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Factor representations of diffeomorphism groups

by

Robert P. Boyer (Philadelphia, PA)

Abstract. We give a new construction of semifinite factor representations of the
diffeomorphism group of euclidean space. These representations are in canonical corre-
spondence with the finite factor representations of the inductive limit unitary group.
Hence, many of these representations are given in terms of quasi-free representations of
the canonical commutation and anti-commutation relations. To establish this correspon-
dence requires a generalization of complete positivity as developed in operator algebras.
We also compare the asymptotic character formula for the unitary group with the ther-
modynamic (N/V ) limit construction for diffeomorphism group representations.

Introduction. The purpose of this paper is to explore the connections
between the representation theory of inductive limit classical groups and
the representation theory of the group Diffc(Rd) of compactly supported
diffeomorphisms of Rd. Although the representation theory of this group has
been studied for over 25 years because of its many physical applications in
quantum mechanics and general relativity, the general representation theory
of Diffc(Rd) is still unknown.

The starting point of this work was the discovery that there are natural
generalizations of the finite characters of the inductive limit unitary group
U(∞) that yield factor representations of the diffeomorphism group. The
importance of this observation is that although U(∞) is itself too small for
most groups to have natural embeddings into it, it does have natural families
of representations that do extend to these larger groups in a controlled way.

In Section 1, we investigate the inductive limit of infinite-dimensional
unitary groups and study a generalization of positive-definite functions. It is
necessary to extend representations from the unitary group to the semigroup
of contractions. Much of this parallels the development in [18, 20].

In Section 2, we classify a natural class of positive-definite functions
which are analogous to the finite characters of U(∞), called generalized
characters. We show that these two collections of positive-definite functions
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are in canonical correspondence. To establish this, it was necessary to use a
generalization of complete positivity [1]. The corresponding representations
are semifinite factor representations, typically, of type II∞. Further, these
representations may be described in terms of the quasi-free representations
of the commutation relations [23]. We do not need to use the classification
of finite characters for any of these results.

In Section 3, we apply the results of Sections 1 and 2 to the restrictions
of the representations introduced in Section 2 to give new families of factor
representations of Diffc(Rd). We also describe the connections between the
N/V (thermodynamic) limits [8, 14] and the asymptotic character theory
of the infinite unitary group [3, 25].

In a sequel to this paper, we will introduce further families of generalized
characters and study the representations of several natural completions of
Diffc(Rd).

I would also like to acknowledge a very helpful conversation with Jerry
Goldin.

1. Classical groups and semigroups. It was discovered by Kiril-
lov [12] that certain infinite-dimensional classical groups have countable dual
spaces. In particular, the irreducible representations πα of the full infinite-
dimensional orthogonal group are parametrized by a decreasing sequence
α of non-negative integers which are eventually zero (called a signature),
while the irreducibles of the full unitary group are parametrized by a double
signature (α, β).

We begin by recording the form of an arbitrary positive-definite function
on such groups.

1.1. Proposition. Let G be a separable topological group with only
countably many distinct unitary equivalence classes of irreducible represen-
tations. Then an arbitrary positive-definite function f on G may be written
as

f(g) =
∑

π∈Ĝ

Tr[Pππ(g)],

where Pπ is a positive trace-class operator on the representation space H(π)
of π such that

∑
π Tr[Pπ] = 1.

1.2. Definition. Let L1 ⊂ L2 ⊂ . . . be an increasing sequence of
infinite-dimensional separable real Hilbert spaces; let HN be the complex-
ification of LN , so we also have a sequence of complex Hilbert spaces. We
may form the inductive limit groups:

O = lim−→O(LN ), U = lim−→U(HN )

where O(LN ) and U(HN ) are given the strong operator topologies.
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Note. O is a closed connected subgroup of the topological group U .

We now present a generalization of the result of Ol’shanskĭı [20, p. 24]
that the representation theory of the infinite-dimensional full orthogonal
group coincides with the holomorphic representation theory of the full uni-
tary group under restriction. Recall that a representation π of the full uni-
tary group is holomorphic if it is a direct sum of irreducible representations
πα whose signatures α are all non-negative. We say that a representation of
U is holomorphic if its restriction to any U(HN ) is holomorphic.

We include a proof of the following elementary lemma because of its
usefulness in this paper.

1.3. Lemma. Let {Mn} and {Nn} be two increasing sequences of
∗-algebras of Hilbert space operators such that (1) Nn ⊂ Mn for all n,
and (2) {Mn}′′ = {Nn}′′ for all n. Then the following two von Neumann
algebras coincide: {⋃Mn}′′ = {⋃Nn}′′.

