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Abstract. We obtain real-variable and complex-variable formulas for the integral
of an integrable distribution in the n-dimensional case. These formulas involve specific
versions of the Cauchy kernel and the Poisson kernel, namely, the Euclidean version and
the product domain version. We interpret the real-variable formulas as integrals of S ′-
convolutions. We characterize those tempered distribution that are S ′-convolvable with
the Poisson kernel in the Euclidean case and the product domain case. As an application
of our results we prove that every integrable distribution on Rn has a harmonic extension
to the upper half-space Rn+1

+ .

1. Introduction. The main purpose of this article is to study the con-
volvability of tempered distributions with the Poisson kernel. A motivation
for our work is to develop complex-variable and real-variable representation
formulas for the integral of an integrable distribution ([14, p. 243]) in various
n-dimensional settings. The complex-variable representation formula in the
one-dimensional case was obtained by W. Kierat and U. Skórnik in [10].

Several definitions of convolution of tempered distributions have been
introduced by different authors (see [6]–[16]). We consider here the so called
S′-convolution, a commutative operation that extends to appropriate pairs
of tempered distributions the classical convolution of distributions as defined
by L. Schwartz in [14], preserving the Fourier exchange formula F(T ∗S) =
F(T ) · F(S). In view of this formula, it is not possible to use the classical
definition of convolution because the Fourier transform of the Poisson kernel
is not infinitely differentiable, so it does not belong to the space OM defined
by L. Schwartz in [14, p. 243].

When working in Rn with n > 1, it is natural to consider two versions of
the Poisson kernel, namely, the Euclidean version and the product domain
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version. For each of them, we identify optimal spaces of distributions that are
S′-convolvable with the appropriate Poisson kernel. To prove these results
we obtain simple characterizations of the space of distributions involved in
each case. As an application of our results we prove that every integrable
distribution on Rn can be extended to a harmonic function in the upper
half-space Rn+1

+ . In this regard, we extend a classical result of S. Bochner
for integrable functions ([3], [4]), as well as a result of H. Bremermann for
distributions with compact support in R ([5, p. 49]). We also consider the
product of n upper half-planes, R2

+× . . .×R2
+, where the appropriate notion

of harmonicity is the more restrictive notion of harmonicity in each upper
half-plane. In this context we are able to obtain a result of H. Bremermann
([5, p. 152]).

The article is organized as follows: In Section 2 we include definitions
and auxiliary results. In Section 3 we give real-variable and complex-variable
formulas for the integral of an integrable distribution in the n-dimensional
case, involving both Euclidean and product domain versions of the Poisson
kernel, and in Section 4 we reinterpret the integrands in these formulas as
S′-convolutions. In Section 5 we present our main results, namely, for each
version of the Poisson kernel, we characterize those tempered distributions
that are S′-convolvable with it. The proofs are based on appropriate char-
acterizations of the weighted spaces of distributions relevant to each case.
Finally, in Section 6 we apply our results to obtain harmonic extensions of
integrable distributions.

The notation used in this article is standard. The symbols C∞0 , S, C∞,
Lp, Lploc, D

′, S′, E′, etc., indicate the usual spaces of distributions or func-
tions defined on Rn, with complex values. The symbol | · | denotes the
Euclidean norm on Rn, while ‖ · ‖p denotes the norm in the space Lp.
When we need to emphasize that we are working in a particular setting,
we write D′(R), S(R2), ‖ · ‖Lp(K), etc. Partial derivatives are denoted by ∂α

or ∂α/∂xα, where α is a multi-index (α1, . . . , αn). We use the abbreviations
|α| = α1 + . . .+αn, xα = xα1

1 . . . xαnn . For a function g, we indicate by ǧ the
function x 7→ g(−x). Given a distribution T , we write Ť for the distribution
ϕ 7→ (T, ϕ̌), where ϕ is an appropriate test function. The Fourier transform
is denoted by F . The letter C denotes a positive constant that may change
at different occurrences.

2. Preliminaries. We start by introducing the spaces of functions and
distributions that we will use along this work ([14, p. 199]). Set

B = {ϕ : Rn → C : ϕ ∈ C∞, ∂αϕ is bounded for each multi-index α}
endowed with the topology of uniform convergence on Rn of each derivative,
and
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.
B= {ϕ : Rn → C : ϕ ∈ C∞, ∂αϕ→ 0 as |x| → ∞, for each multi-index α}.
The space

.
B is a closed subspace of B, and C∞0 is dense in

.
B.

D′L1 will denote the strong dual of
.
B; D′L1 is a subspace of D′, the space

of distributions. It can be proved ([14, p. 201]) that given T ∈ D′L1 , we have
the representation

T =
∑

α

∂αfα(1)

where the functions fα belong to L1 and the sum is finite. The distributions
in D′L1 are called integrable. As a consequence of (1), we have the inclusions
E′ ⊂ D′L1 ⊂ S′.

The pointwise multiplication is well defined and continuous from B ×B
into B and from

.
B ×B into

.
B. As a consequence, the space D′L1 is closed

under multiplication by functions in B.
Following [14, p. 203], we will consider in B an alternative notion of

convergence:
A sequence {ϕj} converges to ϕ if, for each multi-index α, supj ‖∂αϕj‖∞

<∞ and the sequence {∂αϕj} converges to ∂αϕ uniformly on compact sets.
We denote by Bc the space B endowed with this notion of convergence.

It can be proved that C∞0 , and so
.
B, is dense in Bc ([14, p. 203]). Moreover,

given a distribution T in D′L1 , since T is well defined on C∞0 and continuous
with respect to the topology of Bc, it can be uniquely extended to a contin-
uous linear functional on Bc. In this sense we can say that D′L1 and Bc are
in duality. In fact, D′L1 is also the dual of Bc ([14, p. 203]).

Y. Hirata and H. Ogata [7] defined the notion of S ′-convolution in order
to extend the validity of the Fourier exchange formula

F(T ∗ S) = F(T ) · F(S).

