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Perturbation theorems of Miyadera type
for locally Lipschitz continuous

integrated semigroups

by

Naoki Tanaka (Okayama)

Abstract. A class of perturbing operators for locally Lipschitz continuous integrated
semigroups is introduced according to the idea of Miyadera. The paper gives perturbation
theorems of Miyadera type for such integrated semigroups.

1. Introduction. This paper is devoted to perturbation theorems of
Miyadera type for locally Lipschitz continuous integrated semigroups on a
Banach space X with norm ‖ · ‖.

The study of abstract Cauchy problems for non-densely defined opera-
tors satisfying the Hille–Yosida conditions was initiated by Da Prato and
Sinestrari [3], and it has recently been done by using the theory of locally
Lipschitz continuous integrated semigroups. It is known [5, Proposition 3.3]
that bounded perturbations preserve the property of being a generator for
such integrated semigroups. This is an extension of a perturbation theorem
for semigroups of class (C0) due to Phillips.

Miyadera [7] introduced a class of perturbing operators for semi-
groups of class (C0) and obtained interesting perturbation theorems for
such semigroups by using a convergence theorem. We are interested in ob-
taining a theorem unifying the above-mentioned two results, and we discuss
the perturbation problem for locally Lipschitz continuous integrated semi-
groups.

We recall the definition of locally Lipschitz continuous integrated semi-
groups. Let B(X) be the set of all bounded linear operators on X. A family
{U(t); t ≥ 0} in B(X) is called a locally Lipschitz continuous integrated
semigroup on X if it satisfies the following conditions:
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(U1) For each τ > 0 there exists Lτ > 0 such that

‖U(t)− U(s)‖ ≤ Lτ |t− s| for t, s ∈ [0, τ ].

(U2) U(t)U(s)x =
� t+s
s

U(τ)x dτ −
� t
0 U(τ)x dτ for x ∈ X and t, s ≥ 0.

(U3) If U(t)x = 0 for all t > 0 then x = 0.

It is known [5, Corollary 2.3] that every locally Lipschitz continuous
integrated semigroup {U(t); t ≥ 0} on X is exponentially bounded in the
sense that ‖U(t)‖ ≤ Meωt for t ≥ 0. In this case, there exists a unique
closed linear operator A in X such that (ω,∞) is contained in the resolvent
set %(A) of A and

(1.1) (λI −A)−1x =
∞�

0

λe−λtU(t)x dt

for x ∈ X and λ > ω. The operator A is called the generator of {U(t); t ≥ 0}
on X (see Arendt [1]). The following characterization of generators of locally
Lipschitz continuous integrated semigroups was obtained in [5, Theorem
2.4]. A linear operator A is the generator of a locally Lipschitz continuous
integrated semigroup on X if and only if there exist M > 0 and ω ≥ 0 such
that (ω,∞) ⊂ %(A) and

(1.2) ‖(λI − A)−m‖ ≤M(λ− ω)−m for m ≥ 1 and λ > ω.

A simple example of a locally Lipschitz continuous integrated semigroup
is the family {U(t); t ≥ 0} defined by

(1.3) U(t)x =
t�

0

T (s)x ds

for x ∈ X and t ≥ 0, where {T (t); t ≥ 0} is a semigroup of class (C0) on X
generated by A. In this case, the generator of {U(t); t ≥ 0} is equal to A.

Acknowledgements. The author wishes to express his gratitude to the
referee for several helpful suggestions.

2. A class of perturbing operators. According to the idea of Miya-
dera [7], we discuss the perturbation problem for locally Lipschitz continuous
integrated semigroups by using a convergence theorem for such integrated
semigroups. For this purpose, we introduce a class of perturbing operators
as follows.

Let A be the generator of a locally Lipschitz continuous integrated semi-
group {U(t); t ≥ 0} on X. A linear operator B is said to belong to the class
P(A) if there exists a sequence {Bn} in B(X) such that

(P1) D(A) ⊂ D(B) and limn→∞Bnx = Bx for every x ∈ D(A),
(P2) supn≥1 TV(BnU(·)x; [0, 1]) <∞ for every x ∈ X,

where TV(f ; [0, 1]) denotes the total variation of f on [0, 1].
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We give two subclasses of P(A).

