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Besov spaces on spaces of homogeneous type and fractals

by

Dachun Yang (Beijing)

Abstract. Let Γ be a compact d-set in Rn with 0 < d ≤ n, which includes various
kinds of fractals. The author shows that the Besov spaces Bspq(Γ ) defined by two different
and equivalent methods, namely, via traces and quarkonial decompositions in the sense of
Triebel are the same spaces as those obtained by regarding Γ as a space of homogeneous
type when 0 < s < 1, 1 < p <∞ and 1 ≤ q ≤ ∞.

1. Introduction. It is well known that the spaces of homogeneous type
introduced by Coifman and Weiss in [2] include Rn, the surface of the unit
ball and the n-torus in Rn, the C∞ compact Riemannian manifolds, and in
particular, the d-sets in Rn as special models. It has been proved by Triebel
in [15] that these d-sets in Rn include various kinds of fractals. Let us first
recall the definition of the d-sets in the sense of Triebel; see [15, p. 5].

Definition 1.1. Let n ∈ N, Γ be a set in Rn and 0 ≤ d ≤ n. Then Γ is
said to be a d-set if there is a Borel measure µ in Rn with the following two
properties:

(i) suppµ = Γ ;
(ii) there are two constants C > 0 and C ′ > 0 such that for all γ ∈ Γ

and all r with 0 < r < 1,

C ′rd ≤ µ(B(γ, r) ∩ Γ ) ≤ Crd;
here and in what follows, B(γ, r) = {y ∈ Rn : |y − γ| < r}.

From this definition, it is easy to see that Γ is a closed set in Rn, but Γ
may not be compact. Also, in [15, p. 5], Triebel has proved that µ is actually
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a Radon measure, and moreover, µ = Hd|Γ , where Hd is the d-dimensional
Hausdorff measure on Rn.

Let Γ be a compact d-set. Triebel has introduced the spaces Bs
pq(Γ ) for

s > 0 by use of two different and equivalent methods, namely, traces in [15]
and quarkonial decompositions in [16].

The homogeneous Besov and Triebel–Lizorkin spaces on spaces of ho-
mogeneous type have been studied in [10]. In [8], the inhomogeneous Besov
and Triebel–Lizorkin spaces on spaces of homogeneous type were introduced
via the generalized Littlewood–Paley g-functions when p, q ≥ 1. In [9], the
inhomogeneous Triebel–Lizorkin spaces were generalized to the cases where
p0 < p ≤ 1 ≤ q < ∞ via the generalized Littlewood–Paley S-functions,
where p0 is a positive number. In the case of d-sets, p0 = 1/2.

The main purpose of this paper is to answer a question posed by Triebel
in [16, pp. 159–160]. He asked if these spaces Bs

pq(Γ ) are the same as those
defined by regarding Γ as a space of homogeneous type. We will show that
the answer is affirmative.

Let us now briefly review the definition of spaces of homogeneous type.
A quasi-metric % on a set X is a function % : X ×X → [0,∞) satisfying

(i) %(x, y) = 0 if and only if x = y.
(ii) %(x, y) = %(y, x) for all x, y ∈ X.

(iii) There exists a constant A ∈ [1,∞) such that for all x, y, z ∈ X,
%(x, y) ≤ A[%(x, z) + %(z, y)].

Any quasi-metric defines a topology, for which the balls

B(x, r) = {y ∈ X : %(y, x) < r}
for all x ∈ X and all r > 0 form a basis.

The following spaces of homogeneous type, studied in [11], are variants
of the spaces of homogeneous type introduced by Coifman and Weiss in [2].
In what follows, we let

diamX = sup{%(x, y) : x, y ∈ X},
and A ∼ B means that there are two constants C1, C2 > 0 independent of
the main parameters such that C1 < A/B < C2.

Definition 1.2. Let d > 0 and 0 < θ ≤ 1. A space of homogeneous
type (X, %, µ)d,θ is a set X together with a quasi-metric % and a nonnegative
Borel regular measure µ on X with

suppµ = X

such that there exists a constant C > 0 such that for all 0 < r < diamX
and all x, x′, y ∈ X,

(1.1) µ(B(x, r)) ∼ rd
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and

(1.2) |%(x, y)− %(x′, y)| ≤ C%(x, x′)θ[%(x, y) + %(x′, y)]1−θ.

Remark 1.1. It is easy to see that if diamX <∞, then (1.1) holds for
all 0 < r < diamX if and only if it holds for all 0 < r < 1.

Remark 1.2. From (1.1), it is easy to deduce µ({x}) = 0 for all x ∈ X.
This means that the spaces of homogeneous type defined in Definition 1.2
are atomless measure spaces.

If we choose d = 1 in the above definition, then Maćıas and Segovia [14]
have proved that in the sense of topology equivalence, the spaces (X, %, µ)d,θ
are just the spaces of homogeneous type in the sense of Coifman and Weiss,
whose definition only requires that % is a quasi-metric without (1.2) and µ
satisfies the following doubling condition which is weaker than (1.1): there
is a constant A′ > 0 such that for all x ∈ X and all r > 0,

µ(B(x, 2r)) ≤ A′µ(B(x, r)).