This notion has been studied and applied by many authors (see for instance
[16], [15], [8], [6], [9], [11]–[13], [1], [2]). In particular, R. Shiraishi introduced
in [16] an equivalent definition, which is the one we will use here.

Definition 1 ([16]). Given two tempered distributions T and S, we say
that their S′-convolution exists if T (Š ∗ϕ) ∈ D′L1 for each ϕ ∈ S. When the
S′-convolution exists, the map

S → C, ϕ 7→ (T (Š ∗ ϕ), 1)D′
L1 ,Bc ,

is linear and continuous. Thus, it defines a tempered distribution which will
be denoted by T ∗ S.

In this definition, T (Š ∗ ϕ) denotes the multiplicative product of the
distribution T with the regularization Š ∗ ϕ. This product is well defined
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because the regularization is a C∞ function of polynomial growth together
with all its derivatives ([14, p. 248]).

It was proved by R. Shiraishi in [16] that T ∗ S exists if and only if
S ∗ T exists, and they coincide. Moreover, this definition coincides with the
definition given by L. Schwartz in all the cases in which Schwartz’s definition
is applicable.

3. The integral of an integrable distribution in the n-dimen-
sional case. L. Schwartz defined in [14, p. 243] the integral of an integrable
distribution as follows:

Definition 2 ([14]). Given T ∈ D′L1(Rn), the integral of T , denoted by�
T , is defined as �

T = (T, 1)D′
L1 ,Bc .(2)

This definition certainly coincides with the usual Lebesgue integral
when T is a function in L1(Rn). In general, given T ∈ D′L1(Rn) we can
represent T as a finite sum,

T =
∑

α

∂αfα(3)

where fα ∈ L1(Rn). Thus

(T, 1)D′
L1 ,Bc = (f0, 1)L1,L∞ =

�

Rn
f0(x) dx.

W. Kierat and U. Skórnik obtained in [10] the following formula for the
integral of an integrable distribution in one dimension:

Proposition 3 ([10]). If T ∈ D′L1(R), then

(T, 1)D′
L1 ,Bc =

∞
�

−∞
[C(T )(x+ iy)− C(T )(x− iy)] dx(4)

independently of y > 0. Here C(T ) is the Cauchy transform of T , defined for
z ∈ C \ R as

C(T )(z) = (Tt, C(t− z))
D′
L1 ,

.
B
,

where C(z) = 1/(2πiz) is the one-dimensional Cauchy kernel.

The right-hand side of (4) will be called the complex-variable version of
the integral of T .

We can also give a real-variable version of (4). In fact, observe that

1
2πi

1
t− x− iy −

1
2πi

1
t− x+ iy

=
1
π

y

(t− x)2 + y2 = Py(x− t)(5)
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for every (x, y) ∈ R2
+, where

Py(x) =
1
y

1
π((x/y)2 + 1)

is the one-dimensional Poisson kernel. Thus,

C(T )(x+ iy)− C(T )(x− iy) = (Tt, Py(x− t))
D′
L1 ,

.
B
.(6)

Since
� ∞
−∞ Py(x) dx = 1 for each y > 0, we have

(T, 1)D′
L1 ,Bc =

(
Tt,

∞
�

−∞
Py(x− t) dx

)
D′
L1 ,Bc

.

We claim that we can exchange the integral with the action of the dis-
tribution T . Indeed, using (3), we can assume that T = ∂αf for f ∈ L1(R).
Thus,
(
Tt,

∞
�

−∞
Py(x− t) dx

)
D′
L1 ,Bc

= (−1)|α|
∞

�

−∞
f(t)

(
∂αt

∞
�

−∞
Py(x− t) dx

)
dt.

The function t 7→ Py(x − t) is infinitely differentiable for each x ∈ R,
y > 0. Moreover the function x 7→ ∂αt Py(x − t) is integrable on R for each
t ∈ R, y > 0. Thus, we can exchange the derivative and integration to obtain
(
Tt,

∞
�

−∞
Py(x− t) dx

)
D′
L1 ,Bc

= (−1)|α|
∞

�

−∞
f(t)

( ∞
�

−∞
∂αt Py(x− t) dx

)
dt.

Now the function (x, t) 7→ (−1)|α|f(t)∂αt Py(x − t) is integrable on R2 for
each y > 0. So, the Fubini Theorem yields

(−1)|α|
∞

�

−∞

( ∞
�

−∞
f(t)∂αt Py(x− t) dx

)
dt

= (−1)|α|
∞

�

−∞

( ∞
�

−∞
f(t)∂αt Py(x− t) dt

)
dx

= (−1)|α|
∞

�

−∞
(f(t), ∂αt Py(x− t))L1,L∞ dx

=
∞

�

−∞
(∂αt f(t), Py(x− t))

D′
L1 ,

.
B
dx.

Thus the claim is proved. We can then write

(T, 1)D′
L1 ,Bc =

∞
�

−∞
(Tt, Py(x− t))

D′
L1 ,

.
B
dx.(7)

The right-hand side of (7) is the real-variable version of the integral of T .
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In the n-dimensional case, one should be able as well to recognize a
complex-variable version and a real-variable version of the integral of a dis-
tribution T ∈ D′L1 . For the real-variable version, one could choose different
extensions of Py(x) to n dimensions, namely, the Euclidean version

Py(x) =
c(n)
yn

1
(|x|2/y2 + 1)(n+1)/2

,(8)

where c(n) = Γ ((n+ 1)/2)/π(n+1)/2, y > 0, or any product domain version,
for instance,

P(y)(x) = Py1(x1) . . . Pyn(xn),(9)

where (y) > 0, meaning that y1, . . . , yn > 0. Of course, depending on how
we group the coordinates in Rn, we obtain different versions, all of which
give the same definition of

�
T . For our choice (9), the product domain we

are considering is the cartesian product R2
+ × . . .× R2

+ of n-copies of the
upper half-plane.

In any case, the n-dimensional real-variable realization of (2) holds with
a similar proof to the one-dimensional case. For the sake of completeness we
now state this result for the kernels given by (8) and (9). The proof is the
same as the one given in the one-dimensional case.