Proposition 2.1. (a) Let A be the generator of a semigroup {T (t); t≥0}
of class (C0) on X. If a linear operator B in X satisfies the two conditions

(a-i) D(A) ⊂ D(B) and B(λ0I −A)−1 ∈ B(X) for some λ0,
(a-ii) there exists K > 0 such that

1�

0

‖BT (t)x‖ dt ≤ K‖x‖ for x ∈ D(A),

then B ∈ P(A).
(b) Let A be the generator of a locally Lipschitz continuous integrated

semigroup {U(t); t ≥ 0} on X. If a closed linear operator B in X satisfies
the three conditions

(b-i) D(B) ⊃ ⋃t≥0 U(t)(X),
(b-ii) for each x ∈ X, BU(·)x: [0,∞)→ X is continuous,
(b-iii) there exists K > 0 such that

TV(BU(·)x; [0, 1]) ≤ K‖x‖ for x ∈ X,
then B ∈ P(A). In particular , if B ∈ B(D(A),X) then B ∈ P(A).

Remark 2.1. The perturbation theory for semigroups of class (C0)
was initiated and a class of perturbing operators ([4, Section 13.4, Defini-
tion 13.3.5]) was introduced by Phillips. The class of linear operators B
satisfying (a-i) and (a-ii) is the class of perturbing operators introduced by
Miyadera [7]. It was proved in [7, Section 4] that this class properly includes
the above-mentioned class of perturbing operators due to Phillips.

Proof of Proposition 2.1. To prove (a), we first notice that the operator
A is the generator of the locally Lipschitz continuous integrated semigroup
{U(t); t ≥ 0} defined by (1.3). Consider Bn ∈ B(X) defined by Bn =
B(I − (1/n)A)−1 for sufficiently large n. This definition is unambiguous
because of condition (a-i) and the resolvent identity. Since

B(I − (1/n)A)−1(λ0I −A)−1x = B(λ0I − A)−1(I − (1/n)A)−1x

→ B(λ0I − A)−1x

for every x ∈ X, we see that condition (P1) is satisfied. To check condi-
tion (P2), let 0 = t0 < t1 < . . . < tN = 1 and x ∈ X. By (1.3) we have

N∑

i=1

‖BnU(ti)x−BnU(ti−1)x‖ ≤
N∑

i=1

ti�

ti−1

‖BT (s)(I − (1/n)A)−1x‖ ds,

so that TV(BnU(·)x; [0, 1]) ≤ K‖(I − (1/n)A)−1‖ ‖x‖ by condition (a-ii).
This means that condition (P2) is satisfied.
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To prove (b), we need (ii-2) of Lemma 2.2 which will be proved below.
By (ii-2) there exist K0 > 0 and β ≥ 0 such that ‖BU(t)x‖ ≤ K0e

βt‖x‖ for
x ∈ X and t ≥ 0. This fact together with (1.1) implies that D(A) ⊂ D(B) by
the closedness of B, so that Bn = B(I − (1/n)A)−1 ∈ B(X) is well defined
for sufficiently large n. Since U(t) commutes with the resolvent of A and
‖(I − (1/n)A)−1‖ ≤ M(1 − ω/n)−1 for some M ≥ 1 and ω ≥ 1 (by (1.2)),
condition (P2) is a direct consequence of (b-iii). By (1.1) and property (U2)
we find

BnU(t)x = n2
∞�

0

e−nτBU(τ)U(t)x dτ

= n

∞�

0

e−nτB(U(τ + t)x− U(τ)x) dτ

for x ∈ X and sufficiently large n, where we have used integration by parts
to obtain the last equality. The right-hand side of the above equality is equal
to

� ∞
0 e−sB(u(s/n + t)x − U(s/n)x) ds, which tends to BU(t)x as n → ∞,

by condition (b-ii). Notice that ‖BnU(t)x‖ ≤ MK0e
βt(1 − ω/n)−1‖x‖ for

x ∈ X and n > ω. Condition (P1) follows readily from the above fact and
(1.1), with the help of Lebesgue’s convergence theorem.

Finally, let B ∈ B(D(A),X) and ‖Bx‖ ≤ MB‖x‖ for x ∈ D(A). Since
U(t)(X) ⊂ D(A) for t ≥ 0 (by the inversion formula [4, Theorem 6.3.5]), we
see that conditions (b-i) and (b-ii) are satisfied. To check condition (b-iii),
let 0 = t0 < t1 < . . . < tN = 1. Then, by property (U1),

‖BU(ti)x−BU(ti−1)x‖ ≤MB‖U(ti)x− U(ti−1)x‖
≤MBL1(ti − ti−1)‖x‖ for i = 1, . . . , N ,

so that TV(BU(·)x; [0, 1]) ≤MBL1‖x‖. It follows that B ∈ P(A).

