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The Banach space S is
complementably minimal and subsequentially prime

by

G. Androulakis (Columbia, SC) and
T. Schlumprecht (College Station, TX)

Abstract. We first include a result of the second author showing that the Banach
space S is complementably minimal. We then show that every block sequence of the unit
vector basis of S has a subsequence which spans a space isomorphic to its square. By the
Pełczyński decomposition method it follows that every basic sequence in S which spans a
space complemented in S has a subsequence which spans a space isomorphic to S (i.e. S
is a subsequentially prime space).

1. Introduction. The Banach space S was introduced by the second
author as an example of an arbitrarily distortable Banach space [14]. In [8]
the space S was used to construct a Banach space which does not contain
any unconditional basic sequence. In this paper we are concerned with the
question whether or not S is a prime space. We present two partial results:
In Section 2 we include a result proved by the second author some time
ago but not published until now [15], that S is complementably minimal,
and thereby answer a question of P. G. Casazza, who asked whether or not
`p, 1 ≤ p ≤ ∞, and c0 are the only complementably minimal spaces. In
Section 3 we prove that S is subsequentially prime.

Let us recall the above notions. A Banach space X is called prime [12] if
every complemented infinite-dimensional subspace of X is isomorphic to X.
A. Pełczyński [13] showed that the spaces c0 and `p (1 ≤ p <∞) are prime,
and J. Lindenstrauss [11] showed that this is also true for the space `∞. New
prime spaces were constructed by W. T. Gowers and B. Maurey [9]. But it
is still open whether or not `p, 1 ≤ p ≤ ∞, and c0 are the only prime spaces
with an unconditional basis.

A space X is called minimal (a notion due to H. Rosenthal) if every
infinite-dimensional subspace of X contains a subspace isomorphic to X,
and X is called complementably minimal [5] if every infinite-dimensional
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subspace of X contains a subspace which is isomorphic to X and comple-
mented in X. P. G. Casazza and E. Odell [4] showed that Tsirelson’s space T
(see [16]), as described in [6], fails to have a minimal subspace. On the other
hand it was shown by P. G. Casazza, W. B. Johnson and L. Tzafriri [3]
that the space T ∗ is minimal but not complementably minimal. Since S
is complementably minimal, either S is prime, or there exists a comple-
mented subspace X of S such that X and S give a negative solution to
the Schroeder–Bernstein problem for Banach spaces (see [2] for a detailed
discussion of this question): if two spaces are isomorphic to complemented
subspaces of each other must they be isomorphic? Negative solutions to the
Schroeder–Bernstein problem for Banach spaces are given by W. T. Gowers
[7], and W. T. Gowers and B. Maurey [9], but to our knowledge it is open
whether or not there are two Banach spaces X and Y , both having an un-
conditional basis, so that X is complemented in Y and Y is complemented
in X, but so that X and Y are not isomorphic.

The following terminology was suggested to us by D. Kutzarova.

Definition. A Banach space X with a basis is called subsequentially
prime if for every basic sequence (xi) of X such that the closed linear span
of (xi) is complemented in X, there exists a subsequence (yi) such that the
closed linear span of (yi) is isomorphic to X.

As mentioned above, we will show that the space S is subsequentially
prime. We do not know if S is prime, we even do not know whether or
not the closed linear span of a block basis which is complemented in S is
isomorphic to S.

We will need some notations. Let c00 be the linear span of finitely sup-
ported real sequences, and let (ei) denote its standard basis. For x ∈ c00,
supp(x) = {i ∈ N : xi 6= 0} denotes the support of x. For a finite set A
the cardinality of A is denoted by #A. If E,F ⊂ N we write E < F if
maxE < minF , and we write x < y for x, y ∈ c00 if supp(x) < supp(y).
A sequence (xi)i in c00 is a block sequence of (ei) if x1 < x2 < . . . For
x =

∑
i∈N xiei ∈ c00 and E ⊂ N, E(x) is the projection of x onto the span

of (ei)i∈E , i.e.

E(x) =
∑

i∈E
xiei.