Proposition 4. If T ∈ D′L1 , then

(T, 1)D′
L1 ,Bc =

�

Rn
(Tt, Py(x− t))

D′
L1 ,

.
B
dx, y > 0,(10)

and also

(T, 1)D′
L1 ,Bc =

�

Rn
(Tt,P(y)(x− t))

D′
L1 ,

.
B
dx, (y) > 0.(11)

In order to obtain an n-dimensional complex-variable realization of (2),
we need to select an appropriate n-dimensional version of the Cauchy kernel
C(z) = 1/(2πiz). Once again, we can consider the Euclidean case or the
product domain case.

In the Euclidean case we will consider the kernel Kn(z1, . . . , zn) defined
as

Kn(z1, . . . , zn) =
c(n)
2i

∑n
j=1 zj

(
∑n

j=1 |zj|2)(n+1)/2
,

where the positive constant c(n) is chosen so that

c(n)

�

Rn

du

(|u|2 + 1)(n+1)/2
= 1.

The kernel Kn is a non-holomorphic version of the kernel C when n > 1
and it coincides with C when n = 1. Given T ∈ D′L1(Rn), we define the
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n-dimensional Cauchy transform of T , Kn(T ), as

Kn(T )(z1, . . . , zn) = (Tt,Kn(t1 − z1, . . . , tn − zn))
D′
L1 ,

.
B
.

We have the following result:

Proposition 5. If T ∈ D′L1(Rn), then

(12) (T, 1)D′
L1 ,Bc =

�

Rn
[Kn(T )(x1 + iy, x2, . . . , xn)

−Kn(T )(x1 − iy, x2, . . . , xn)] dx1 dx2 . . . dxn

independently of y > 0.

Proof. The proof is based on the fact that

c(n)

�

Rn
Kn(t1 − x1 − iy, t2 − x2, . . . , tn − xn)

−Kn(t1 − x1 + iy, t2 − x2, . . . , tn − xn) dx1 dx2 . . . dxn = 1

independently of t1, . . . , tn ∈ R and y > 0.

The integral (T, 1)D′
L1 ,Bc can also be computed using the substitutions

zj = xj + iy for any fixed j = 1, . . . , n, zl = xl for l 6= j.
Formula (12) will be adopted as the n-dimensional complex-variable ver-

sion of the integral of T in the Euclidean case.
To obtain a product domain version, we will assume for clarity that our

product domain is R×R. The exact same techniques will apply to a Cartesian
product with any number of factors, grouped in any way. Depending on the
grouping, the formulas may look a little more complicated.

Fix T ∈ D′L1(R2). We know that T has the representation (3), T =∑
α ∂

αfα where fα ∈ L1(R2). Using this representation, we can obtain a
“Fubini Theorem” for integrable distributions. In fact,

(T, ϕ1 ⊗ ϕ2)
D′
L1 ,

.
B

=
∑

α

(∂α1
x1
∂α2
x2
fα1α2 , ϕ1 ⊗ ϕ2)

D′
L1 ,

.
B

=
∑

α

(−1)α1+α2

∞
�

−∞

( ∞
�

−∞
fα1α2(x1, x2)∂α1

x1
ϕ1(x1) dx1

)
∂α2
x2
ϕ2(x2) dx2.

We now observe that for each x2 ∈ R, the integrable function fα1α2(·, x2) acts

on ∂α1
x1
ϕ1 in the duality (D′L1(R),

.
B (R)). Likewise, the integrable function

(fα1α2(·, x2), ∂α1
x1
ϕ1)

D′
L1 ,

.
B

acts on ∂α2
x2
ϕ2(x2) in the same duality. Thus,

(T, ϕ1 ⊗ ϕ2)
D′
L1 ,

.
B

=
∑

α

(∂α2
x2

(∂α1
x1
fα1α2 , ϕ1)

D′
L1 ,

.
B
, ϕ2)

D′
L1 ,

.
B

=: ((Tx1 , ϕ1)
D′
L1 ,

.
B
, ϕ2)

D′
L1 ,

.
B
.
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As a consequence,

(Tt,P(y)(x− t))
D′
L1 ,

.
B

= ((Tt1 , Py1(x1 − t1))
D′
L1 ,

.
B

, Py2(x2 − t2))
D′
L1 ,

.
B

.(13)

Similarly,

(Tt,P(y)(x− t))
D′
L1 ,

.
B

= ((Tt2 , Py2(x2 − t2))
D′
L1 ,

.
B

, Py1(x1 − t1))
D′
L1 ,

.
B

.(14)

From (6) and (13), it follows that for every T ∈ D′L1(R2) we can write

(15) (Tt,P(y)(x− t))
D′
L1 ,

.
B

= C2[C1(T )(x1 + iy1)− C1(T )(x1 − iy1)](x2 + iy2)

− C2[C1(T )(x1 + iy1)− C1(T )(x1 − iy1)](x2 − iy2),

where Cj denotes the action of the Cauchy transform C on the jth coordinate,
j = 1, 2.

From (6) and (14) we can also write

(16) (Tt,P(y)(x− t))
D′
L1 ,

.
B

= C1[C2(T )(x2 + iy2)− C2(T )(x2 − iy2)](x1 + iy1)

− C1[C2(T )(x2 + iy2)− C2(T )(x2 − iy2)](x1 − iy1).

Thus, we can state the following result:

Proposition 6. If T ∈ D′L1(R2), then

(17) (T, 1)D′
L1 ,Bc

=

�

R2

{C2[C1(T )(x1 + iy1)− C1(T )(x1 − iy1)](x2 + iy2)

− C2[C1(T )(x1 + iy1)− C1(T )(x1 − iy1)](x2 − iy2)} dx1 dx2

=

�

R2

{C1[C2(T )(x2 + iy2)− C2(T )(x2 − iy2)](x1 + iy1)

− C1[C2(T )(x2 + iy2)− C2(T )(x2 − iy2)](x1 − iy1)} dx1 dx2

for any y1, y2 > 0.