The following lemma will play an essential role in later arguments.
Let A be the generator of a locally Lipschitz continuous integrated semi-

group {U(t); t ≥ 0} on X. Then there exist M ≥ 1 and ω ≥ 0 such that

(2.1) ‖U(t+ h)− U(t)‖ ≤Meω(t+h)h for t, h ≥ 0.

This fact is obtained by combining [5, Theorem 2.4] and [9, Theorem 3.1].

Lemma 2.2. (i) If a sequence {Bn} in B(X) satisfies condition (P2),
then there exists K > 0 such that

TV(BnU(·)x; [0, 1]) ≤ K‖x‖ for x ∈ X and n ≥ 1.

(ii) Let B be a closed linear operator in X satisfying conditions (b-i)
through (b-iii). Let λ > ω and 0 ≤ a = t0 < t1 < . . . < tN = b. Then:
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(ii-1) For x ∈ X we have

N∑

l=1

e−λtl‖BU(tl)x−BU(tl−1)x‖

≤
{

(K +MKe−(λ−ω)(1− e−(λ−ω))−1)‖x‖ for 0 ≤ a < 1,

MKe−(λ−ω)[a](1− e−(λ−ω))−1‖x‖ for a ≥ 1,

where [a] denotes the integer part of a.
(ii-2) There exist K0 > 0 and β ≥ 0 such that ‖BU(t)x‖ ≤ K0e

βt‖x‖
for x ∈ X and t ≥ 0.

Proof. The proof is based on the idea of Miyadera [7, Lemma 1], but
more delicate arguments are needed here. The functional p defined by p(x) =
supn≥1 TV(BnU(·)x; [0, 1]) for x ∈ X is a lower semicontinuous seminorm
on X. If we set Xn = {x ∈ X; p(x) ≤ n} for each n ≥ 1, then each Xn is
closed in X by the lower semicontinuity of p, and the union of all sets Xn

is equal to X. The Baire category theorem asserts that at least one Xn0

contains an open ball with center x0 and radius R. Since p is a seminorm
on X, we have p(x) ≤ (2‖x‖/R){p(x0 +Rx/(2‖x‖)) + p(x0)} ≤ (4n0/R)‖x‖
for all x ∈ X with x 6= 0, whence (i) follows.

To prove (ii), let P = {[a] = τ0 < τ1 < . . .} be the partition of [[a],∞)
which is constructed by appending the points {k}∞k=[a] to the sequence
{ti}Ni=0. By the construction of P , for each integer k ≥ [a] there exists
an integer i(k) such that τi(k) = k. Let x ∈ X. Then

N∑

l=1

e−λtl‖BU(tl)x−BU(tl−1)x‖ ≤
∞∑

j=1

e−λτj‖BU(τj)x−BU(τj−1)x‖

=
∞∑

k=[a]+1

i(k)∑

j=i(k−1)+1

e−λτj‖BU(τj)x−BU(τj−1)x‖.

If i(k−1)+1 ≤ j ≤ i(k) then τj ≥ k−1, so that the above inequality shows
that

(2.2)
N∑

l=1

e−λtl‖BU(tl)x−BU(tl−1)x‖

≤
∞∑

k=[a]+1

e−λ(k−1)
i(k)∑

j=i(k−1)+1

‖BU(τj)x−BU(τj−1)x‖.

By (b-iii) we have
∑i(k)
j=i(k−1)+1 ‖BU(τj)x−BU(τj−1)x‖ ≤ K‖x‖ for k = 1.

Let k ≥ 2. By property (U2) we find
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(U(s+ ξ)− U(s))(U(t+ h)x− U(t)x)/h

=
1
h

t+s+ξ+h�

t+s+ξ

U(σ)x dσ − 1
h

t+s+h�

t+s

U(σ)x dσ

for s, t, ξ, h ≥ 0. Applying this equality with s = τj−1−(k−1), ξ = τj−τj−1

and t = k − 1 we have by the closedness of B and (b-ii),
i(k)∑

j=i(k−1)+1

∥∥∥∥
1
h

k−1+h�

k−1

(BU(σ+ τj − (k− 1))x−BU(σ+ τj−1 − (k− 1))x) dσ
∥∥∥∥

=
i(k)∑

j=i(k−1)+1

‖(BU(τj − (k − 1))−BU(τj−1 − (k − 1)))

× (U((k − 1) + h)x− U(k − 1)x)/h‖.
We estimate the right-hand side by (b-iii) and (2.1), and let h ↓ 0 in the

resulting inequality. This yields
∑i(k)
j=i(k−1)+1 ‖BU(τj)x − BU(τj−1)x‖ ≤

KMeω(k−1)‖x‖. The desired estimate is obtained by substituting the two
estimates shown above into (2.2).