However, in [14], Maćıas and Segovia have shown that for the spaces of
homogeneous type in the sense of Coifman and Weiss, one can replace
the original quasi-metric % by another quasi-metric %, which yields the
same topology on X, such that there exist C > 0 and θ ∈ (0, 1] satisfy-
ing

%(x, y) ∼ inf{µ(B) : B is a ball containing x and y}

and (1.2) with % and θ replaced, respectively, by % and θ, and that µ satisfies
(1.1) with d = 1 for balls corresponding to this new quasi-metric. Moreover,
there is a positive constant C0 such that %(x, y)1/C0 is equivalent to a metric
on X × X. It is easy to see that the set X with this new quasi-metric %,
the original measure µ and the balls corresponding to the new quasi-metric
satisfies (1.1) with d = 1 and (1.2).

The above variant definition of spaces of homogeneous type is convenient.
In fact, (Rn, %,m)n,1 is just the usual Rn, where % is the standard Euclidean
metric and m is the n-dimensional Hausdorff measure, or equivalently, the
n-dimensional Lebesgue measure. Moreover, any bounded d-set Γ in Rn
with 0 ≤ d ≤ n is just the space (Γ, %, µ)d,1, where % is again the standard
Euclidean metric and µ is a Radon measure on Γ with suppµ = Γ . See [11]
for more details.

In this paper, we assume that the total measure of X is finite. Also, in
what follows, we let

Lp(X) = {f : X → C is a µ-measurable function and ‖f‖Lp(X) <∞}
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for p ∈ (0,∞], where

‖f‖Lp(X) =
{ �
X

|f(x)|p dµ(x)
}1/p

for p ∈ (0,∞),

‖f‖L∞(X) = ess sup
x∈X

|f(x)|.

The organization of this paper is as follows. In the next section, we will
recall some related theory on spaces of homogeneous type, which will be
used in Section 3. In Section 3, we will establish the connection between the
spacesBs

pq(Γ ) defined by trace methods in [15], or equivalently by quarkonial
methods in [16], and the Besov spaces Bs

pq(Γ ) defined by regarding Γ as a
space of homogeneous type, (X, %, µ)d,1 with %(x, y) = |x−y| for all x, y ∈ Γ
and µ = Hd, the d-dimensional Hausdorff measure on Γ . In fact, we will show
that for 0 < s < 1, 1 < p <∞ and 1 ≤ q ≤ ∞, Bs

pq(Γ ) = Bs
pq(Γ ).

2. Preliminaries. In this section, we recall some known results on
spaces of homogeneous type; see also [11]. Let us first recall the definition
of the spaces of test functions on X from [10]; see also [7].

Definition 2.1. Fix γ, β > 0. A function f defined on X is said to be
a test function of type (x0, r, β, γ) with x0 ∈ X and r > 0 if f satisfies the
following conditions:

(i) |f(x)| ≤ C rγ

(r + %(x, x0))d+γ ;

(ii) |f(x)− f(y)| ≤ C
(

%(x, y)
r + %(x, x0)

)β rγ

(r + %(x, x0))d+γ

for %(x, y) ≤ 1
2A

[r + %(x, x0)].

If f is a test function of type (x0, r, β, γ), we write f ∈ G(x0, r, β, γ), and
the norm of f in G(x0, r, β, γ) is defined by

‖f‖G(x0,r,β,γ) = inf{C : (i) and (ii) hold}.
Here and in what follows, θ is the same as in (1.2).

Now fix x0 ∈ X and write G(β, γ) = G(x0, 1, β, γ). It is easy to see that

G(x1, r, β, γ) = G(β, γ)

with equivalent norms for all x1 ∈ X and r > 0. Furthermore, it is easy to
check that G(β, γ) is a Banach space. We also define

G0(x0, r, β, γ) =
{
f ∈ G(x0, r, β, γ) :

�
X

f(x) dµ(x) = 0
}
,

and the dual space (G(β, γ))′ to be all the continuous linear functionals on
G(β, γ). We denote by 〈h, f〉 the natural pairing of elements h ∈ (G(β, γ))′
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and f ∈ G(β, γ). It is also easy to see that for all h ∈ (G(β, γ))′, 〈h, f〉 is
well defined for all f ∈ G(x0, r, β, γ) with x0 ∈ X and r > 0.

It is well known that even when X = Rn, G(β1, γ) is not dense in G(β2, γ)
if β1 > β2, which causes some inconvenience. To overcome this defect, in
what follows, we let G̊(β, γ) be the completion of the space G(θ, θ) in G(β, γ)
when 0 < β, γ < θ.

To state the definitions of the inhomogeneous Besov spaces Bs
pq(X) stud-

ied in [8], we need the following approximations to the identity, which were
first introduced in [7].