Proof. We must show that if x ∈ {⋃Mn}′′, then x lies in the strong clo-
sure of {⋃Nn}. By condition (2), we may assume, without loss of generality,
that x does not lie in anyMn. So, there must be a sequence xn ∈ Mn such
that xn converges to x in the strong operator topology. Let ε > 0 be given
together with vectors ξ1, . . . , ξk. Then there exists a positive integer N such
that n ≥ N implies ‖xnξj − xξj‖ < ε for 1 ≤ j ≤ k. Again by condition (2),
we must have elements yn ∈ Nn such that ‖ynξj − xnξj‖ < ε for 1 ≤ j ≤ k.
Therefore, ‖ynξj−xξj‖ < 2ε for 1 ≤ j ≤ k. We conclude that x ∈ {⋃Nn}′′.

1.4. Corollary. If π is a holomorphic unitary representation of U ,
then the von Neumann algebras generated by π(U) and π(O) coincide.

Proof. We know that if πN is a holomorphic representation of the full
unitary group U(HN ), then the von Neumann algebras generated by U(HN )
and its restriction to the orthogonal subgroup O(LN ) agree [20, p. 24]. So,
the result follows from the lemma.

1.5. Let H denote the Hilbert space completion of
⋃
HN . We choose an

orthonormal system {fN} in H such that f1 ∈ H1, while fN ∈ HN 	HN−1

for N > 1.
We now form the usual inductive limit unitary group

U(∞) = lim−→U(〈f1, . . . , fN 〉).
If Y is any Hilbert space, we let Γ (Y ) denote the ∗-semigroup of contractions
on Y . We note that the unitary group of Y is a ∗-subsemigroup of Γ (Y ).
We next form the inductive limit ∗-semigroup of contractions:

Γ (∞) = lim−→Γ (〈f1, . . . , fN 〉).
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The following proposition follows easily from the finite-dimensional case.

1.6. Proposition. Any holomorphic unitary representation π of U(∞)
extends to a ∗-representation π̂ of Γ (∞) with {π(U(∞))}′′ = {π̂(Γ (∞))}′′.

Proof. Let π be given as in the proposition. We consider the restric-
tion π|U(N) ' ⊕

α mαπ
(N)
α , where π

(N)
α are irreducible representations

of U(N) with multiplicity mα. It is classical in finite dimensions that
each irreducible representation π

(N)
α extends holomorphically from U(N)

to Γ (N) so as to preserve multiplication and the adjoint operation. So,
{π(U(N))}′′ = {π̂(Γ (N))}′′ for all N . By Lemma 1.3, we have {π(U(∞))}′′
= {π̂(Γ (∞))}′′.

1.7. Definition. Let A and B be two topological ∗-algebras of Hilbert
space operators. We call any continuous map (not necessarily linear) Ψ :
A→ B completely positive if, for any n ≥ 1, the matrix [Ψ(aij)] ∈Mn(B) is
positive for any positive matrix [aij ] ∈Mn(A). (This definition is a variant
of a definition of Arveson [1].)

If S1 and S2 are ∗-semigroups such that S1 ⊂ A and S2 ⊂ B, where A
and B are given above and where these ∗-semigroups are given the relative
topologies from A and B, then we call a map Φ : S1 → S2 completely positive
if Φ is the restriction of some completely positive map from A to B. We note
that if f : S1 → C is positive-definite, then f is completely positive.

1.8. Proposition. Any holomorphic positive-definite function of either
U(∞) or U is completely positive.

Proof. Let U(∞) = lim−→U(N), and let φ be a holomorphic positive-
definite function on U(∞). To verify that φ is completely positive, it is
enough to verify the condition for the restriction φ|U(N). But this restriction
is automatically completely positive by [1]. The argument for U is similar.

The following corollary follows easily.

1.9. Corollary. The holomorphic extension φ̂ of a holomorphic posi-
tive-definite function φ of U(∞) to Γ (∞) is completely positive.

1.10. Comments. Any positive-definite function on a ∗-semigroup S
corresponds to a positive linear functional on the discrete ∗-algebra l1(S).
In particular, this linear functional is automatically completely positive on
this Banach ∗-algebra. So, the notion of complete positivity for a func-
tion on a semigroup or group requires additional structure. We note that
not every positive-definite function on the unitary group of a unital
C∗-algebra A is completely positive if U(A) is disconnected (Arveson, un-
published).
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2. Generalized characters

2.1. We consider the polarization of H as H+ ⊕ H−, where H− is the
closed subspace generated by the orthonormal set {f1, f2, . . .}. Let F denote
the projection of H onto H−, and FN the projection onto 〈f1, . . . , fN 〉.

2.2. Proposition. There is a completely positive map Φ of U onto
Γ (∞) given by compression to the subspace H−, that is, Φ(W ) = FWF .