We adopt (17) as the 2-dimensional complex-variable version of the in-
tegral of T in the product domain case.

Making repeated use of (5) we can see how the real-variable kernel P(y)
is related to the complex-variable kernel

∏n
j=1 1/(2π(xj + iyj)), as well as

how formulas (15) and (16) come about.
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4. The integration formulas as integrals of S′-convolutions. It
is possible to reinterpret the integrands in (10) and (11) as S ′-convolutions.
In fact, we have the following result:

Proposition 7. Given T ∈ D′L1 , the distribution T is S′-convolvable
with both kernels Py and P(y). Moreover , the S′-convolutions are given by

(Tx, Py(x− t))
D′
L1 ,

.
B

(18)

and

(Tx,P(y)(x− t))D′
L1 ,

.
B

(19)

for each y > 0 and (y) > 0, respectively.

Proof. First consider the S ′-convolution with Py. Given ϕ ∈ S, it suffices
to show that the classical convolution Py ∗ ϕ is a function in B.

In fact, for each y > 0 the integral

c(n)
yn

�

Rn

( |x− t|2
y2 + 1

)−(n+1)/2

ϕ(t) dt

defines a C∞ function that we denote by f(x). We want to show that ∂αf
is bounded on Rn for each n-tuple α. We have

∂αf(x) =
c(n)
yn

�

Rn

( |x− t|2
y2 + 1

)−(n+1)/2

(∂αϕ)(t) dt.

We now use Peetre’s inequality,

(|x− t|2 + 1)r ≤ 2|r|(|x|2 + 1)r(|t|2 + 1)|r|

with r = −(n+ 1)/2, to obtain

|∂αf(x)| ≤ c(n)
yn

( |x|2
y2 +1

)−(n+1)/2
�

Rn

( |t|2
y2 +1

)(n+1)/2

|(∂αϕ)(t)| dt(20)

for each y > 0. This estimate already shows that f ∈ B for each y > 0.
However, we can obtain an explicit dependence on y, by estimating the
integral in (20). For y > 0 fixed, we write the integral as

(
�

|t|<y
+

�

|t|≥y

)( |t|2
y2 + 1

)(n+1)/2

|(∂αϕ)(t)| dt = I1 + I2.

We estimate each term separately:

I1 ≤ c(n)

�

|t|<y
|(∂αϕ)(t)| dt ≤ c(n)‖∂αϕ‖1,

I2 ≤ c(n)

�

|t|≥y
(|t|/y)n+1|(∂αϕ)(t)| dt ≤ c(n)

yn+1

∥∥|t|n+1∂αϕ
∥∥

1.
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Finally,

|∂αf(x)| ≤ c(n)
yn

( |x|2
y2 + 1

)−(n+1)/2

(21)

×
[
‖∂αϕ‖1 +

1
yn+1

∥∥|t|n+1∂αϕ
∥∥

1

]
.

Thus, the S′-convolution T ∗Py exists. We now show that T ∗Py is given by
the integrable function (Tx, Py(x− t))

D′
L1 ,

.
B

. Estimates (20) or (21) show in

fact that Py ∗ ϕ belongs to
.
B. So, we can write

(T (Py ∗ ϕ), 1)D′
L1 ,Bc = (T, Py ∗ ϕ)

D′
L1 ,

.
B

=
(∑

α

∂αfα, Py ∗ ϕ
)
D′
L1 ,

.
B

=
∑

α

(−1)|α|

�

Rn
fα(x)(∂αPy ∗ ϕ)(x) dx

=
∑

α

(−1)|α|

�

Rn×Rn
fα(x)∂αPy(x− t)ϕ(t) dt dx

=
∑

α

�

Rn
(∂αfα(x), Py(x− t))

D′
L1 ,

.
B
ϕ(t) dt

=

�

Rn
(Tx, Py(x− t)

D′
L1 ,

.
B
ϕ(t) dt.

This concludes the proof of the claim. Similar calculations show that T is
S′-convolvable with P(y) for each (y) > 0 and that the S ′-convolution T ∗P(y)
is given by (Tx,P(y))D′

L1 ,
.
B

.

Doing the same work as in the proof of Proposition 7, we can show that
the S′-convolution (18) defines a function F (t, y) that belongs to C∞ in the
upper half-space Rn+1

+ . Moreover,

∂αt ∂
k
yF (t, y) =

(
Tx, ∂

k
y

[
1
yn
∂αt

(
P

(
x− t
y

))])

D′
L1 ,

.
B

,

where P (x) = c(n)(1+|x|2)−(n+1)/2. For each x ∈ Rn, the function F1(t, y) =
(1/yn)P ((x− t)/y) satisfies the equation (∂2

y +
∑n

j=1 ∂
2
tj )F1 = 0. So, F (t, y)

is harmonic in the upper half-space Rn+1
+ .

Likewise, the S′-convolution (19) defines a function G(t, y) that belongs
to C∞ in the product domain R2

+ × . . . × R2
+. The function G1(t, y) =∏n

j=1(1/yj)P ((xj − tj)/yj) satisfies the n equations (∂2
yj + ∂2

tj )G1 = 0 in
the product domain R2

+ × . . . × R2
+. That is to say, G(t, y) is harmonic

on R2
+ in each pair of variables (tj , yj). A function with this property is

called n-harmonic ([5, p. 148]). An n-harmonic function is harmonic on
R2

+ × . . .×R2
+, although the converse is not true in general. For interesting
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connections with holomorphic functions in several variables, we refer again
to [5].

5. Optimal spaces for the S′-convolution with the kernels Py
and P(y). The fact that the functions Py ∗ ϕ and P(y) ∗ ϕ not only belong
to the space B, but also to

.
B, suggests that D′L1 is not the largest class

of tempered distributions that is S ′-convolvable with either kernel. In this
section we will characterize the classes of tempered distributions that are
S′-convolvable with the kernels Py and P(y), respectively.