Recall [14] that the norm of S is the unique norm on the completion of
c00 which satisfies the implicit equation

‖x‖ = ‖x‖`∞ ∨ sup
2≤n,Ei⊆N, i=1,...,n

E1<...<En

1
f(n)

n∑

i=1

‖Ei(x)‖(1)

where ‖ · ‖`∞ denotes the norm of `∞ and f(n) = log2(n+ 1) for n ∈ N. For
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x ∈ S and l ∈ N, l ≥ 2, we define

‖x‖l := sup
E1<...<El

1
f(l)

l∑

i=1

‖Ei(x)‖.

We note that ‖ · ‖l, 2 ≤ l < ∞, is an equivalent norm on S and we
observe that for x ∈ S and 2 ≤ l <∞ we have

1
f(l)
‖x‖ ≤ ‖x‖l ≤ ‖x‖ and ‖x‖ = sup

2≤l≤∞
‖x‖l.

Finally for any 2 ≤ r <∞ and x ∈ S we put

|||x|||r := sup
l≥r

l∈N∪{∞}

‖x‖l.

Two sequences (xi), (yi) in S are called c-equivalent, for some c ≥ 1, and
we write (xi) ≈c (yi), if ‖∑ aixi‖

c≈ ‖∑ aiyi‖ for all (ai) ∈ c00, where for
c ≥ 1 and a, b ≥ 0 we write a

c≈ b to denote that (1/c)a ≤ b ≤ ca. If (xi) and
(yi) are c-equivalent for some c > 1 we write (xi) ≈ (yi). A basic sequence
(xn) is called c-subsymmetric if it is c-unconditional and c-equivalent to all
of its subsequences. For two Banach spaces X and Y we write X ≈c Y if
there is an isomorphism T between X and Y with ‖T‖ · ‖T−1‖ ≤ c, and we
write X ≈ Y if X ≈c Y for some c ≥ 1.

If (xn) is a sequence in a Banach space then [xn : n ∈ N] denotes the
closed linear span of (xn). If not said otherwise, all statements in the fol-
lowing sections refer to the space S.

We would like to thank P. G. Casazza and D. Kutzarova for valuable
discussions.

2. The Banach space S is complementably minimal. The goal of
this section is the proof of the following theorem.

Theorem 2.1. S is complementably minimal.

First recall the following result which follows from Lemma 5 of [14].

Proposition 2.2. `1 is block finitely represented in each block basis of
(ei), i.e., if ε > 0 and m ∈ N, and if (yn) is a block basis of (ei), then there
is a block basis (zi)mi=1 of (yn) which is (1 + ε)-equivalent to the unit basis of
`m1 , i.e.,

∥∥∥
m∑

i=1

αizi

∥∥∥ ≥ 1
1 + ε

m∑

i=1

|αi|

for (αi)mi=1 ⊂ R.
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The proof of the following statement can be compiled from the proof
of Theorem 3 of [14]. Since the statement is crucial for our main result we
include its proof.

Lemma 2.3. Let ε > 0 and l ∈ N. Then there is an n = n(ε, l) ∈ N with
the following property : If m ≥ n and if y = m−1∑m

i=1 xi, where (xi)mi=1 is a
normalized block basis of (ei) which is (1 + ε/2)-equivalent to the unit basis
of `m1 , then

sup
E1<...<El

l∑

i=1

‖Ei(y)‖ ≤ ‖y‖+ ε ≤ 1 + ε.

Proof. Let n ∈ N so that 4l/n ≤ ε and assume m ≥ n and (xi)mi=1 are
as in the statement. Furthermore, let E1 < . . . < El be finite subsets of N.
Since (ei) is 1-unconditional we can assume that the Ej ’s are intervals in
N. This implies that for each j ∈ {1, . . . , l} there are at most two elements
i1, i2 ∈ {1, . . . ,m} so that Ej ∩ supp(xis) 6= ∅ and supp(xis) \ Ej 6= ∅,
s = 1, 2. For j = 1, . . . , l, let

Ẽj =
⋃
{supp(xi) : i ≤ m and supp(xi) ⊂ Ej}.