Definition 2.2. A sequence {Sk}k≥0 of linear operators is said to be an
approximation to the identity if there exist ε ∈ (0, θ] and C > 0 such that
for all k ∈ N ∪ {0} and all x, x′, y, y′ ∈ X, the kernel Sk(x, y) of Sk is a
function from X ×X into C satisfying

(i) Sk(x, y) = 0 if %(x, y) ≥ C2−k and ‖Sk‖L∞(X×X) ≤ C2dk;
(ii) |Sk(x, y)− Sk(x′, y)| ≤ C2k(d+ε)%(x, x′)ε;

(iii) |Sk(x, y)− Sk(x, y′)| ≤ C2k(d+ε)%(y, y′)ε;
(iv) |[Sk(x, y)− Sk(x, y′)]− [Sk(x′, y)− Sk(x′, y′)]|

≤ C2k(d+2ε)%(x, x′)ε%(y, y′)ε;
(v) � X Sk(x, y) dµ(y) = 1;

(vi) � X Sk(x, y) dµ(x) = 1.

Here, Sk(x, y) being the kernel of Sk means that for suitable functions f ,

Skf(x) =
�
X

Sk(x, y)f(y) dµ(y).

Now, we can introduce the spaces Bs
pq(X) via the approximations to the

identity defined above; these spaces were first studied in [8].

Definition 2.3. Suppose ε ∈ (0, θ], s ∈ (−ε, ε) and {Sk}∞k=0 is an
approximation to the identity, and let

Ek = Sk − Sk−1 for k ∈ N, E0 = S0.

The inhomogeneous Besov space Bs
pq(X) for 1 ≤ p, q ≤ ∞ is the collection

of f ∈ (G̊(β, γ))′ with max(0,−s) < β < ε and 0 < γ < ε such that

‖f‖Bspq(X) =
{ ∞∑

k=0

[2ks‖Ek(f)‖Lp(X)]
q
}1/q

<∞.

It was proved in [8] that the above definition is independent of the choices
of the approximations to the identity and the pair (β, γ) with max(0,−s) <
β < ε and 0 < γ < ε. Moreover, by a similar argument, it was proved in
[11] that the definition is also independent of the equivalent quasi-metrics
satisfying (1.2).
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In [8], atomic decompositions for these spaces were also given. To state
them, we need the following construction of Christ [1], which provides an
analogue of the grid of Euclidean dyadic cubes on a space of homogeneous
type.

Lemma 2.1. Let (X, %, µ)d,θ be a space of homogeneous type. Then there
exists a collection {Qkα ⊂ X : k ∈ N ∪ {0}, α ∈ Mk} of open subsets, where
Mk is some (possibly finite) index set , and constants δ ∈ (0, 1), a0 > 0 and
C > 0 such that

(i) µ(X \⋃αQ
k
α) = 0 for each fixed k and Qk

β ∩Qkα = ∅ if α 6= β;
(ii) for any α, β, k, l with l ≥ k, either Ql

β ⊂ Qkα or Qlβ ∩Qkα = ∅;
(iii) for each (k, α) and each l < k there is a unique β such that Qk

α⊂Qlβ;
(iv) diam(Qkα) ≤ Cδk;
(v) each Qkα contains some ball B(zkα, a0δ

k), where zkα ∈ X.

In fact, we can think of Qk
α as being essentially a dyadic cube with

diameter roughly δk and center zkα.
The following (dyadic) smooth atoms on a space of homogeneous type

were introduced in [10].

Definition 2.4. Fix δ ∈ (0, 1) and a collection

{Qkτ ⊂ X : k ∈ N ∪ {0}, τ ∈Mk}
of open subsets satisfying the conditions as in Lemma 2.1. A function aQkτ
defined on X is said to be a γ-smooth atom for Qk

τ if

(i) supp aQkτ ⊂ B(zkτ , 3ACδ
k);

(ii) � X aQkτ (x) dµ(x) = 0;

(iii) |aQkτ (x)|≤µ(Qkτ )
−1/2 and |aQkτ (x)−aQkτ (y)|≤µ(Qkτ )

−1/2−γ/d%(x, y)γ.

A function aQkτ defined on X is said to be a γ-smooth block for Qk
τ if aQkτ

satisfies only (i) and (iii) above.

As in the case X = Rn (see [5]), we also define certain inhomogeneous
spaces of sequences indexed by “dyadic cubes” {Qk

τ}τ∈Mk, k∈N∪{0} ≡ J in
X, which will characterize the coefficients in the atomic decompositions of
Bs
pq(X). For −ε < s < ε, 1 ≤ p, q ≤ ∞, we let bspq(X) be the collection of

all sequences λ = {λQ}Q∈J such that

‖λ‖bspq(X) =
{ ∞∑

k=0

[ ∑

τ∈Mk

(µ(Qkτ )
−s/d−1/2+1/p|λQkτ |)

p
]q/p}1/q

is finite.
We have the following atomic decompositions for the spaces Bs

pq(X),
which were proved in [8].



Besov spaces on spaces of homogeneous type 21

Lemma 2.2. Suppose −ε < s < ε.