We first consider the S ′-convolution with Py.
Estimate (21) suggests that Py might be S′-convolvable with distribu-

tions in weighted versions of the space D′L1 . Such weighted spaces appeared
naturally in the study made by L. Schwartz ([14, p. 214]) of Newtonian po-
tentials of distributions, as well as in his paper [15]. For other occurrences
of these spaces, see for instance [8], [9], [11]–[13], [1], [2].

Definition 8. Let w(x) = (1 + |x|2)1/2 for x ∈ Rn and fix µ ∈ R. Then

wµD′L1 = {T ∈ S′ : w−µT ∈ D′L1}
with the topology induced by the map

wµD′L1 → D′L1 , T 7→ w−µT.

We observe that wµD′L1 can also be defined as the space of those distri-
butions T ∈ D′ such that w−µT ∈ D′L1 . In fact, if w−µT ∈ D′L1 then T must
be a tempered distribution.

We first obtain a representation of distributions in wµD′L1 which is re-
lated to the representation obtained in [2] for the particular case µ = n.

Proposition 9. Given T ∈ S′, µ ∈ R, the following statements are
equivalent :

(i) T ∈ wµD′L1.
(ii) T = T1 + |x|µT2, where T1 ∈ E′, T2 ∈ D′L1 and T2 is zero in a

neighborhood of zero.

Proof. We first assume that (i) holds and we select a cut-off function
θ ∈ C∞0 so that 0 ≤ θ ≤ 1, θ = 1 for |x| ≤ 1/2, θ = 0 for |x| ≥ 1. Then

T = θT + (1− θ)T

= θT + (1− θ) (1 + |x|2)µ/2

|x|µ |x|µ(1 + |x|2)−µ/2T.

Since (1 − θ)(1 + |x|2)µ/2/|x|µ ∈ B and (1 + |x|2)−µ/2T ∈ D′L1 , if we set
T1 = θT and T2 = (1− θ)|x|−µT , we obtain the representation stated in (ii).

The converse is quite direct, since E ′ ⊂ wµD′L1 and |x|µT2 ∈ wµD′L1 for
any distribution T ∈ D′L1 that is zero near zero.
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The representation formula provided by Proposition 9 is only one of
several possible representations. For example, given T ∈ wµD′L1 , we have,
in the sense of S′,

(1 + |x|2)−µ/2T =
∑

α

∂αfα

or

T =
∑

α

(1 + |x|2)µ/2∂αfα(22)

where the sum is finite and fα ∈ L1.
We are now ready to characterize those tempered distributions that are

S′-convolvable with the kernel Py.

Theorem 10. Given T ∈ S′, the following statements are equivalent :

(i) T ∈ wn+1D′L1.
(ii) T is S′-convolvable with Py for each y > 0.

Proof. Assume that (i) holds. We need to show that for each ϕ ∈ S,
the distribution T (Py ∗ ϕ) belongs to D′L1 for each y > 0. In fact, as a
consequence of (21), we have (1 + |x|2)(n+1)/2(Py ∗ϕ) ∈ B, and so our claim
is proved.

Conversely, fix T ∈ S′ so that T (Py ∗ϕ) ∈ D′L1 for each ϕ ∈ S and y > 0.
We will prove that T ∈ wn+1D′L1 by showing that T can be represented
as in Proposition 9. We consider a cut-off function θ as in the proof of
Proposition 9, and write

T = θT + (1− θ)T.
We observe that θT ∈ E′. Now, we take ϕ ∈ S such that for some ε > 0,
we have ϕ = 0 for |x| ≥ ε and ϕ > 0 for |x| < ε. We claim that for an
appropriate choice of ε > 0 there exists Cn > 0 so that

(Py ∗ ϕ)(x) ≥ Cn
y

(|x|2 + y2)(n+1)/2
‖ϕ‖1(23)

for |x| > 1/3. In fact,

(Py ∗ ϕ)(x) =

�

|t|≤ε

c(n)
yn

ϕ(t)
(1 + |x− t|2/y2)(n+1)/2

dt.

If, say, 0 < ε ≤ 1/3, we have for |x| > 1/3,
|x− t|
y

≤ |x|+ ε

y
≤ 2
|x|
y

and therefore

(1 + |x− t|2/y2)(n+1)/2 ≤ (1 + 4|x|2/y2)(n+1)/2 ≤ c(n)
(|x|2 + y2)(n+1)/2

yn+1 .
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Thus, estimate (23) holds. If we combine estimates (23) and (21), we con-
clude that for each y > 0, the function

1− θ
Py ∗ ϕ

(1 + |x|2)−(n+1)/2

belongs to B and it is equal to zero near zero. Thus

(1− θ)T = |x|n+1 (1 + |x|2)(n+1)/2

|x|n+1

1− θ
Py ∗ ϕ

(1 + |x|2)−(n+1)/2T (Py ∗ ϕ).

We conclude that the distribution T belongs to wn+1D′L1 .

Remark 11. Given T ∈ wn+1D′L1 , the S′-convolution T ∗Py is given by
(Tx, Py(x− t)), where the pairing is understood as

((1 + |x|2)−(n+1)/2Tx, (1 + |x|2)(n+1)/2Py(x− t))D′
L1 ,Bc(24)

for each t ∈ Rn, y > 0.
A similar pairing was proposed in [15, p. 16] for the S ′-convolution of the

distribution p.v. 1
x with distributions in the space (1 + x2)D′L1(R). Formula

(24) can be proved in a similar way to the proof of Proposition 7, using this
time the representation formula (22).

As in the case of D′L1 , the function defined by (24) is a harmonic function
of the variables t, y in the upper half-space Rn+1

+ .
We now turn to the kernel P(y) =

∏n
i=1 Pyi . We want to characterize

those tempered distributions that are S ′-convolvable with P(y). The relevant
weighted D′L1 space is introduced in the following definition.

