators from
the class Sp, in terms of their symbols is used. Let & € L>°(L(H;,H2)) and

1 <p < oo. Then Hy € S, if and only if P_® € B;/p(Sp), where B;/p(Sp)
denotes the Besov class with values in S, (see [Pel82]).

Proof of Lemma 5.2. The proof is similar to that of Lemma 3.6. The
only difference is that f can be chosen to be an outer function in C} =
C4NC> such that |f(£)] = o((dist(¢,0))Y) as € tends to o, for every N > 1
(see [HJ94, Section II1.3.1] for the existence of such a function). Here C*>
stands for the space of infinitely differentiable functions on T. We denote
by C*°(X) the space of X-valued C* functions. Then, in the notation of
Lemma 3.6, fO1(2)* = fA* + fK(2)*, where fO] € C>*(L(K,Dr)) and
consequently K € C*(S,(Dr,K)). On the other hand, it is easy to see that
C>®(X) C B;/p(X) for any Banach space X and any 0 < p < co. Therefore,
by Peller’s theorem the Hankel operator H g+ is in S), and the same holds
for Hf@* .

LEMMA 5.3. Let T € (SM), T & Ch1, be such that I —T*T € S,, 1 <p
< 00, and let § be a minimal scalar multiple of T. Assume that there exists
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a Beurling—Carleson set ¢ C T such that §, is non-constant. Then there
exists 1 € H> such that H,g_1 is in Sy but YO, ¢ H*®(L(Dr-,Dr)).
More precisely, we can take ¥ = f§/mq, where my1 = (6inn)eo, dinn being the
inner part of 9, and f is any outer C¥ function equal to zero on o.

Proof. The proof follows that of Lemma 3.7 with the obvious modifica-
tions, in particular Lemma 3.6 is replaced by Lemma 5.2. m

Proof of Theorem 5.1. If (i) is satisfied, then the Riesz projection Py
belongs to {T'} N F. If (ii) is satisfied, identify 7' with its model operator
Me and define X by

6 _
X = <A>P(9 YWP| ke,

where v is defined as in Lemma 5.3. Then, as in the proof of Theorem 4.7,
X is a compact operator in {T'}' which is also non-zero and in S, due to
Lemma 5.3. m

In the case when O is a scalar H* function, Theorem 5.1 extends to all p,
0 < p < o0, as the characterization of Hankel operators of class S, is valid
for 0 < p < 0o in the case when the symbols are scalar-valued (see [Pel83]).
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