(i) If 1 ≤ p, q ≤ ∞ and f ∈ Bs
pq(X) ∩ (G(β, γ))′ with 0 < β, γ < ε,

then there exist a sequence λ = {λQkτ }Qkτ∈J ∈ bspq(X), ε-smooth atoms
{aQkτ }k∈N, τ∈Mk

and ε-smooth blocks {aQ0
τ
}τ∈M0 such that

f =
∞∑

k=0

∑

τ∈Mk

λQkτaQkτ

with convergence both in the norm of Bs
pq(X) and in (G(β, γ))′ when 1 ≤

p, q <∞, and only in (G(β, γ))′ when 1 ≤ p, q ≤ max(p, q) =∞, and

‖λ‖bspq(X) ≤ C‖f‖Bspq(X).

(ii) Conversely , suppose

f =
∞∑

k=0

∑

τ∈Mk

λQkτaQkτ

in (G(β, γ))′ with max(0,−s) < β < ε and 0 < γ < ε, where aQ0
τ
’s for

τ ∈ M0 are ε-smooth blocks and aQkτ ’s for k ∈ N and τ ∈ Mk are ε-smooth
atoms. Then

‖f‖Bspq(X) ≤ C‖λ‖bspq(X)

for 1 ≤ p, q ≤ ∞.
Lemma 2.2 was generalized in [11] to the following case when s > 0.

Lemma 2.3. Suppose 0 < s < ε.

(i) If 1 ≤ p, q ≤ ∞ and f ∈ Bs
pq(X) ∩ (G(β, γ))′ with 0 < β, γ < ε,

then there exist a sequence λ = {λQkτ }Qkτ∈J ∈ b
s
pq(X) and ε-smooth blocks

{aQkτ }k∈N∪{0}, τ∈Mk
such that

f =
∞∑

k=0

∑

τ∈Mk

λQkτaQkτ

with convergence both in the norm of Bs
pq(X) and in (G(β, γ))′ when 1 ≤

p, q <∞, and only in (G(β, γ))′ when 1 ≤ p, q ≤ max(p, q) =∞, and

‖λ‖bspq(X) ≤ C‖f‖Bspq(X).

(ii) Conversely , suppose

f =
∞∑

k=0

∑

τ∈Mk

λQkτaQkτ

in (G(β, γ))′ with 0 < β, γ < ε, where aQkτ for k ∈ N ∪ {0} are ε-smooth
blocks. Then

‖f‖Bspq(X) ≤ C‖λ‖bspq(X)

for 1 ≤ p, q ≤ ∞.
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We also need the following lemma which can be found in [10, p. 93]; see
also [5].

Lemma 2.4. Let 1 ≤ p ≤ ∞, µ, η ∈ N ∪ {0} with η ≤ µ and for “dyadic
cubes” Qµτ ,

|fQµτ (x)| ≤ (1 + 2η%(x, zµτ ))−d−σ,

where zµτ is the “center” of Qµτ as in Lemma 2.1 and σ > 0 (recall that
µ(Qµτ ) ≈ 2−µd). Then

(2.1)
∥∥∥
∑

τ

λQµτ fQµτ

∥∥∥
Lp(X)

≤ C2(µ−η)d2−µd/p
(∑

τ

|λQµτ |p
)1/p

and

(2.2)
∑

τ

|λQµτ | |fQµτ (x)| ≤ C2(µ−η)dM
(∑

τ

|λQµτ |χQµτ
)

(x),

where C is independent of x, µ and η, and M is the Hardy–Littlewood max-
imal operator on X.

3. Relations between function spaces on d-sets and spaces of
homogeneous type. Let Γ be a d-set in Rn. In this section, we will estab-
lish the connection between the spaces Bs

pq(Γ ) defined by means of traces
or quarks, which were proved to be equivalent in [16] (see also [15]), and
the spaces Bs

pq(Γ ) defined by regarding Γ as a space of homogeneous type
(as in Section 2) with the usual Euclidean metric and the d-dimensional
Hausdorff measure on Rn. Let us first recall the definition of the quarks; see
[15] and [16].

For ε > 0, let Γε = {x ∈ Rn : dist (x, Γ ) < ε} be the ε-neighborhood of Γ .
Let k ∈ N0 and let Mk ∈ N. For k ∈ N0, let {γk,m : m = 1, . . . ,Mk} ⊂ Γ
and let {ψk,m : m = 1, . . . ,Mk} be approximate lattices and subordinate
resolutions of unity with the following properties: There are positive numbers
C1, C2 and C3 with

|γk,m1 − γk,m2 | ≥ C12−k, k ∈ N0, m1 6= m2,

and

(3.1) Γεk ⊂
Mk⋃

m=1

B(γk,m, C22−k) =
Mk⋃

m=1

Bkm, k ∈ N0,

where εk = C32−k. Furthermore, ψk,m’s are nonnegative C∞(Rn) functions
in Rn with suppψk,m ⊂ B(γk,m, C22−k+1),

|Dαψk,m(x)| ≤ Cα2k|α|
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for x ∈ Rn and α = (α1, . . . , αn) ∈ (N ∪ {0})n = Nn0 , and
Mk∑

m=1

ψk,m(x) = 1

for x ∈ Γεk , where Cα is a constant, Dα = (∂/∂x1)α1 . . . (∂/∂xn)αn , m =
1, . . . ,Mk and k ∈ N0.