It follows that if y = m−1∑m
i=1 xi, then ‖Ei(y) − Ẽi(y)‖ ≤ 2/m and from

the assumption that (xi)mi=1 is (1 + ε/2)-equivalent to the `m1 unit basis we
deduce that

l∑

j=1

‖Ej(y)‖ ≤ 2l
m

+
l∑

j=1

‖Ẽj(y)‖ =
2l
m

+
1
m

l∑

j=1

∥∥∥
∑

supp(xi)⊂Ẽj

xi

∥∥∥

≤ 2l
m

+
1
m

∥∥∥
m∑

i=1

xi

∥∥∥(1 + ε/2) ≤ ε+ ‖y‖ ≤ ε+ 1.

The following theorem essentially proves that S is minimal. We postpone
its proof.

Theorem 2.4. Let (εn) ⊂ R+ with
∑
εn < ∞ and let (yn) be a nor-

malized block basis of (en) with the following properties: There is a sequence
kn ↑ ∞ in N so that for all n ∈ N,

(2) sup
k≤kn−1

E1<...<Ek

k∑

i=1

‖Ei(yn)‖ ≤ 1 + εn,

(3) max supp(yn) ≤ εnf(kn/3).

Then (yn) is equivalent to (en).

Proof of Theorem 2.1. By the usual perturbation argument we only have
to show that every block basis (zn) of (en) has a further block basis which
is equivalent to (en). Letting for example εi = 2−i, i = 1, 2, . . . , we have to
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find a normalized block (yn) of (zn) and a sequence (kn) in N so that (2)
and (3) of Theorem 2.4 are satisfied. Indeed, put k0 = 1 and assume that
k0 < k1 < . . . < kn and y1 < . . . < yn are already defined for some n ≥ 0. By
Remark 2.2 and Lemma 2.3 we can choose yn+1 > yn in the linear span of
(zi) so that condition (2) of Theorem 2.4 is satisfied. Since limi→∞ f(i) =∞
we can then choose kn+1 so that (3) is true.

In order to show that S is complementably minimal we first observe
that (1) implies that every normalized block basis (yn) of (en) dominates
(en), i.e., that ‖∑∞i=1 αiyi‖ ≥ ‖

∑∞
i=1 αiei‖ for all (αi) ∈ c00. Secondly, we

apply the following more general proposition which finishes the proof of
Theorem 2.1.

Proposition 2.5. Let Z be a Banach space with a cu-unconditional ba-
sis (en), cu ≥ 1. Assume furthermore that there is a cd > 0 so that every
normalized block basis (yn) of (en) cd-dominates (en) (i.e., cd‖

∑
αiyi‖ ≥

‖∑αiei‖ for all (αi) ∈ c00). Then a subspace of Z generated by a normal-
ized block of (en) which is equivalent to (en) is complemented in Z.

Proof. Without loss of generality we can assume that (en) is a normalized
and bimonotone basis of Z (i.e. ‖[m,n](z)‖ ≤ ‖z‖ for all z =

∑∞
i=1 ziei ∈ Z,

and 1 ≤ m ≤ n in N). Assume that (yn) is a block of (ei) which is ce-
equivalent to (ei). Using the assumption that (en) is normalized and bimono-
tone we find y∗n ∈ Z∗, for n ∈ N, with 1 = ‖y∗n‖ = y∗n(yn) and supp(y∗n) ⊂
[1 + max supp(yn−1),max supp(yn)] (where y0 = 0 and max(∅) = 0). Define
T =

∑
y∗n⊗yn, x 7→∑

yny
∗
n(x). We have to show that T is well defined and

bounded on Z; then it easily follows that it is a projection on [yn : n ∈ N].
Let x =

∑
aiei with (ai) ∈ c00. We can write x =

∑
xi =

∑ ‖xi‖ui with
xi = [1 + max supp(yi−1),max supp(yi)](x) and ui = xi/‖xi‖ if xi 6= 0, and
ui = emax supp(yi) otherwise. Then it follows that

T (x) =
∥∥∥
∑

yny
∗
n(xn)

∥∥∥ ≤ cu
∥∥∥
∑
‖xn‖yn

∥∥∥ ≤ cuce
∥∥∥
∑
‖xn‖en

∥∥∥

≤ cucecd
∥∥∥
∑
‖xn‖un

∥∥∥ = cucecd‖x‖.