Definition 12. Let wj = (1 + x2
j )

1/2, j = 1, . . . , n. Then we set

w2
1 . . . w

2
nD
′
L1 = {T ∈ S′ : w−2

1 . . . w−2
n T ∈ D′L1}

with the topology induced by the map

w2
1 . . . w

2
nD
′
L1 → D′L1 , T 7→ w−2

1 . . . w−2
n T.

The space w2
1 . . . w

2
nD
′
L1 can be viewed as a weighted space of distribu-

tions in the product domain R× . . . × R. In the proposition that follows
we summarize several inclusion properties of w2

1 . . . w
2
nD
′
L1 with respect to

relevant weighted spaces of distributions defined in Rn.

Proposition 13. For n ≥ 2, the following statements hold :

(a) The space wn+1D′L1 is strictly contained in w2nD′L1.
(b) The space w2

1 . . . w
2
nD
′
L1 is strictly contained in w2nD′L1.

(c) There exist distributions in wn+1D′L1 that do not belong to the space
w2

1 . . . w
2
nD
′
L1.

(d) There exist distributions in w2
1 . . . w

2
nD
′
L1 that do not belong to the

space wn+1D′L1.
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Proof. We first consider (a). Since w−2nwn+1 = w−n+1 belongs to B, we
conclude easily that wn+1D′L1 ⊂ w2nD′L1 . To see that the inclusion is strict,
we consider the tempered distribution T defined by the function |x|n−β for
some 0 < β ≤ n − 1. Then T ∈ w2nD′L1 because the function |x|n−βw−2n

is integrable on Rn. We claim that T 6∈ wn+1D′L1 . Indeed, consider the
sequence ηj(x) = η(x/j), j = 1, 2, . . . , where η ∈ C∞0 , 0 ≤ η ≤ 1, η(x) = 1
for |x| < 1 and η(x) = 0 for |x| > 2. It is quite simple to show that ηj → 1
in Bc, while for j ≥ 2 we have

(w−(n+1)T, ηj)S′,S =

�

Rn
|x|n−βη(x/j)

dx

(1 + |x|2)(n+1)/2

≥

�

1<|x|<j
|x|n−β dx

(1 + |x|2)(n+1)/2

≥ 2−(n+1)/2

�

1<|x|<j

dx

|x|1+β .

Since β ≤ n − 1, this last integral goes to ∞ as j → ∞. Hence, w−n−1T
6∈ D′L1 . This concludes the proof of (a).

To prove the inclusion in (b) we can use once again the fact that D′L1

is closed under multiplication by functions in B. Thus, since w−2nw2
1 . . . w

2
n

∈ B, we have w2
1 . . . w

2
nD
′
L1 ⊂ w2nD′L1 . To see that the inclusion is strict,

consider this time the distribution S defined as

S = δ0 ⊗ . . .⊗ δ0︸ ︷︷ ︸
n−1 times

⊗ (1 + x2
n)µ/2

where 1 ≤ µ < n. We will first show that w−n−1S is continuous on C∞0 with

respect to the topology of
.
B. Indeed, given ϕ ∈ C∞0 we have

(w−(n+1)S, ϕ)S′,S = ((1 + x2
n)−(n+1−µ)/2, ϕ(0, xn))S′,S .

Since µ < n, the function (1 + x2
n)−(n+1−µ)/2 is integrable on R. Hence

|(w−(n+1)S, ϕ)S′,S | ≤ Cn‖ϕ‖∞.
This shows that w−(n+1)S ∈ D′L1 and thus S ∈ w2nD′L1 . On the other
hand, if we consider the sequence βj(x) = β(x1/j) . . . β(xn/j), j = 1, 2, . . . ,
where β is the one-dimensional version of the cut-off function η used in the
proof of (a), we find that βj → 1 in Bc. However,

(w−2
1 . . . w−2

n S, βj)S′,S =
∞

�

−∞
(1 + x2

n)−1+µ/2β(xn/j) dxn

≥
j

�

0

(1 + x2
n)−1+µ/2 dxn
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and this integral goes to ∞ as j → ∞ because µ ≥ 1. Hence w−2
1 . . . w−2

n S
6∈ D′L1 . This concludes the proof of (b).

Concerning the proof of (c), the distribution S considered in (b) provides
a suitable example.

Finally, to prove (d), we observe that the function w2
1 . . . w

2
n/w

n+1 is not
bounded along the diagonal x1 = . . . = xn when n ≥ 2. This suggests the
following example:

We consider the tempered distribution U defined as

(U,ϕ)S′,S =
∞

�

−∞
(1 + x2

1)n−1ϕ(x1, . . . , x1) dx1.

We first show that w−2
1 . . . w−2

n U is continuous on C∞0 with the topology

of
.
B. In fact, for ϕ ∈ C∞0 , we have

(w−2
1 . . . w−2

n U,ϕ)S′,S = (U,w−2
1 . . . w−2

n ϕ)S′,S

=
∞

�

−∞
(1 + x2

1)n−1w−2
1 . . . w−2

1 ϕ(x1, . . . , x1) dx1.

Thus,

|(w−2
1 . . . w−2

n U,ϕ)S′,S | ≤ ‖ϕ‖∞
∞

�

−∞

dx1

1 + x2
1
.

This shows that U ∈ w2
1 . . . w

2
nD
′
L1 . On the other hand, if we consider the

sequence {βj} introduced in (b), we see that βj → 1 in Bc but

(w−(n+1)U, βj)S′,S = (U,w−(n+1)βj)S′,S

=
∞

�

−∞
(1 + x2

1)n−1(1 + nx2
1)(−n−1)/2βn(x1/j) dx1

≥ n(−n−1)/2
j

�

1

(1 + x2
1)(n−3)/2 dx1.

The last integral goes to ∞ as j →∞. Thus, U 6∈ w−n−1D′L1 , showing that
(d) holds.

We now obtain a characterization of the space w2
1 . . . w

2
nD
′
L1 by means

of a representation very much in the spirit of the one in Proposition 9.

Proposition 14. Given T ∈ S′, the following statements are equivalent :

(i) T ∈ w2
1 . . . w

2
nD
′
L1.