Proof. Let Φ : B(H) → B(H−) be given by Φ(W ) = FWF . Then Φ is
well known to be completely positive. Now, U ⊂ ⋃∞N=1 B(HN ) = A ⊂ B(H)
and Γ (∞) ⊂ B ⊂ B(H−), where B is the generating nest of K + C · I and
A and B are given the inductive limit topologies. So, Φ(A) ⊂ B. Hence,
Φ : U → Γ (∞) is completely positive. Further, any contraction in B is the
compression of some unitary element from A by the usual dilation construc-
tion. Hence, the map Φ is onto.

2.3. Corollary. Given a holomorphic positive-definite function f on
U(∞), let f̂ be its unique holomorphic extension to the ∗-semigroup of con-
tractions Γ (∞). Then the composition f̂ ◦ Φ is a positive-definite function
on U .

Proof. Let g1, . . . , gn ∈ U . Let A and B be the algebras given in the
proof of the proposition. Then the matrix M = [g∗j gi] ∈ Mn(A) is positive
since M = M∗0M0, where M0 is given with first row [g1, . . . , gn] and all
other rows zero. Let f be a holomorphic positive-definite function on U(∞),
so it extends to a holomorphic completely positive function f̂ on Γ (∞).
Now, the entries of [Φ(g∗j gi)] are all in Γ (∞), so we may consider the matrix

[f̂(Φ(g∗j gi))] of complex numbers, which is positive. Hence, f̂ ◦Φ is positive-
definite on U .

2.4. We recall that for a pair (G,L), where G is a topological group with
closed subgroup L, an L-central positive-definite function on G is one that
is invariant under conjugation by L. The set of all such normalized L-central
positive-definite functions forms a convex set whose extreme points are called
generalized characters. For finite or compact groups, L-central functions are
sometimes called partial traces. Their importance for infinite-dimensional
classical groups was noted by Ol’shanskĭı [19].

2.5. Lemma. Let L = lim−→U(2∞) = lim−→U(〈e1, . . . , eN , f1, . . . , fN 〉),
with subgroups K1 = U(〈e1, e2, . . .〉) × I, K2 = I × U(〈f1, f2, . . .〉). Then
every holomorphic generalized character φ of the pair (L,K2) such that
φ|K1 = 1 can be written uniquely as φ = χ̂ ◦ Φ, where χ̂ is the holomorphic
extension of a holomorphic finite character χ from U(∞) to Γ (∞).
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Proof. Let φ be a generalized character of (L,K2) whose restriction
to K1 is trivial. Set φ2n = φ|U(2n). Then we make the claim that

(1) φ2n(·) =
∑

α

c(2n)
α Tr[π(2n)

α (En)π(2n)
α (·)],

where En is the projection of 〈e1, . . . , en, f1, . . . , fn〉 onto 〈f1, . . . , fn〉.
To see this, write φ2n as

∑
α Tr[P (2n)

α π
(2n)
α (·)], where P (2n)

α is a positive
operator on the representation space H(π(2n)

α ) and
∑

α Tr[P (2n)
α ] = 1, by

Proposition 1.1. The unitary branching law: π(2n)
α |U(n)×U(n) '∑β π

(n)
β ×

π
(n)
α/β , together with the condition that φ2n|U(n)× I is trivial, implies that

the support of the operator P (2n)
α must be contained in the projection onto

the subspace where π(n)
β × π(n)

α/β acts as π(n)
0 × π(n)

α . In particular, P (2n)
α =

c
(2n)
α π

(2n)
α (En) for some c(2n)

α ≥ 0. We further note that the signatures α
that contribute to φ2n have at most n non-zero entries.

As usual, we let π(2n)
α denote the holomorphic extension of π(2n)

α from
U(2n) to Γ (2n). Then, by the centrality of the trace, we have

(2) φ2n(W ) =
∑

α

c(2n)
α Tr[π̂(2n)

α (EnW )] =
∑

α

c(2n)
α Tr[π̂(n)

α (Φ(W ))].

By (2), we find that φ2n is uniquely determined by its restriction to I×U(n).
Moreover, the map φ 7→ φ|I × U(∞) preserves convex combinations.

Conversely, let χ̂ denote the extension to Γ (∞) of a holomorphic finite
character χ of U(∞). Then χ̂ ◦ Φ is trivial on K1 and conjugate invariant
by elements of K2. Further, we find that this correspondence is the inverse
of the map given above: φ 7→ φ|K2, since χ̂ ◦ Φ|K2 = χ.

Remark. This argument generalizes the one in [4].

2.6. Lemma. Let {ej} be an orthonormal basis for H+ such that if
SN = {j : ej ∈ HN}, then {ej : j ∈ SN} ∪ {fj}Nj=1 is an orthonormal
basis for HN , where {fN} is the orthonormal basis for H− as above. Set
U(2∞) = lim−→U(〈e1, . . . , eN , f1, . . . , fN 〉). Then U(2∞) is dense in U .