Let x ∈ S. If l is the smallest element of N so that ‖x‖ = ‖x‖l, we
call l the character of x and write char(x) = l. If ‖x‖ = ‖x‖`∞ we write
char(x) =∞.

The next lemma makes the following qualitative statement precise: If
x ∈ c00, if r > 1 is “big enough”, and if E1 < . . . < El, l ≥ r, are subsets of
N so that

|||x|||r =
1
f(l)

l∑

i=1

‖Ei(x)‖,

then for “most of the Ei’s” the character of Ei(x) is “much bigger than r”.
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Lemma 2.6. There is a constant d > 1 so that for all r ∈ R+ with
f(r) > d2,

|||x|||r ≤
[

1

1− d/
√
f(r)

]
sup
l≥r

E1<...<El

1
f(l)

l∑

i=1

|||Ei(x)|||rf(r)

if x ∈ c00 with |||x|||r 6= ‖x‖`∞.

Proof. From the logarithmic behavior of f we deduce that there is a
constant c > 2 so that the following inequalities hold:

f(ξ)− 1 ≥ f(ξ)/c whenever ξ ≥ 2,(4)

cf(ξ) ≥ f(ξξ′)− f(ξ) whenever ξ, ξ′ ≥ c,(5)

f(ξ1/
√
f(ξ)) ≤ c

√
f(ξ) whenever ξ ≥ c,(6)

f(ξν) ≤ cνf(ξ) whenever ξ ≥ c and ν ≥ 1.(7)

Choose d = 4c3, and let r ∈ R+ be such that f(r) > d2. In order to
verify that this choice works let x ∈ S with |||x|||r 6= ‖x‖∞. Let l ≥ r and
E1 < . . . < El be such that

|||x|||r =
1
f(l)

l∑

i=1

‖Ei(x)‖.

For r̃, R̃ ∈ R with 2 ≤ r̃ < R̃, let M = M(r̃, R̃) := {i ≤ l : char(Ei(x)) ∈
[r̃, R̃)}, and for i ∈ M let li ∈ [r̃, R̃) be the character of Ei(x). We choose
for each i ∈M finite subsets Ei

1 < . . . < Eili of Ei so that

‖Ei(x)‖ =
1

f(li)

li∑

j=1

‖Eij(x)‖.

Now we observe that the set {Ei : i 6∈ M} ∪⋃i∈M{Eij : 1 ≤ j ≤ li} is well
ordered by < and its cardinality is l − #M +

∑
i∈M li, which is at least l

and at most lR̃. Thus we deduce:

|||x|||r =
1
f(l)

l∑

i=1

‖Ei(x)‖(8)

≥ 1
f(l −#M +

∑
i∈M li)

[ l∑

i=1, i6∈M
‖Ei(x)‖+

∑

i∈M

li∑

j=1

‖Eij(x)‖
]

≥ 1

f(lR̃)

[ l∑

i=1, i6∈M
‖Ei(x)‖+

∑

i∈M
f(li)‖Ei(x)‖li

]
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≥ 1

f(lR̃)

[ l∑

i=1

‖Ei(x)‖+
∑

i∈M
(f(r̃)− 1)‖Ei(x)‖

]

≥ 1

f(lR̃)

[ l∑

i=1

‖Ei(x)‖+
1
c
f(r̃)

∑

i∈M
‖Ei(x)‖

]
(by (4)).

Solving for (1/f(l))
∑

i∈M ‖Ei(x)‖ leads to the inequalities

1
f(l)

∑

i∈M
‖Ei(x)‖ ≤ 1

f(l)

[
1
f(l)

− 1

f(lR̃)

]
cf(lR̃)
f(r̃)

l∑

i=1

‖Ei(x)‖(9)

=
c

f(r̃)
f(lR̃)− f(l)

f(l)
|||x|||r

≤ c2 f(R̃)
f(r̃)f(l)

|||x|||r ≤ c2 f(R̃)
f(r̃)f(r)

|||x|||r (by 5).