To prove (ii-2), let β > ω. Since U(0) = 0, the desired assertion is
obtained by using (ii-1) with a = 0, b = t and λ = β.

3. Perturbation theorems of Miyadera type for locally Lip-
schitz continuous integrated semigroups. According to the idea of
Miyadera [7], we first introduce the number r defined by (3.2) below. This
number is used to obtain a lower estimate for perturbing operators.

Let A be the generator of a locally Lipschitz continuous integrated semi-
group {U(t); t ≥ 0} on X satisfying (2.1), and let B ∈ P(A). Then there
exists a sequence {Bn} in B(X) such that conditions (P1) and (P2) are
satisfied.

Let x ∈ X, λ > ω and R > 0. For each partition P = {0 = t0 < t1 <
. . . < tN = R}, consider the number

(3.1) r
(n)
λ,R(x) = lim inf

|P |→0

N∑

l=1

e−λtl‖BnU(tl)x−BnU(tl−1)x‖

for n = 1, 2, . . . , where |P | = max1≤l≤N (tl − tl−1), and define

rλ = sup
‖x‖≤1

rλ(x),

where rλ(x) = supn≥1 r
(n)
λ (x) and r(n)

λ (x) = supR>0 r
(n)
λ,R(x). By Lemma 2.2

we have r(n)
λ,R(x) ≤ (K + MKe−(λ−ω)(1 − e−(λ−ω))−1)‖x‖ for n = 1, 2, . . . ,

so that rλ is finite. Since rλ is a nonnegative, nonincreasing function in
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λ ∈ (ω,∞), the limit

(3.2) r = lim
λ→∞

rλ

exists and 0 ≤ r <∞.

Lemma 3.1. Let n ≥ 1, λ > ω and x ∈ X. The Riemann–Stieltjes
integral

� ∞
0 e−λt dBnU(t)x := limR→∞

� R
0 e
−λt dBnU(t)x exists, and

(3.3) Bn(λI − A)−1x =
∞�

0

e−λt dBnU(t)x.

Proof. Let n ≥ 1, λ > ω and x ∈ X. Since Bn ∈ B(X) and U(·)x is
locally Lipschitz continuous in X on [0,∞), we see that BnU(·)x: [a, b]→ X
is of bounded variation for 0 ≤ a < b <∞. It follows that

lim
|P |→0

N∑

l=1

e−λtl(BnU(tl)x−BnU(tl−1)x) =
b�

a

e−λt dBnU(t)x

for 0 ≤ a < b < ∞, where P = {a = t0 < t1 < . . . < tN = b} is a partition
of [a, b]. By Lemma 2.2 we have

∥∥∥
b�

a

e−λt dBnU(t)x
∥∥∥ ≤MKe−(λ−ω)[a](1− e−(λ−ω))−1‖x‖ → 0

as b > a→∞. This shows that the integral
� ∞
0 e−λt dBnU(t)x exists.

To prove (3.3) we notice that
R�

0

e−λt dBnU(t)x = e−λRBnU(R)x+
R�

0

λe−λtBnU(t)x dt

for R > 0. The desired result is obtained by letting R→∞.

The main result of the present paper is the following theorem, which
extends the result of Miyadera [7, Theorem 1].

Theorem 3.2. Let A be the generator of a locally Lipschitz continu-
ous integrated semigroup on X and let B ∈ P(A). Then for each ε with
|ε| < 1/r, where 1/r = ∞ if r = 0, A + εB is the generator of a locally
Lipschitz continuous integrated semigroup on X.