Proof. We retain the notation of Lemma 2.5. LetW ∈ U be given so W ∈
U(HN0) for some N0. Let ε > 0 be given, together with vectors ξ1, . . . , ξk.
Then we need to find W ′ ∈ U(〈e1, . . . , en′ , f1, . . . , fn′〉) for some n′ such that
‖Wξj −W ′ξj‖ < ε for 1 ≤ j ≤ k.

We consider for each j the orthonormal expansion ξj =
∑∞

n=1 c
(j)
n en +∑N0

n=1 d
(j)
n fn. Choose the index n′ so that ‖∑∞n=n′ c

(j)
n en‖<ε/2 for 1≤ j ≤ k.

We note that since ξj ∈ HN0 the coefficients c(j)n are 0 if en 6∈ HN0 . For this

reason, we find that W (
∑n′

n=1 c
(j)
n en) ∈ HN0 . Hence, there exists W ′ ∈
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U(〈e1, . . . , en′ , f1, . . . , fn′〉) such that ‖Wξj −W ′ξ′j‖ < ε/2 for 1 ≤ j ≤ n,

where ξ′j =
∑n′

n=1 c
(j)
n en. This is the desired W ′, and the lemma is proven.

Example. There are non-holomorphic generalized characters of the
above pair, satisfying the triviality condition. One such example is

det((I − F )W ) det((I − F )W ∗).

2.7. Proposition. (a) The convex sets C1 and C2 are affinely iso-
morphic, where C1 is the set of all holomorphic positive-definite functions
on U that are I × U(∞)-conjugate invariant and whose restriction to
(U(H+) ∩ U)× I is trivial , and where C2 is the set of all central holomor-
phic positive-definite functions on U(∞).

(b) Let φ be any holomorphic generalized character from C2. Then there
exists a unique holomorphic finite character χ of U(∞) such that φ = χ̂◦Φ.

Proof. Let φ be a generalized character of the pair (U , I ×U(∞)). Then
φ|U(2∞) is a generalized character as well of (U(2∞), I × U(∞)), for a
version of U(2∞) that satisfies Lemma 2.6. Further, since U(2∞) is dense
in U , φ is uniquely determined by its restriction to U(2∞). By Corollary 2.3,
φ = χ̂ ◦ Φ on U(2∞). But χ̂ ◦ Φ is continuous on U(2∞) relative to the
U-topology. Hence, φ = χ̂ ◦ Φ on U uniquely. This ends the proof.

2.8. Corollary. Let χ denote a holomorphic finite character of U(∞).
Then χ̂ ◦ Φ is a generalized character of U , which generates either an ir-
reducible representation or a type II∞ factor representation. In particular ,
the generalized character is irreducible if and only if its restriction to U(∞)
is a power of the determinant ; it is type II∞ if and only if its restriction to
U(∞) is type II1.

Proof. We make use of the identification [19] of the generalized charac-
ters as spherical functions of the pair (L×K,K×K). If f is the generalized
character with corresponding cyclic representation T = π × π′ of L × K,
then T is irreducible, π′ is a finite factor, and π and π′ generate each other’s
commutants. Hence, π is irreducible ⇔ π′ is irreducible. This occurs if and
only if π′ is equivalent to a power of the determinant. Otherwise, π′ is al-
ways equivalent to a type II1 factor representation. So, π must be type II
as well. Since U(HN ), so U itself, has no infinite-dimensional finite factor
representations, we find that π is type II∞ ⇔ π′ is type II1.

2.9. Let φ be a generalized character given as in 2.7(b): φ = χ̂◦Φ. Then
its restriction has the form

φ(·)|U(HN) =
∑

α

a(N)
α Tr[π(N)

α (FN )π(N)
α (·)],

where χ|U(N) =
∑

α a
(N)
α χ

(N)
α (and χ

(N)
α is the irreducible character of
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U(N) with signature α and dimension d(N)
α ). In particular, this summation

gives us the decomposition of the cyclic representation πφ corresponding to
a generalized character:

πφ|U(HN ) '
⊕

α

d(N)
α π(N)

α .

Further, we recall from [2, 25, 26] the explicit form of the holomorphic
finite characters of U(∞): χ(W ) = det[f(W )], where

f(z) = eγ(z−1)
∞∏

j=1

1− βj + βjz

1 + αj − αjz

such that 0 ≤ βj+1 ≤ βj ≤ 1, 0 ≤ αj+1 ≤ αj , and 0 ≤ γ, together with∑∞
j=1(αj + βj) < ∞. We denote the collection of all such meromorphic

functions by M.

We can restate Corollary 2.8 relative to the parametrization of the holo-
morphic finite characters.