Choosing for the pair (r̃, R̃) the values (2, r1/
√
f(r)), (r1/

√
f(r), r),

(r, r
√
f(r)), and (r

√
f(r), rf(r)) we deduce from the inequalities (6) and (7)

in each case that
f(R̃)

f(r̃)f(r)
≤ c√

f(r)
,

which together with (9) implies that
1
f(l)

∑

2≤char (Ei(x))<rf(r)

‖Ei(x)‖ ≤ 4c3
√
f(r)

|||x|||r,

and, thus, that

|||x|||r ≤
d√
f(r)

|||x|||r +
1
f(l)

l∑

i=1

|||Ei(x)|||rf(r),

yielding the lemma.

Remark. Note that in the proof of Lemma 2.6 the only properties of
the function f which were needed were that it is increasing and that there
is a c > 2 so that the inequalities (4)–(7) hold. Thus if l0 ∈ N and g :
[l0,∞)→ (1,∞) is an increasing function so that there is a c > l0 for which
(4) (whenever ξ ≥ l0), (5), (6) and (7) hold then the conclusion of Lemma 2.6
holds for the completion of c00 under the norm 〈〈·〉〉 defined implicitly by

〈〈x〉〉 = ‖x‖`∞ ∨ sup
l≥l0, E1<...<El

1
g(l)

l∑

i=1

〈〈Ei(x)〉〉 whenever x ∈ c00.

Proof of Theorem 2.4. Let (yn), (kn) and (εn) be as in the statement of
Theorem 2.4 and let d ≥ 1 be as in Lemma 2.6. For r ≥ 1 we put r0 := r and,
assuming rk was already defined, we let rk+1 = r

f(rk)
k . From the properties



234 G. Androulakis and T. Schlumprecht

of the function f it follows that there is an R > 1 so that the value

β(r) :=
∞∏

k=0

(
1

1− d/
√
f(rk)

)
f(9rk)
f(rk)

(10)

is finite whenever r ≥ R. By induction we will show that for every m ∈ N
and every (αi)mi=1 ⊂ R,

∣∣∣
∣∣∣
∣∣∣
m∑

i=1

αiyi

∣∣∣
∣∣∣
∣∣∣
r
≤ β(r) max

i0≥1

[
|αi0 |+

∥∥∥
∑

i>i0

αiei

∥∥∥+
m∑

i=1

|αi|εi
]
.(11)

Since ||| · |||r is equivalent to ‖ · ‖ for all r ≥ 1, since
∑
εi < ∞, and

since ‖∑αiyi‖ ≥ ‖
∑
αiei‖ ≥ maxi∈N |αi| for (αi) ∈ c00 this will prove the

assertion of Theorem 2.4.
For m = 1 the claim is trivial. Assume it is true for all positive integers

smaller than somem > 1 and let r ≥ R and (αi)mi=1 ∈ c00. Let y =
∑m

i=1 αiyi.
If |||y|||r = ‖y‖`∞ the assertion follows easily since ‖y‖`∞ ≤ maxi≤m |αi|.
Otherwise we can use Lemma 2.6 in order to find an l ≥ r and finite subsets
E1 < . . . < El of N so that (with γ(r) = 1/(1− d/

√
f(r)))

|||y|||r ≤ γ(r)
1
f(l)

l∑

j=1

|||Ej(y)|||rf(r).(12)

We can assume that for all j ≤ l, Ej ⊂
⋃m
i=1 supp(yi). For j = 1, . . . , l we

put E1
j := Ej ∩ supp(ys(j)), E2

j := Ej ∩ supp(yt(j)) and E3
j = Ej\(E1

j ∪ E2
j )

where s(j) := min{i : Ej ∩ supp(yi) 6= ∅} and t(j) := max{i : Ej ∩ supp(yi)
6= ∅}. We put Ẽ := {E1

j , E
2
j , E

3
j : j ≤ l}\{∅} and note that Ẽ can be ordered

into Ẽ = {Ẽ1, . . . , Ẽl̃} with l ≤ l̃ ≤ 3l and Ẽ1 < . . . < Ẽ
l̃
.