(ii) T = T0 +
∑
x2
i1
. . . x2

ik
Ti1,...,ik , where T0 ∈ E′, Ti1,...,ik ∈ D′L1 , and the

sum is taken over all the different k-tuples (i1, . . . , ik) with 1 ≤ i1 < . . . <
ik ≤ n, 1 ≤ k ≤ n.
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Proof. The proof of the implication (ii)⇒(i) is straightforward and we
omit it.

For the converse, we consider a one-dimensional θ so that θ ∈ C∞0 (R),
0 ≤ θ ≤ 1, θ(x) = 1 for |x| < 1 and θ(x) = 0 for |x| > 2. If we set θj = θ(xj),
we have

1 = (θ1 + (1− θ1)) . . . (θn + (1− θn))

= θ1 . . . θn +
∑

(1− θi1) . . . (1− θik)θj1 . . . θjn−k

where the sum collects all the possible cross-products containing at least
one factor of the form 1− θil , without repetition. Thus,

T = θ1 . . . θnT

+
∑

x2
i1 . . . x

2
ik

1− θi1
x2
i1

. . .
1− θik
x2
ik

w2
1 . . . w

2
nθj1 . . . θjn−k(w2

1)−1 . . . (w2
n)−1T.

We observe that the distribution θ1 . . . θnT belongs to E′. Moreover, the
functions

w2
j1 . . . w

2
jn−kθj1 . . . θjn−k and

1− θi1
x2
i1

. . .
1− θik
x2
ik

w2
i1 . . . w

2
ik

belong to B. Thus, the representation in (ii) holds.

Now, we are ready to characterize those tempered distributions that are
S′-convolvable with the kernel P(y) for each (y) > 0.

Theorem 15. Given T ∈ S′, the following statements are equivalent :

(i) T ∈ w2
1 . . . w

2
nD
′
L1.

(ii) T is S′-convolvable with P(y) for each (y) > 0.

Proof. To prove that (i)⇒(ii), we need to show that T (P(y) ∗ ϕ) ∈ D′L1

for each ϕ ∈ S and (y) > 0. For this purpose it suffices to prove that the
function (1+x2

1) . . . (1+x2
n)(P(y)∗ϕ) belongs to B, which can be done pretty

much repeating the steps followed in the proof of estimate (21).
We now prove that (ii)⇒(i). Fix T ∈ S ′ so that T (P(y) ∗ ϕ) belongs to

D′L1 for each (y) > 0. We will show that T can be written as indicated in
Proposition 14, by selecting an appropriate function ϕ. We first observe that
if ϕ is of the form ϕ1(x1) . . . ϕn(xn), ϕj ∈ S(R), then

P(y) ∗ ϕ =
n∏

i=1

Pyi ∗ ϕi.

We will use functions ϕ ∈ S of that form in what follows.
We can write, as in Proposition 14,

T = θ1 . . . θnT +
∑

(1− θi1) . . . (1− θik)θj1 . . . θjn−kT.
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The distribution θ1 . . . θnT has compact support, so it belongs to D′L1 . On
the other hand, we can also write formally

(25) (1− θi1) . . . (1− θik)θj1 . . . θjn−kT

= x2
i1 . . . x

2
ik

1− θi1
x2
i1

(Pyi1 ∗ αi1)
. . .

1− θik
x2
ik

(Pyik ∗ αik)

× θj1
Pyj1 ∗ αj1

. . .
θjn−k

Pyjn−k ∗ αjn−k
T (P(y) ∗ ϕ)

where αl = α(xl), ϕ = α1 . . . αn, and α is a function to be chosen later.
Using the one-dimensional version of (23) we conclude that for an ap-

propriate α ∈ C∞0 (R) with α = 0 for |x| ≥ 1/3, α > 0 for |x| < 1/3, we
have

(Pyi ∗ α)(xi) ≥ C
yi

x2
i + y2

i

‖α‖1 for |xi| > 1/3.(26)

Moreover, we can also obtain an estimate from below for the convolution

(Pyi ∗ α)(xi) =
1
πyi

1/3
�

−1/3

α(t)
1 + (xi − t)2/y2

i

dt

for |xi| < 1. In fact,

1 +
(xi − t)2

y2
i

≤ 16
9

(
1 +

1
y2
i

)
for |xi| < 1, |t| < 1/3, yi > 0.

So,

(Pyi ∗ α)(xi) ≥
9
16

yi
1 + y2

i

‖α‖1 for |xi| < 1, yi > 0.(27)

According to (26), (27), and (20), each of the ratios in (25) belongs to B.
By hypothesis, T (P(y) ∗ ϕ) belongs to D′L1 . Thus, we have showed that the
distribution T can be represented as in Proposition 14.

6. Applications to harmonic extensions of integrable distribu-
tions. In previous sections we have studied the S ′-convolution of tempered
distributions with appropriate Poisson kernels and we have characterized
those tempered distributions that are S ′-convolvable with the Euclidean
version and the product domain version of the Poisson kernel. We also ob-
served that in each case, the S ′-convolution defined a function with appro-
priate harmonicity properties in the relevant domain. The purpose of this
last section is to present some results about the boundary values of these
functions.

Before stating the first result, we recall that DL1 ([14, p. 199]) denotes
the space of C∞ functions that are integrable on Rn together with their
derivatives of all orders.
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Proposition 16. Given T ∈ D′L1 , the S′-convolution T ∗ Py converges
to T in D′L1 as y → 0+.

Proof. According to Proposition 7, given T ∈ D′L1 , the S′-convolution
of T and Py coincides with the regularization

(Tx, Py(x− t))
D′
L1 ,

.
B

(28)

as considered by L. Schwartz in [14] in several different settings. On the
other hand, according to [14, p. 204], given θ ∈ DL1 , the map

T 7→ (Tx, θ(x− t))
D′
L1 ,

.
B

is linear and continuous from D′L1 into DL1 . Moreover, if {θa}a∈A is a
net that converges to the distribution δ in D′L1 , then the regularization
(Tx, θa(x− t))

D′
L1 ,

.
B

converges to T in D′L1 . So, to prove that (28) converges

to T in D′L1 as y → 0+, it suffices to show that Py converges to δ in D′L1 as
y → 0+.