Definition 3.1. Let d ∈ (0, n] and Γ be a compact d-set with a finite
Radon measure µ in Rn as in Definition 1.1. Let ψk,m’s be the resolution of
unity as above. Let 1 < p ≤ ∞ and s ≥ 0. Then

(βqu)km(γ) = 2−k(s−d/p)2k|β|(γ − γk,m)βψk,m(γ)

for γ ∈ Γ with β ∈ Nn0 , k ∈ N0 and m = 1, . . . ,Mk, is called an (s, p)-β-quark
related to the ball Bkm, where γβ = γβ1

1 . . . γβnn for β ∈ Nn0 .

In [16], Triebel introduced the Besov spaces Bs
pq(Γ ) via quarks as follows.

First we recall that for λ = {λkm ∈ C : k ∈ N0, m = 1, . . . ,Mk}, we define
the spaces bpq(Γ ) by

bpq(Γ ) =
{
λ : ‖λ‖bpq(Γ ) =

{ ∞∑

k=0

( Mk∑

m=1

|λkm|p
)q/p}1/q

<∞
}
.

Definition 3.2. Let d ∈ (0, n] and Γ be a compact d-set with a finite
Radon measure µ in Rn as in Definition 1.1. Let s > 0, 1 < p < ∞ and
0 < q ≤ ∞. Let (βqu)km be the (s, p)-β-quarks on Γ as in Definition 3.1.
We put λ = {λβ : β ∈ Nn0} with

λβ = {λβkm ∈ C : k ∈ N0, m = 1, . . . ,Mk}.
Let σ > r with 2r = 2C2, where C2 is as in (3.1), let λβ ∈ bpq(Γ ) and

(3.2) ‖λ‖σbpq(Γ ) = sup
β∈Nn0

2σ|β|‖λβ‖bpq(Γ ) <∞.

Then Bs
pq(Γ )σ is the collection of all g ∈ L1(Γ ) which can be represented as

g(γ) =
∑

β∈Nn0

∞∑

k=0

Mk∑

m=1

λβkm(βqu)km(γ), γ ∈ Γ,

with (3.2). Furthermore,

‖g‖Bspq(Γ )σ = inf ‖λ‖σbpq(Γ ),

where the infimum is taken over all admissible representations.

The following lemma is a simple case of Theorem 9.33 in [16].

Lemma 3.1. Let Γ be a compact d-set with a finite Radon measure µ in
Rn as in Definition 1.1. Let d ∈ (0, n], s > 0, 1 < p < ∞ and 0 < q ≤ ∞.
Then the spaces Bs

pq(Γ )σ introduced in Definition 3.2 are independent of the
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adopted resolutions of unity as above and of the number σ (with equivalent
quasi-norms), and will be denoted simply by Bs

pq(Γ ). Furthermore,

Bs
pq(Γ ) = trΓ Bs+(n−d)/p

pq (Rn)

with equivalent quasi-norms.

The first systematic study of the spaces Bs
pq(Γ ) on d-sets is due to Jon-

sson and Wallin [13]. The spaces were defined with the help of first and
higher differences and approximation by polynomials. A result similar to
Lemma 3.1 was obtained; see Theorem 1 in [13, p. 141]. In other words,
under the conditions of Lemma 3.1, the spaces Bs

pq(Γ ) defined as above
by use of quarks are the same as those defined by Jonsson and Wallin in
[13, Definition 2, p. 123] via the methods mentioned above; see [13] for the
details.

Now, we will show that under the conditions of Lemma 3.1, the spaces
Bs
pq(Γ ) with 1 ≤ q ≤ ∞ defined above are the same as those defined in

Section 2 by regarding Γ as a space of homogeneous type.
Temporarily, denote the Besov spaces on Γ defined in Section 2 by

Bs
pq(Γ ).

Theorem 3.1. Let Γ be a compact d-set with a finite Radon measure µ
in Rn as in Definition 1.1. Let d ∈ (0, n], 1 > s > 0, 1 < p < ∞ and
1 ≤ q ≤ ∞. Then the spaces Bs

pq(Γ ) introduced in Definition 3.2 are the
same as Bs

pq(Γ ) introduced in Definition 2.3, with equivalent norms.