Proof. Let ε satisfy |ε| < 1/r. We first show that for each n ≥ 1, A+εBn
is the generator of a locally Lipschitz continuous integrated semigroup on
X. For this purpose, let n ≥ 1 and inductively define a sequence {V (k)

n }∞k=1
in Liploc([0,∞);B(X)) by





V
(0)
n (t) = U(t) for t ≥ 0,

V (k)
n (t)x =

t�

0

V (k−1)
n (t− s) dεBnU(s)x for x ∈ X and t ≥ 0.
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Since BnU(·)x: [0,∞) → X is of bounded variation on every compact
subinterval of [0,∞), V (k)

n (t) is well defined. Clearly, V (k)
n (0) = 0 for k =

1, 2, . . . We shall show inductively that V (k)
n ∈ Liploc([0,∞);B(X)) for each

k ≥ 1. By the definition (3.2) of r, there exists β (> ω) such that |ε|rβ < 1,
where ω is a number satisfying (2.1). Let x ∈ X and t, h ≥ 0. By the
definition of V (k)

n (t) we have

V (k)
n (t+ h)x− V (k)

n (t)x =
t+h�

t

V (k−1)
n (t+ h− s) dεBnU(s)x

+
t�

0

(V (k−1)
n (t+ h− s)− V (k−1)

n (t− s)) dεBnU(s)x.

If ‖V (k−1)
n (τ + δ)− V (k−1)

n (τ)‖ ≤Meβ(τ+δ)δ(|ε|rβ)k−1 for τ, δ ≥ 0, then

∥∥∥
t+h�

t

V (k−1)
n (t+ h− s) dεBnU(s)x

∥∥∥

≤Meβ(t+h)h(|ε|rβ)k−1|ε| lim inf
|P |→0

N∑

l=1

e−βtl‖BnU(tl)x−BnU(tl−1)x‖

and
∥∥∥
t�

0

(V (k−1)
n (t+ h− s)− V (k−1)

n (t− s)) dεBnU(s)x
∥∥∥

≤ lim inf
|Q|→0

N̂∑

l=1

Meβ(t+h−sl)h(|ε|rβ)k−1|ε| ‖BnU(sl)x−BnU(sl−1)x‖,

where P and Q are partitions of [t, t+h] and [0, t] respectively. Since P ∪Q
is a partition of [0, t+ h], we find by (3.1) that

‖V (k)
n (t+ h)x− V (k)

n (t)x‖ ≤Meβ(t+h)h(|ε|rβ)k−1|ε|r(n)
β,t+h(x),

and inductively, ‖V (k)
n (t + h) − V (k)

n (t)‖ ≤ Meβ(t+h)h(|ε|rβ)k for t, h ≥ 0
and k = 1, 2, . . .

Now, define a family {Vn(t); t ≥ 0} in B(X) by Vn(t)x =
∑∞
k=0 V

(k)
n (t)x

for x ∈ X and t ≥ 0, with the help of the estimate shown above. Clearly,

(3.4) ‖Vn(t+ h)− Vn(t)‖ ≤Meβ(t+h)h(1− |ε|rβ)−1

for all t ≥ 0 and h ≥ 0. Since (d/dt)
� t
0 V

(k−1)
n (t − s)BnU(s)x ds =

� t
0 V

(k−1)
n (t− s) dBnU(s)x, we inductively show
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λ

∞�

0

e−λtV (k)
n (t)x dt = (λI − A)−1(εBn(λI − A)−1)kx

for x ∈ X and λ > β, by using (1.1) and the theorem about the Laplace
transform of a convolution. By (3.3) together with the definition of rβ , we
find

(3.5) ‖εBn(λI −A)−1‖ ≤ |ε|rβ < 1

for λ > β. Here we have used the fact that rλ is nonincreasing in λ. It
follows that

� ∞
0 λe−λtVn(t)x dt = (λI − A)−1(I − εBn(λI − A)−1)−1x =

(λI − (A + εBn))−1x for x ∈ X and λ > β. By [1, Theorem 3.1] we see
that {Vn(t); t ≥ 0} is an integrated semigroup on X, and its generator is
A+ εBn.

The desired claim will be derived from a convergence theorem (Theo-
rem 4.1 in Appendix) for locally Lipschitz continuous integrated semigroups
as follows: By condition (P1), the estimate that ‖εB(λI − A)−1‖ ≤ |ε|rβ
for λ > β follows from (3.5). This estimate implies that (λI − (A+ εB))−1

exists as an element of B(X). Clearly, limn→∞(A+ εBn)x = (A+ εB)x for
x ∈ D(A), by condition (P1). Notice that the family {Vn(t); t ≥ 0} satis-
fies (3.4). Then Theorem 4.1 asserts that A+εB is the generator of a locally
Lipschitz continuous integrated semigroup on X.

Combining Proposition 2.1 and Theorem 3.2 we have the following two
results.