We know that D′L1 is the dual of the space
.
B, which is a Fréchet space

with respect to the family {sm}∞m=0 of seminorms given by

sm(ϕ) = sup
0≤|α|≤m

‖∂αϕ‖∞.

We consider in D′L1 the strong dual topology. In this topology, convergence

means uniform convergence over each bounded subset of
.
B. Recall that a

subset B of
.
B is bounded if for each m = 0, 1, . . . we have

sup
ϕ∈B

sm(ϕ) <∞.

We now prove that Py converges to δ in D′L1 as y → 0+. In fact, given
B ⊂

.
B bounded and ϕ ∈ B, we have

|(Py, ϕ)
D′
L1 ,

.
B
− ϕ(0)| =

∣∣∣

�

Rn
(ϕ(yu)− ϕ(0))P (u) du

∣∣∣.

For a fixed M > 0, we can estimate this last integral as(
�

|u|>M
+

�

|u|<M

)
|ϕ(yu)− ϕ(0)|P (u) du = IM + JM .

We have
IM ≤ 2s0(ϕ)

�

|u|>M
P (u) du.

Since the function ϕ belongs to a bounded subset B of
.
B and P is an

integrable function, given ε > 0 there exists Mε > 0 so that

sup
ϕ∈B

IMε < ε.(29)

To estimate JMε , we write
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ϕ(yu)− ϕ(0) =
1

�

0

(∇ϕ)(tyu) • yu dt.

Thus, for |u| < Mε we have
|ϕ(yu)− ϕ(0)| ≤ ns1(ϕ)yMε,

that is,
JMε ≤ ns1(ϕ)yMε.

Thus, there exists δε > 0 so that for 0 < y < δε we have
sup
ϕ∈B

JMε < ε.(30)

From (29) and (30), we conclude that Py converges to δ in D′L1 as
y → 0+.

This result states that every integrable distribution on Rn has a harmonic
extension to the upper half-space Rn+1

+ , extending the classical result of
S. Bochner ([3], [4]) for integrable functions. It also extends a result of
H. Bremermann for distributions with compact support in R ([5, p. 49]).

E. Stein and G. Weiss ([18]) have obtained an extension of Bochner’s
result to the space M of finite signed Borel measures in Rn, with almost
everywhere convergence at the boundary. Proposition 16 includes a version
of this extension with convergence to the measure at the boundary, in the
sense of the strong dual topology of D′L1 . In fact, every finite signed Borel
measure defines an integrable distribution. This follows from the observation
thatM is the dual of the space C0 of continuous functions on Rn that vanish
at ∞, equipped with the supremum norm. So the map

ϕ 7→ (µ, ϕ)M,C∞0 =

�

Rn
ϕ(x) dµ(x)

is continuous on C∞0 with the topology of
.
B because of the estimate

|(µ, ϕ)M,C∞0 | ≤ ‖µ‖ ‖ϕ‖∞
where ‖µ‖ denotes the total variation of the measure µ.

Let us point out that the harmonic extension obtained in Proposition 16
is not unique. Indeed, if we add to (Tx, Py(x−t))

D′
L1 ,

.
B

any harmonic function

on Rn+1
+ that is zero for y = 0, then the resulting harmonic function is still

an extension of the distribution T to the upper half-space. Of course, what
we are observing is that the Dirichlet problem on an unbounded domain
does not have a unique solution.

We now move on to the product domain case. Before stating the corre-
sponding boundary value result, we remark that the notation (y) → (0)+

means that yj → 0+ for each j = 1, . . . , n.

Proposition 17. Given T ∈ D′L1 , the S′-convolution T ∗P(y) converges
to T in D′L1 as (y)→ (0)+.



162 J. Alvarez et al.

Proof. According to Proposition 7, given T ∈ D′L1 , the S′-convolution
of T and P(y) coincides with the regularization

(Tx,P(y)(x− t))D′
L1 ,

.
B
.

Thus, it suffices to show that P(y) converges to δ in D′L1 as (y)→ (0)+.
With the same notation as in Proposition 16, we can write
|(P(y), ϕ)

D′
L1 ,

.
B
− ϕ(0)|

=
∣∣∣

�

Rn
(ϕ(y1u1, . . . , ynun)− ϕ(0))P (u1) . . . P (un) du1 . . . dun

∣∣∣

=
∣∣∣

�

|u|>M
+

�

|u|<M

∣∣∣.

The integral
�
|u|>M can be estimated in the same way as in Proposition 16.

To estimate
�
|u|<M , it is enough to notice that we can write

ϕ(y1u1, . . . , ynun)− ϕ(0, . . . , 0)
= ϕ(y1u1, . . . , ynun)− ϕ(0, y2u2, . . . , ynun)

+ ϕ(0, y2u2, . . . , ynun)− ϕ(0, 0, y3u3, . . . , ynun)
+ . . .+ ϕ(0, . . . , 0, ynun)− ϕ(0, . . . , 0)

=
1

�

0

∂ϕ

∂x1
(t1y1u1, y2u2, . . . , ynun)y1u1 dt1

+
1

�

0

∂ϕ

∂x2
(0, t2y2u2, y3u3, . . . , ynun)y2u2 dt2

+ . . .+
1

�

0

∂ϕ

∂xn
(0, . . . , 0, tnynun)ynun dtn.

Thus, for Mε as in Proposition 16 we can write
|ϕ(y1u1, . . . , ynun)− ϕ(0, . . . , 0)| ≤ ns1(ϕ)Mε max

j
yj ,

and the rest of the proof proceeds in the same way.

Proposition 17 has been obtained by H. Bremermann with a different
proof. In fact, the space he denotes by O0 is our space Bc, and so O′0 is the
space D′L1 of integrable distributions.
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