Proof. Let us first prove that Bs
pq(Γ ) ⊂ Bs

pq(Γ ). We only consider p, q ∈
(1,∞); the other cases are simpler. Let g ∈ Bs

pq(Γ )σ for some admissible σ.
By Definition 3.2, we then have the quarkonial decomposition

g(x) =
∑

β∈Nn0

∞∑

ν=0

Mν∑

m=1

λβνm(βqu)νm(x)

for x ∈ Γ , with the notation of Definition 3.2. We wish to use Definition 2.3
to verify that f ∈ Bs

pq(Γ ). We first remark that since we have chosen the
metric in Γ to be just the restriction to Γ of the usual Euclidean metric, it
follows that θ in (1.2) equals 1 in this case. We claim that if k, ν ∈ N ∪ {0}
and k ≤ ν, then for x ∈ Γ ,

(3.3) |Ek((βqu)νm)(x)|
≤ C2−(ν−k)d(2C2)|β|2−ν(s−d/p)(1 + 2k|x− γν,m|)−(d+1),

where C2 is as in (3.1), and that if k, ν ∈ N∪{0} and k > ν, then for x ∈ Γ ,

(3.4) |Ek((βqu)νm)(x)|
≤ C2−(k−ν)(2C2)|β|2−ν(s−d/p)(1 + 2ν |x− γν,m|)−(d+1).
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In fact, we have

|Ek((βqu)νm)(x)| =
∣∣∣

�
Γ

Ek(x, y)(βqu)νm(y) dµ(y)
∣∣∣χ{x∈Γ : |x−γν,m|≤C2−k}(x)

≤
�
Γ

|Ek(x, y)(βqu)νm(y)| dµ(y)χ{x∈Γ : |x−γν,m|≤C2−k}(x)

≤ C2−(ν−k)d(2C2)|β|2−ν(s−d/p)χ{x∈Γ : |x−γν,m|≤C2−k}(x)

≤ C2−(ν−k)d(2C2)|β|2−ν(s−d/p)(1 + 2k|x− γν,m|)−(d+1),

where C is independent of ν, m, k and x. This is (3.3).
For (3.4), since k > ν ≥ 0, we have

�
Γ

Ek(x, y) dµ(y) = 0;

and therefore, by the mean value theorem,

|Ek((βqu)νm)(x)| =
∣∣∣

�
Γ

Ek(x, y)(βqu)νm(y) dµ(y)
∣∣∣χ{x∈Γ : |x−γν,m|≤C2−ν}(x)

=
∣∣∣

�
Γ

Ek(x, y)[(βqu)νm(y)− (βqu)νm(x)] dµ(y)
∣∣∣

× χ{x∈Γ : |x−γν,m|≤C2−ν}(x)

≤ C2−(k−ν)(2C2)|β|2−ν(s−d/p)χ{x∈Γ : |x−γν,m|≤C2−ν}(x)

≤ C2−(k−ν)(2C2)|β|2−ν(s−d/p)(1 + 2ν |x− γν,m|)−(d+1),

where C is independent of ν, m, k and x, proving (3.4).
Now we write
{ ∞∑

k=0

(2ks‖Ek(g)‖Lp(Γ ))
q
}1/q

≤
{ ∞∑

k=0

[
2ks
∥∥∥Ek

( ∑

β∈Nn0

k∑

ν=0

Mν∑

m=1

λβνm(βqu)νm
)∥∥∥

Lp(Γ )

]q}1/q

+
{ ∞∑

k=0

[
2ks
∥∥∥Ek

( ∑

β∈Nn0

∞∑

ν=k+1

Mν∑

m=1

λβνm(βqu)νm
)∥∥∥

Lp(Γ )

]q}1/q

= I + II.

For k ∈ N ∪ {0}, m = 1, . . . ,Mk, let

Bkm = {x ∈ Γ : |x− γk,m| ≤ C42−k}
and C4 ≤ C2, where C2 and γk,m’s are as in (3.1). Obviously, by suitably
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choosing C4, we may suppose that

{Bkm : k ∈ N ∪ {0}, m = 1, . . . ,Mk}
satisfy the conditions on {Qk

α ⊂ X : k ∈ N∪{0}, α ∈Mk} as in Lemma 2.1
for the present case. In what follows, for q ∈ [1,∞], we define q′ ∈ [1,∞] by
1/q+1/q′ = 1. Hence, by (3.4), (2.1) of Lemma 2.4, and Hölder’s inequality,
we have

I ≤ C
{ ∞∑

k=0

[
2ks2−νd/p

×
( ∑

β∈Nn0

k∑

ν=0

Mν∑

m=1

|λβνm|p2−(k−ν)p−ν(s−d/p)p(2C2)|β|p
)1/p]q}1/q

= C
{ ∞∑

k=0

[ ∑

β∈Nn0

k∑

ν=0

Mν∑

m=1

|λβνm|p2−(k−ν)(1−s)p(2C2)|β|p
]q/p}1/q

≤ C
∑

β∈Nn0

(2C2)|β|
{ ∞∑

k=0

[ k∑

ν=0

( Mν∑

m=1

|λβνm|p
)q/p

2−(k−ν)(1−s)q/2
]

×
[ k∑

ν=0

2−(k−ν)(1−s)q′/2
]q/q′}1/q

≤ C
∑

β∈Nn0

(2C2)|β|‖λβ‖bpq(Γ ) ≤ C‖g‖Bspq(Γ )

∑

β∈Nn0

2(r−σ)|β| ≤ C‖g‖Bspq(Γ ),

which is the desired estimate for I; we used the fact that s < 1.
In what follows, let M be the Hardy–Littlewood maximal operator on Γ .