2.10. Corollary. If χ(W ) = det[f(W )], f ∈ M, is a finite holomor-
phic character of U(∞), then the generalized character χ̂ ◦ Φ is irreducible
if and only if γ = 0, αj = 0 for all j, and there exists an integer m so that
βj = 1 for 1 ≤ j ≤ m and βj = 0 for j > m, that is, f(z) = zm. Otherwise,
χ̂ ◦ Φ generates a type II∞ factor representation.

2.11. Examples. (1) Consider the subgroup K = U(1) = S1 · e1 of the
unitary group U(N). Then every multiplicative character χ of K admits a
unique holomorphic extension to the ∗-semigroup Γ (1), which is the unit
disk. Note that these representations are all one-dimensional. The compres-
sion of a unitary element W to Γ (1) is just the matrix coefficient (We1, e1).
So the above construction amounts to identifying χ as the matrix coefficient
of the standard irreducible representation of U(N) on CN .

(2) Two important examples of finite characters are: χ+(W ) = det(1 +
α − αW )−1 and χ−(W ) = det(1 − β + βW ), where χ+ corresponds to a
certain quasi-free state on the Weyl (CCR) algebra and χ− to a certain
quasi-free state on the Clifford (CAR) algebra.

Comments. (1) The construction of the positive-definite function on
U as the composition χ̂ ◦ Φ may be viewed as a non-linear version of the
Rieffel construction of induced representations of C∗-algebras. The above
construction is not, though, given exactly by induced representations of C∗-
algebras since such induction preserves traceability and this construction
does not.

(2) Corollary 2.8 is analogous to results on extremal states relative to an
asymptotically abelian sytem on a C∗-algebra.
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(3) The generalized characters are among the KMS-functions of posi-
tive type in [23]. There are no general results concerning their associated
representations according to their factoriality, type, or quasi-equivalence.

(4) None of the semifinite factor representations given by the above
generalized characters yield traceable factor (normal) representations for
C∗(U(2∞)) (see [2, 6]).

3. Diffeomorphism group representations

3.1. Let X denote the euclidean space Rd, where d ≥ 2. Let Y denote
an open subset of X. We let Diffc(Y ) denote the group of all compactly
supported diffeomorphisms of Y with the usual topology. That is, a diffeo-
morphism ψ has compact support if it is equal to the identity on the comple-
ment of some relatively compact open subset of X. Further, a sequence of
compactly supported diffeomorphisms {ψn} converges to ψ if there is a com-
mon relatively compact open set on whose complement all diffeomorphisms
are equal to the identity and, on the open set itself, the diffeomorphisms
converge in the C∞ topology [24].

Let F denote an increasing sequence X1 ⊂ X2 ⊂ . . . of connected open
subsets of X such that XN is a proper subset of XN+1. (Note that we allow
the possibility that m(X1) is infinite.) Then Diffc(X) =

⋃
Diffc(XN ).

The usual orthogonal action of Diffc(XN ) on the real Hilbert space
L2
R(XN ), formed relative to Lebesgue measure m, gives rise to the stan-

dard representation T of the diffeomorphism group on the complex Hilbert
space L2(XN ), where

[T (ψ)f ](x) = Jψ(x)1/2(x)f(ψ−1x), f ∈ L2(XN ),

and Jψ(x) denotes the Radon–Nikodym derivative dm(ψ−1x)/dm.

3.2. Definition. Let Y be an open connected subset of X. We call a
representation π of Diffc(Y ) tame if it is the restriction of a holomorphic
tame representation of U(L2(Y )) to the image of Diffc(Y ) under T .

We note that the restriction of an irreducible holomorphic tame repre-
sentation of U(L2(Y )) to the image T [Diffc(Y )] is always irreducible. These
are the representations studied by Goldin, Sharp, Menikoff, Grodnik, and
Powers [8, 9, 10, 14, 15], Kirillov [13], and Vershik–Gel’fand–Graev [24] in
the early 1970’s. The explicit link with the unitary group was mentioned by
Okomoto and Sakurai [17]. A Lie algebra approach to these representations
has been developed by P. Chernoff [5].

We call a representation of Diffc(X) locally tame relative to F if its
restriction to the subgroup Diffc(XN ) is always tame. Note that a locally
tame representation is always locally weakly continuous (cf. [11]).
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3.3. Proposition. Let π be a holomorphic representation of U , where
U is formed by the inductive limit of the unitary groups of the complex Hilbert
spaces L2(XN ). Then:

(1) π ◦ T is a locally tame representation of Diffc(X);
(2) the von Neumann algebras generated by π(U) and π(T [Diffc(X)])

coincide.

Proof. Consider the holomorphic representation π of U . Then the re-
striction π|U(L2(XN )) is tame [12]. In particular, π ◦ T is locally tame, so
(1) holds. Next, by Corollary 1.4 and [17], we know that π(U(L2(XN )) and
π(T [Diffc(XN )]) generate the same von Neumann algebras. By Lemma 1.3,
statement (2) follows.