Secondly, we observe that Ẽ can be partitioned into m+ 1 sets Ẽ0, Ẽ1, . . .
. . . , Ẽm defined in the following way: Ẽ0 := {E∈Ẽ : E fits with (supp(yi))i∈N}
(where we say that E fits with a sequence (An) of disjoint subsets of N if
for all n, E ∩ An 6= ∅ implies that An ⊂ E) and for 1 ≤ i ≤ m we let
Ẽi := {E : E ∈ Ẽ and E ( supp(yi)}.

For i = 1, . . . ,m we let li := # Ẽi (note that Ẽi may be empty) and let
i0 = 1 if li ≤ ki−1 for all i ≤ m, otherwise put i0 := max{i ≤ m : li > ki−1}.

From (12) we now deduce that (recall that r1 = rf(r))

(13) |||y|||r ≤
γ(r)
f(l)

l̃∑

j=1

|||Ẽj(y)|||r1

≤ γ(r)
f(l)

l̃∑

j=1

[∣∣∣
∣∣∣
∣∣∣Ẽj
(∑

i<i0

αiyi

)∣∣∣
∣∣∣
∣∣∣
r1

+ |||Ẽj(αi0yi0)|||r1 +
∣∣∣
∣∣∣
∣∣∣Ẽj
(∑

i>i0

αiyi

)∣∣∣
∣∣∣
∣∣∣
r1

]
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≤ γ(r)
f(l)

∑

i<i0

l̃∑

j=1

|αi| · ‖Ej(yi)‖+
γ(r)f(l̃)
f(l)

|αi0 |
f(l̃)

l̃∑

j=1

‖Ẽj(yi0)‖

+
γ(r)
f(l)

∑

i>i0, Ei 6=∅
|αi|

∑

E∈Ei
‖E(yi)‖+

γ(r)
f(l)

∑

E∈E0

∣∣∣
∣∣∣
∣∣∣E
(∑

i>i0

αiyi

)∣∣∣
∣∣∣
∣∣∣
r1
.

If i0 6= 1 we deduce that the first term in the above sum can be estimated
as follows (we use condition (3) of the statement of Theorem 2.4 and note
that from the choice of i0 it follows that l ≥ l̃/3 ≥ li0/3 ≥ ki0−1/3 ≥ ki/3
for i < i0):

γ(r)
f(l)

∑

i<i0

l̃∑

j=1

|αi| ·‖Ej(yi)‖ ≤ γ(r)
∑

i<i0

|αi|
f(ki/3)

·# supp(yi) ≤ γ(r)
i0−1∑

i=1

εi|αi| .

The second term can be estimated as follows:

γ(r)f(l̃)
f(l)

|αi0 |
1

f(l̃)

l̃∑

j=1

‖Ẽj(yi0)‖ ≤ γ(r)f(3l)
f(l)

|αi0 | · ‖yi0‖ ≤
γ(r)f(3r)
f(r)

|αi0 |.

By condition (2) of the statement of Theorem 2.4 and the definition of i0 we
deduce that

∑
E∈Ei ‖E(yi)‖ ≤ 1 + εi if i > i0 and Ei 6= ∅. Thus, we observe

for the third term that
γ(r)
f(l)

∑

i>i0, Ei 6=∅
|αi|

∑

E∈Ei
‖E(yi)‖ ≤

γ(r)
f(l)

∑

i>i0, Ei 6=∅
(1 + εi)|αi|.

For the last term we apply the induction hypothesis and find for each E ∈ E0
an iE ∈ {i > i0 : supp(yi) ⊂ E} ∪ {0} so that
∑

E∈E0

∣∣∣
∣∣∣
∣∣∣E
(∑

i>i0

αiyi

)∣∣∣
∣∣∣
∣∣∣
r1

≤ β(r1)
∑

E∈E0

[
|αiE |+

∥∥∥
∑

i>iE
supp(yi)⊂E

αiei

∥∥∥+
∑

supp(yi)⊂E
|αi|εi

]
.