Corollary 3.3 [7, Theorem 2]. Let A be the generator of a semigroup
of class (C0) on X. If a linear operator B in X satisfies conditions (a-i)
and (a-ii), then there exists an ε0 > 0 which is finite or ∞ such that for
each ε with |ε| < ε0, A + εB is the generator of a semigroup of class (C0)
on X.

Remark 3.1. (1) By Remark 2.1, Corollary 3.3 is an extension of the
result of Phillips [4, Section 13.4, Corollary 1].

(2) Voigt [10] obtained a similar result under weaker assumptions. We
do not know whether his result can be obtained from ours.

Corollary 3.4. Let A be the generator of a locally Lipschitz continuous
integrated semigroup on X. If a closed linear operator B in X satisfies
conditions (b-i) through (b-iii), then there exists an ε0 > 0 which is finite
or ∞ such that for each ε with |ε| < ε0, A+ εB is the generator of a locally
Lipschitz continuous integrated semigroup on X.

The following result is a special case of Corollary 3.4.

Corollary 3.5 [5, Proposition 3.3]. If A is the generator of a locally
Lipschitz continuous integrated semigroup on X and B ∈ B(D(A),X) then
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A+B is the generator of a locally Lipschitz continuous integrated semigroup
on X.

Proof. It suffices to show that the number r defined by (3.2) is zero.
Let M ≥ 1 and ω ≥ 0 be constants satisfying (2.1). As was shown in
Proposition 2.1, the operator B is an element of P(A) by considering a
sequence {Bn} in B(X) defined by Bn = B(I−(1/n)A)−1 for n ≥ n0, where
n0 = [ω] + 1. Let λ > ω and n ≥ n0. If P = {0 = t0 < t1 < . . . < tN = R}
is a partition of [0, R] then by (2.1) we have

‖BnU(tl)x−BnU(tl−1)x‖ ≤MBM
2eωtl(tl − tl−1)(1− ω/n)−1‖x‖,

where MB > 0 is a constant such that ‖Bx‖ ≤ MB‖x‖ for x ∈ D(A). This

estimate shows that r(n)
λ,R(x) ≤MBM

2(1−ω/n)−1(
� R
0 e
−(λ−ω)t dt)‖x‖, which

implies that r = 0.

4. Appendix. This section is devoted to a convergence theorem for
locally Lipschitz continuous integrated semigroups. Although such theorems
may be known, we give the proof for completeness. It should be noticed that
generalizations of the classical Trotter–Kato theorem are found in [2] and [6].

Theorem 4.1. For each n ≥ 1, let An be the generator of a locally
Lipschitz continuous integrated semigroup {Vn(t); t ≥ 0} on X satisfying
the condition

(4.1) ‖Vn(t+ h)− Vn(t)‖ ≤Meω(t+h)h for t, h ≥ 0,

where M ≥ 1 and ω ≥ 0 are independent of n. Assume that A is a closed
linear operator in X satisfying the following two conditions:

(a) For each x ∈ D(A), there exist xn ∈ D(An) such that xn → x and
Anxn → Ax as n→∞.

(b) For some λ0 > ω, the range R(λ0I − A) of λ0I −A is dense in X.

Then A is the generator of a locally Lipschitz continuous integrated semi-
group {V (t); t ≥ 0} on X. Moreover , for x ∈ X we have

(4.2) lim
n→∞

Vn(t)x = V (t)x

uniformly on every compact subinterval of [0,∞).

Proof. By (4.1) we have (ω,∞) ⊂ %(An) and ‖(λI − An)−k‖ ≤
M(λ− ω)−k for λ > ω and k = 1, 2, . . . As in the proof of [8, Theorem 2.1]
we see that A is the generator of a locally Lipschitz continuous integrated
semigroup {V (t); t ≥ 0} on X and

(4.3) lim
n→∞

(λI − An)−kx = (λI − A)−kx
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for x ∈ X, λ > ω and k = 1, 2, . . . By [8, Lemma 2.2] we have

‖V (t)x− Vn(t)x‖ ≤ 2M(1− λω)−[t/λ]eωt(([t/λ]λ− t)2 + [t/λ]λ2)1/2‖x‖

+
[t/λ]∑

l=1

λ‖(I − λAn)−lx− (I − λA)−lx‖

for n ≥ 1, x ∈ X, t ≥ 0 and λ > 0 with λω < 1. This estimate together with
(4.3) implies (4.2).
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