It is well known that M is bounded in Lp(Γ ) for p ∈ (1,∞); see [2], or
Theorem 2.2 in [12], or Theorem 14.13 in [6]. Using this for II, by (3.3),
(2.2) of Lemma 2.4 and Hölder’s inequality, we have

II ≤ C
∑

β∈Nn0

{ ∞∑

k=0

[ ∞∑

ν=k+1

2ks
∥∥∥
Mν∑

m=1

λβνmEk[(βqu)νm]
∥∥∥
Lp(Γ )

]q}1/q

≤ C
∑

β∈Nn0

(2C2)|β|

×
{ ∞∑

k=0

[ ∞∑

ν=k+1

2−(ν−k)s2νd/p
∥∥∥M

( Mν∑

m=1

|λβνm|χBνm
)∥∥∥

Lp(Γ )

]q}1/q

≤ C
∑

β∈Nn0

(2C2)|β|
{ ∞∑

k=0

[ ∞∑

ν=k+1

2−(ν−k)s2νd/p
∥∥∥
Mν∑

m=1

|λβνm|χBνm
∥∥∥
Lp(Γ )

]q}1/q
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≤ C
∑

β∈Nn0

(2C2)|β|
{ ∞∑

k=0

[ ∞∑

ν=k+1

2−(ν−k)s
( Mν∑

m=1

|λβνm|p
)1/p]q}1/q

≤ C
∑

β∈Nn0

(2C2)|β|
{ ∞∑

k=0

[ ∞∑

ν=k+1

2−(ν−k)sq/2
( Mν∑

m=1

|λβνm|p
)q/p]

×
[ ∞∑

ν=k+1

2−(ν−k)sq′/2
]q/q′}1/q

≤ C
∑

β∈Nn0

(2C2)|β|‖λβ‖bpq(Γ ) ≤ C‖g‖Bspq(Γ )

∑

β∈Nn0

2(r−σ)|β| ≤ C‖g‖Bspq(Γ ),

which is the desired estimate for II; we used the fact that s > 0 and in the
fourth step, we used the property satisfied by the balls

{Bνm : ν ∈ N ∪ {0}, m = 1, . . . ,Mν}.
This proves that Bs

pq(Γ ) ⊂ Bs
pq(Γ ).

Now, let us prove Bs
pq(Γ ) ⊂ Bs

pq(Γ ). To do that, we need first to show
that our 1-smooth blocks and 1-smooth atoms in Lemma 2.2 belong to
C∞(Rn). For this purpose, by the proof of Theorem 2.1 in [8], we only need
to prove that in the present case, we can choose an approximation to the
identity as in Definition 2.2 with C∞(Rn × Rn) kernels. This can be done
by using Coifman’s idea as follows (see [3]). We choose a nonnegative radial
C∞(Rn) function g with g(x) = 0 if |x| > 2, g(x) = 1 if |x| ≤ 1 and
0 ≤ g(x) ≤ 1 for all x ∈ Rn. We then define the operator Tk by

Tk(f)(x) =
�
Γ

2kdg(2k(x− y))f(y) dµ(y),

where k ∈ N ∪ {0}. It is easy to check that there are two constants C and
C ′ such that

C ′ ≤ Tk(1)(x) ≤ C
for all x ∈ Γ . In fact, it is easy to see that for some small εk > 0,
C ≤ Tk(1)(x) when x ∈ Γεk . For example, we can take εk = 2−(k+1). We
then choose a Schwartz function ψk ∈ C∞(Rn) such that ψk(x) = 1 for
x ∈ Γ , ψk(x) > 0 for x ∈ Γεk/3 and ψk(x) = 0 for x 6∈ Γεk/2. Moreover,
0 ≤ ψk(x) ≤ 1 for all x ∈ Rn. We now define the operators Mk and Wk as
follows:

Mk(f)(x) =
ψk(x)
Tk(1)(x)

f(x),

so Mk is just the multiplication by ψk(x)/Tk(1)(x), and

Wk(f)(x) =
1

Tk
[ 1
Tk(1)(·)

]
(x)

f(x),
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again a multiplication operator; here f is any suitable function on Γ . Then
the operator {Sk}k∈N∪{0} defined by

Sk(f) = MkTkWkTkMk(f)

is the approximation to the identity we are looking for.
Let f ∈ Bs

pq(Γ ). By Lemma 2.2, there exist a sequence

λ = {λQkτ : k ∈ N ∪ {0}, τ = 1, . . . ,Mk} ∈ bspq(Γ ),

1-smooth atoms {aQkτ : k ∈ N, τ = 1, . . . ,Mk} and 1-smooth blocks {aQ0
τ

:
τ = 1, . . . ,M0} such that

f =
∞∑

k=0

Mk∑

τ=1

λQkτaQkτ

with convergence in Bs
pq(Γ ) and

‖λ‖bspq(Γ ) ≤ C‖f‖Bspq(Γ ),

where bspq(Γ ) is the collection of sequences

λ = {λQkτ : k ∈ N ∪ {0}, τ = 1, . . . ,Mk}
such that

‖λ‖bspq(Γ ) =
{ ∞∑

k=0

[ Mk∑

τ=1

(µ(Qkτ )
−s/d−1/2+1/p|λQkτ |)

p
]q/p}1/q

is finite. Moreover, by the above construction of the C∞ approximation
to the identity and the proof of Theorem 2.1 in [8], we know that {aQkτ :
k ∈ N, τ = 1, . . . ,Mk} and {aQ0