Let A = {{i} : i>i0, Ei 6= ∅} ∪ {{iE} : E ∈ E0} ∪ {{i > iE : supp(yi) ⊆ E} :
E ∈ E0}\{∅} and note that A consists of subsets of {i0 + 1, i0 + 2, . . .}, has
at most 3l̃ ≤ 9l elements and is well ordered by <. Finally we deduce from
(13) and the above estimates that

|||y|||r ≤ γ(r)
∑

i<i0

|αi|εi +
γ(r)f(3r)
f(r)

|αi0 |+
γ(r)
f(l)

m∑

i>i0, Ei 6=∅
|αi|

+
γ(r)
f(l)

m∑

i=1, Ei 6=∅
εi|αi|+

γ(r)β(r1)
f(l)

∑

E∈E0
|αiE |
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+
γ(r)β(r1)
f(l)

∑

E∈E0

∥∥∥
∑

i>iE , supp(yi)⊂E
αiei

∥∥∥

+
γ(r)β(r1)
f(l)

∑

supp(yi)⊂E
E∈E0

|αi|εi

≤ β(r)
[
|αi0 |+

f(r)
f(l)f(9r)

∑

A∈A

∥∥∥A
( m∑

i=1

αiei

)∥∥∥+
m∑

i=1

εi|αi|
]

(note that β(r) = β(r1)γ(r)f(9r)/f(r))

≤ β(r)
[
|αi0 |+

f(r)
f(9r)

f(9l)
f(l)

∥∥∥
m∑

i=1

αiei

∥∥∥+
m∑

i=i0+1

εi|αi|
]

(since #A ≤ 9l)

≤ β(r)
[
|αi0 |+

∥∥∥
m∑

i=1

αiei

∥∥∥+
m∑

i=i0+1

εi|αi|
]

(since l ≥ r).

This proves the induction step and completes the proof of Theorem 2.4.

3. The Banach space S is subsequentially prime. The main result
of this section is the following theorem.

Theorem 3.1. The space S is subsequentially prime.

Theorem 3.1 will essentially follow from A. Pełczyński’s decomposition
method and the following theorem.

Theorem 3.2. Let (xi) be a normalized block sequence of (ei) in S and
let (ki) be a subsequence of N. There exists a subsequence (yi) of (xi) with the
following property : If (si) and (ti) are strictly increasing in N, and si, ti ≤ ki
for i ∈ N, then (ysi) and (yti) are equivalent.

Before giving the proof of Theorem 3.2 we need a result, for which we
introduce the following norm 〈〈·〉〉 on c00. For l ≥ 3 define g(l) = log2(1+l/2)
and let 〈〈·〉〉 be the norm which is implicitly defined by

〈〈x〉〉 = ‖x‖`∞ ∨ sup
l≥3, E1<...<El

1
g(l)

l∑

i=1

〈〈Ei(x)〉〉 whenever x ∈ c00.

Lemma 3.3. The norm 〈〈·〉〉 is equivalent to the norm ‖ · ‖ on S.

Proof. First note that since f(l) ≥ g(l + 1) whenever l ≥ 2 it follows
that 〈〈·〉〉 ≥ ‖ · ‖. Thus, we only have to show that for some constant C it
follows that 〈〈·〉〉 ≤ C‖ · ‖. The proof will be similar to that of Theorem 2.4.

For l, r ∈ [3,∞) let 〈〈·〉〉l and 〈〈〈·〉〉〉r be defined as ‖ · ‖l and ||| · |||r respec-
tively. Let d̃ > 1 be chosen so that the statement of Lemma 2.6 holds (see
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remark after the proof of Lemma 2.6), i.e. so that

〈〈〈x〉〉〉r ≤
[

1

1− d̃/
√
g(r)