3.4. Corollary. If the measure of X1 is infinite, then the von Neu-
mann algebras generated by π(U) and π(T [SDiffc(X)]) coincide, where
SDiffc(X) consists of all measure preserving diffeomorphisms in Diffc(X).

Proof. By [24, Theorem 1.2], we know that the restriction of a tame
representation of Diffc(XN ) to SDiffc(XN ) generates the same von Neumann
algebra if the measure of XN is infinite. The result follows from Lemma 1.3.

Comments. (1) The collection of representations depends on the choice
of the orthonormal system {fn}. One possible choice for this system would
be a sequence of characteristic functions of disjoint sets of unit measure.

(2) The matrix [T (ψ)fm, fn]1≤m,n<∞ is a generalization of the intersec-
tion matrix of a partition due to A. M. Vershik.

(3) This method of constructing representations of the diffeomorphism
group falls naturally in the framework described in [15].

(4) We can work with the group, denoted by G, formed by taking the
semidirect product of Diffc(X) with C∞c (X). We find that the generalized
characters naturally extend to this semidirect product group. To see this, let
M(f) denote the representation of C∞c (XN ) on L2(XN ) given by eif(x)g(x),
where g ∈ L2(XN ). Then (ψ, f) 7→ T (ψ)M(f) is a representation of G
that actually embeds this group into U . We then find that the generalized
characters introduced for Diffc(X) extend to the semidirect product as

E(ψ, f) = χ̂[Φ(T (ψ)M(f))].

Further, we find that the corresponding cyclic representation πE of G gener-
ates exactly the same von Neumann algebra as Diffc(X) and U itself. Note
that D. Pickrell [21] has explored Mackey analysis for infinite-dimensional
semidirect products. We summarize these remarks:

3.5. Proposition. Let G be the semidirect product of Diffc(X) with
C∞c (X). Then the positive-definite functions E(ψ, f) = χ̂[Φ(T (ψ)M(f))]
generate semifinite factor representations of G.
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Discussion of the N/V limit. These infinite volume limits can be natu-
rally described in our framework. For a discussion of these limits see
[8, 10, 14]. We first observe that if L′ is a real Hilbert space with a non-zero
vector ω, then the subgroup K ′ of O(L′) of orthogonal transformations W
such that Wω = ω can be identified with the orthogonal group of L′ 	 〈ω〉.
The irreducible spherical functions φ for (O(L′),K ′) are classified as

φ(n)(W ) =
1

‖ω‖2n (Sn(W )ω⊗n, ω⊗n),

where Sn(W ) denotes the nth symmetric power of W . This is an old result
of I. J. Schoenberg (see [20, p. 84]). (Recall that a representation π of a
group G relative to a subgroup K is spherical if there is a unit vector that is
fixed under the action of K. A matrix coefficient relative to such a K-fixed
vector is a spherical function.)

More generally, we consider an increasing sequence L1 ⊂ L2 ⊂ . . . of
infinite-dimensional real Hilbert spaces whose union has completion L. Fur-
ther, we set Ωk = f1 +. . .+fk, with ‖Ωk‖2 = Vk. Here, {fj} is an orthogonal
system (not necessarily orthonormal) such that fj ∈ Lj 	Lj−1 (L0 = {0}).
As usual, set O = lim−→O(Lk) and let K = lim−→Kk, where Kk consists of all
elements in O(Lk) that fix the vector Ωk.

3.6. Proposition. The irreducible spherical functions of (O,K) have
the form

Eλ(W ) = eλ([W−I]Ω,Ω), λ ∈ R+ ∪ {0},
where Ω is the formal vector f1 + f2 + . . . The function Eλ is given as the
limit of irreducible spherical functions of the pairs (O(Lk),Kk), where Eλ =
limk→∞ φ

(Nk)
k if λ = limk→∞Nk/‖Ωk‖ and where φ

(Nk)
k is the spherical

function with index Nk of the group Kk.

Proof. We first observe that Eλ is irreducible as follows. By a result
of [7, p. 121] for the usual inductive limit unitary group, Eλ is irreducible
as a positive-definite function on U(2∞), where U(2∞) is given as in the
statement of Lemma 2.6. By continuity, Eλ extends to the group U . Hence,
it remains irreducible as a function on U by Lemma 2.6. Finally, by Corol-
lary 1.4, Eλ gives an irreducible representation of O by restriction.

We first classify the irreducible spherical functions f for the pair (G,K),
where G is an inductive limit of compact groups, since f may be obtained
as a limit of spherical functions of the approximating subgroups (Gk,K0

k)
[18, Theorem 22.10]. The result will then follow since G is dense in O and
f will be continuous relative to O.