τ
: τ = 1, . . . ,M0} belong to C∞(Rn). Note

that Lemma 2.2 is also true when X = Rn, d = n and θ = 1. In this case, we
choose µ = m, the n-dimensional Lebesgue measure on Rn. In fact, to remove
the restriction on s, we can just use the results in [4]. When |s| < 1, the
spaces obtained by Lemma 2.2 and those in [4] are the same. Let us denote
temporarily the Besov spaces on Rn by B̃s

pq(Rn). As we have just pointed
out, aQkτ for all k ∈ N∪{0} and τ = 1, . . . ,Mk can be automatically extended
to Rn. We can also suppose that {Qk

τ : k ∈ N∪{0}, τ = 1, . . . ,Mk} of Lemma
2.1 for Γ are just the restrictions to Γ of {Q̃kτ : k ∈ N∪ {0}, τ = 1, . . . , M̃k}
from Lemma 2.1 for Rn, which are just the dyadic cubes in Rn; see [4]. Thus,
if Qkτ = Q̃kτ ∩ Γ , we define aQ̃kτ = C02k(n−d)/2aQkτ , and aQ̃kτ

= 0 otherwise.
Then we have

supp aQ̃kτ ⊂ 3Q̃kτ = {x ∈ Rn : |x− zkτ | < 3C2−k},
|aQ̃kτ (x)| ≤ C0C

′
02k(n−d)/22kd/2 = m(Q̃kτ )

−1/2,

|aQ̃kτ (x)−aQ̃kτ (y)| ≤ C0C
′
0|x−y|2k(n−d)/22kd(1/2+1/d) = m(Q̃kτ )

−1/2−1/n|x−y|,
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by choosing a suitable constant C0 which is independent of x, y, k and τ ,
where C ′0 depends only on d and µ. Thus,

{aQ̃kτ : k ∈ N ∪ {0}, τ = 1, . . . , M̃k}

are 1-smooth blocks. Moreover, let λQ̃kτ = C−1
0 2k(d−n)/2λQkτ if Qkτ = Q̃kτ ∩ Γ ,

and λQ̃kτ
= 0 otherwise. Let λ̃ = {λQ̃kτ : k ∈ N ∪ {0}, τ = 1, . . . , M̃k}.

Then

‖λ̃‖
b
s+(n−d)/p
pq (Rn)

≤ C
{ ∞∑

k=0

[ M̃k∑

τ=1

(2k(s+(n−d)/p)+kn/2−kn/p|λQ̃kτ |)
p
]q/p}1/q

= C
{ ∞∑

k=0

[ M̃k∑

τ=1

(2ks+kd/2−kd/p|λQkτ |)
p
]q/p}1/q

= C‖λ‖bspq(Γ ) <∞,
where C is independent of f . Now, if we define

f̃ =
∞∑

k=0

M̃k∑

τ=1

λQ̃kτ
aQ̃kτ

,

then by noting that 0 < s < 1 and using Lemma 2.3 (see also the proof of
Theorem 2.1 in [8]), we find that f̃ ∈ B̃s+(n−d)/p

pq (Rn), f = trΓ f̃ and

‖f̃‖
B̃
s+(n−d)/p
pq (Rn)

≤ C‖f‖Bspq(Γ ),

where C is independent of f . Thus, by Lemma 3.1, f ∈ Bs
pq(Γ ), and

‖f‖Bspq(Γ ) ≤ C‖f‖Bspq(Γ ),

where C is independent of f .
This finishes the proof of Theorem 3.1.

The following corollary has been proved in the course of proof of Theo-
rem 3.1.

Corollary 3.1. Let d ∈ (0, n] and let Γ be a d-set with a Radon mea-
sure µ in Rn as in Definition 1.1. Then there is a C∞ approximation {Sk}∞k=0
to the identity on Γ in the following sense: for all k ≥ 0 and all x, y ∈ Γ ,
the kernel Sk(x, y) of Sk is a C∞ function from Rn × Rn into C satisfy-
ing

(i) Sk(x, y) = 0 if |x− y| ≥ C2−k, x, y ∈ Rn;
(ii) |Dα

xD
β
ySk(x, y)| ≤ Cα,β2k(d+|α|+|β|), α, β ∈ Nn0 , x, y ∈ Rn;

(iii) � Γ Sk(x, y) dµ(y) = 1 for all x ∈ Γ ;
(iv) � Γ Sk(x, y) dµ(x) = 1 for all y ∈ Γ ,
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where Dα
x and Dβ

y are differential operators in Rn defined as above, with
respect to x and y, and C and Cα,β are constants independent of k, x
and y.
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