We let G = lim−→O(L0
k), where L0

k ⊂ Lk; dim(L0
k) = 2k; f1, . . . , fk ∈ L0

k;
and (

⋃
L0
k) = L. Set K0

k = O(L0
k) ∩ Kk. Let W ∈ O(L0

k0
) and assume

that λ = limk→∞Nk/Vk. We consider the limits of the irreducible spherical
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functions for the pairs (O(L0
k),K0

k):

1
‖Ωk‖2

(SNk(W )Ω⊗Nkk , Ω⊗Nkk ) =
1

V Nkk

[(W (Ωk0 +Ωk,k0), (Ωk0 +Ωk,k0)]Nk

=
1

V Nkk

[(WΩk0 , Ωk0) + (Vk − V0)]Nk

=
[
1 +

(WΩk0 , Ωk0)− V0

Vk

]Nk

→ exp[λ{(WΩk0 , Ωk0)− V0}]
= exp[λ([W − I]Ωk0 , Ωk0)]

= exp[λ([W − I]Ω,Ω)]

where Ωk,k0 = Ωk − Ωk0 and Ω is the formal vector f1 + f2 + . . . Note
that the inner product ([W − I]Ω,Ω) is well defined since Wfj = fj for j
sufficiently large. (Formally, if we let E denote the algebraic inductive limit
of
⋃
LN , then we can identify Ω as giving the linear functional x 7→ (xΩ,Ω)

on E.) Hence, any irreducible spherical function of (O,K) has the desired
form. This ends the proof.

If we restrict the irreducible spherical functions to Diffc(X) for represen-
tations constructed from an increasing sequence F of subsets X1 ⊂ X2 ⊂ . . .
with fj = χXj − χXj−1 (take X0 = ∅), then Ωj = χXj . We find that

lim
k→∞

φ
(Nk)
k (T (ψ)) = exp[([T (ψ)− I]Ω,Ω)] = exp

[ �
X

({detψ(x)}1/2− 1) dx
]
,

which is the functional for the free boson gas given in [8] and is called the
Poisson function in [24]. These representations have also been systematically
studied in [11] and [16].

We include the following result because of an obscurity in [8, p. 95,
(3.31)] that any representation of G can be decomposed into factor repre-
sentations. This is not true for any infinite-dimensional group; for example,
the self-representation of the unitary group of the abelian von Neumann
algebra L∞([0, 1]), relative to Lebesgue measure, on L2([0, 1]) cannot be
decomposed into a direct integral of irreducible representations which are
strongly continuous.

We give a sketch of the existence of direct integral decompositions for
inductive limit groups which is an adaptation of the case for separable lo-
cally compact groups, using the framework given in [22]. Let G∞ = lim−→Gn,
where each Gn is a separable metric compact group such that Gn has
Haar measure zero in Gn+1. As in [22, II.1.1], we let L = lim−→L(n), where
L(n) =

∑n
k=1 L

1(Gk) ⊂ M(Gn), the Banach ∗-algebra of Borel measures
on Gn. Then L becomes a separable Banach ∗-algebra. Further, if µ ∈ L,



Factor representations of diffeomorphism groups 117

then µ =
∑∞

k=1 µk, where µk ∈ L1(Gk) and ‖µ‖L =
∑∞

k=1 ‖µk‖L1(Gk). By
[22, II.1.5], there is a bijection between the continuous infinite-dimensional
irreducible unitary representations π of G∞ and the infinite-dimensional
irreducible ∗-representations π′ of L. In particular, for such a π, we find
π′(µ) = �

G∞
π(g) dµ(g) if µ ∈ L1(Gk) (here, Gk ⊂ G∞, so we treat µ as a

measure on G∞). Write Φ(π) = π′.
We now fix a separable infinite-dimensional Hilbert space H. Let

Irr∞(G∞) denote the set of all infinite-dimensional unitary representations
of G∞ on H; Irr∞(L) is defined similarly. Further, we recall that Irr∞(L)
is a standard Borel space such that π′ 7→ (π′(x)v, w) is a Borel function for
all x ∈ L and v, w ∈ H. As for separable locally compact groups, we give
Irr∞(G∞) the smallest Borel structure such that π 7→ (π(g)v, w) is Borel
for all g ∈ G∞ and v, w ∈ H. We claim that Φ : Irr∞(G∞) → Irr∞(L) is a
Borel isomorphism. Without loss of generality, we consider µ ∈ L of the form
µ ∈ L1(Gk). Then µ is the weak ∗-limit of the finite sums

∑m
j=1 c

(m)
j δ

g
(m)
j

.

So, we have

(π′(µ)v, w) =
( �
G∞

π(g) dµ(g)v, w
)

=
( �
Gk

π(g) dµ(g)v, w
)

= lim
m→∞

m∑

j=1

c
(m)
j (π′(g(m)

j )v, w).

Hence, Φ is a Borel mapping. The approximate identites given in [22, II.1.2]
can be used to show that Φ−1 is also Borel. We conclude that these Borel
spaces are isomorphic. With these observations, the generalization of Theo-
rem 18.7.4 in [6], which gives the equivalence between direct integral decom-
positions of a separable locally compact group and its group algebra, holds
for G∞ and L as well.

3.7. Proposition. (a) Let π be a spherical representation of (O,K).
Then π is a direct integral of irreducible spherical representations; that is,
π is unitarily equivalent to � ⊕[0,∞) πλ dµ(λ), where µ is a positive measure
on [0,∞) and πλ is the irreducible spherical representation corresponding
to Eλ.

(b) The restriction of an irreducible spherical representation of O to
Diffc(X) is still irreducible.

(c) The direct integral decomposition of a spherical representation of
(O,K) is preserved under restriction to the image of Diffc(X).

Proof. Let π be a spherical representation of (O,K) with a unit cyclic
vector v which is fixed under the action of K. Now the commutant of {π(O)}
is abelian by an application of Lemma 1.3 because the commutant of any
spherical representation of (O(LN ),KN ) is abelian. As in the proof of Propo-
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sition 3.6, we use the inductive limit groups (G,K). Now we find that v is
still cyclic and K-fixed. By the above discussion, π admits a direct integral
decomposition � ⊕

Z
π(ζ) dµ(ζ), where π(ζ) are irreducible representations a.e.

(note: π(ζ) are either infinite-dimensional or the trivial representation) by
[6, 8.5.2]. By writing the cyclic vector v as � ⊕

z
v(ζ) dµ(ζ), we find that the ir-

reducible representations π(ζ) are spherical a.e. Hence, π ' � ⊕[0,∞) πλ dµ(λ).

Statement (b) follows at once from Corollary 1.4, since an irreducible
spherical representation is locally tame. For part (c), we apply parts (a)
and (b). Note that the restrictions of inequivalent spherical representations
πλ remain inequivalent on the image of Diffc(X).

The as ymptotic character formula as an N/V limit. Recall that the
asymptotic character formula [3, 24] implies that for a fixed finite holo-
morphic character χ and for a fixed W ∈ U(V0) there exists a sequence
of normalized characters χ̃V such that χ̃V (W ) → χ(W ). In fact, such a
sequence can be chosen relative to the statistics of the signature λV . Let
rj(λV ) denote the length of its jth row; cj(λV ) the length of its jth column;
and |λV | the sum of the entries of the signature. Then χ̃V converges if and
only if

lim
V→∞

rj(λV )
V

= αj , lim
V→∞

cj(λV )
V

= βj , lim
V→∞

|λV |
V

= γ.

Further, we find that χ(W ) = det[f(W )], where f ∈ M has the form f(z) =
eγ(z−1) ×∏∞j=1(1− αj + αjz)(1 + βj − βjz).

Since characters are central functions, we may view this limiting process
as taking place over the set of eigenvalues S1 × . . . × S1 instead of U(V0).
Further, we know that χ̃V is a sequence of uniformly bounded holomorphic
polynomials in V0 complex variables and χ itself is a meromorphic function
in V0 complex variables given in 2.9.

Therefore, we also have pointwise convergence of the holomorphic exten-
sions of the normalized characters, i.e., of χ̃V to χ over the set D1× . . .×D1,
where D1 denotes the unit disk in the complex plane. In particular, we find
that for fixed W ∈ Γ (V0), the set of contractions, χ̃V (W ) → det[f(W )],
where f = fχ is the meromorphic function of one complex variable that
defines the finite character χ.

Finally, we let χ̂ ◦ Φ be a generalized character of U . Consider a fixed
element W ∈ U , so that W ∈ U(HV0). Then Φ(W ) ∈ Γ (V0). But we know
already that there exists a sequence of normalized characters χ̃V such that
χ̃V (Φ(W ))→ χ̂(Φ(W )).

For easy comparison with the N/V limit, we consider the case χ(W ) =
det[f+(W )] for f+(z) = 1/(1 + β − βz). The corresponding finite factor
representation is an inductive limit of symmetric algebras. Now, let β =
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limV→∞NV /V , where V and NV are positive integers. We set

χ̃V (W ) = Tr[SNV (ΦV (W ))]/dim(SNV (CV )),

where W ∈ U(L2(XV )); so V gives the volume of XV . Then χ̃V (W ) →
χ̂(Φ(W )); in particular, χ̃V (T (ψ))→ χ̂(Φ(T (ψ))).

Remark. After this paper was written, the article by N. Landsman,
Representations of the infinite unitary group from constrained quantization
in J. Nonlinear Math. Phys. 6 (1999), 161–180, appeared that describes how
Rieffel-style induction can be used to give representations of U(∞). This
procedure complements the concept of complete positivity for non-linear
functionals.
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