]
sup
l≥r

E1<...<El

1
g(l)

l∑

i=1

〈〈〈Ei(x)〉〉〉rg(r)(14)

if r ∈ R+ with g(r) > d̃2, and x ∈ c00 with 〈〈〈xr〉〉〉 6= ‖x‖`∞ .
For r ∈ [3,∞) we define r0 = r and, assuming that rk had been defined,

let rk+1 = r
g(rk)
k . Then we deduce that there is an R ≥ 3 so that for all

r ≥ R,

β̃(r) =
∞∏

k=0

1

1− d̃/
√
g(rk)

g(2rk)
g(rk)

is finite. By induction on m ∈ N we prove that for each x ∈ c00 so that
# supp(x) ≤ m and r ≥ R it follows that

〈〈〈x〉〉〉r ≤ β̃(r)‖x‖.(15)

Assume that (15) is true for all z ∈ c00 for which # supp(z) < m and
assume that x ∈ c00 with # supp(x) = m. If 〈〈〈x〉〉〉r = ‖x‖`∞ the claim
follows immediately. Otherwise it follows from (14) that for some l ≥ r,
l ∈ N, and some choice of E1 < . . . < El we have

〈〈〈x〉〉〉r ≤
[

1

1− d̃/
√
g(r)

]
1
g(l)

l∑

i=1

〈〈〈Ei(x)〉〉〉rg(r)

≤ β̃(rg(r))
[

1

1− d̃/
√
g(r)

]
1
g(l)

l∑

i=1

‖Ei(x)‖

(by the induction hypothesis)

= β̃(r)
g(r)
g(2r)

1
g(l)

l∑

i=1

‖Ei(x)‖ ≤ β̃(r)‖x‖
(

since
g(r)
g(2r)

≤ g(l)
g(2l)

=
g(l)
f(l)

)
,

which finishes the induction step and the proof of Lemma 3.3.

Proof of Theorem 3.2. First we note that we can assume that
limn→∞ ‖xn‖`∞ = 0. Indeed, from Theorem 2.4 it follows that there is a
normalized block (zk) in S which is equivalent to the unit vector basis (ek)
and has the property that limn→∞ ‖zn‖`∞ = 0. Thus, we could replace each
xn by the vector x′n in the span of (zk) whose coordinates with respect to
the zk’s are the coordinates of xn with respect to the ek’s.
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Let ε > 0, and y ∈ c00 with ‖y‖ = 1 and ‖y‖∞ ≤ ε/2. We can write y as
y =

∑l(y,ε)
i=1 y(i, ε), where l(y, ε) ∈ N and y(1, ε) < y(2, ε) < . . . < y(l(y, ε), ε)

such that ‖y(i, ε)‖ ≤ ε for i = 1, . . . , l(y, ε). Furthermore we could choose
the y(i, ε)’s to have maximal support in the following sense. First we choose
y(i, ε) = [1, n1](y) with n1 ∈ N being the largest n ∈ N, n ≤ max supp(y),
so that ‖[1, n](y)‖ ≤ ε. Then we choose n2 > n1 being the largest n ∈ N,
n ≤ supp(y), so that ‖[n1 + 1, n2](y)‖ ≤ ε. We can continue this way until
we have exhausted the support of y. This defines l(y, ε) and the vectors
(y(i, ε))l(y,ε)i=1 uniquely and from the assumption that ‖y‖∞ ≤ ε/2 it follows
that ε/2 ≤ ‖y(i, ε)‖ for all i ∈ {1, . . . , l(y, ε)− 1}. From the definition of the
norm of S is follows that

`(y, ε)− 1
f(`(y, ε))

ε

2
≤ 1
f(l(y, ε))

l(y,ε)∑

i=1

‖y(i, ε)‖ ≤ ‖y‖ = 1 ≤
l(y,ε)∑

i=1

‖y(i, ε)‖ ≤ l(y, ε)ε.

Thus for ε > 0 there are two numbers H(ε) ≥ h(ε) in N with h(ε) ↗ ∞ if
ε↘ 0, and so that for any y ∈ c00 with ‖y‖ = 1 and ‖y‖∞ ≤ ε/2 it follows
that h(ε) ≤ l(y, ε) ≤ H(ε).

We now apply this “splitting procedure” to the elements of our sequence
(xn). By induction on n ∈ N we find an infinite subset Mn of N with N ⊃
M1 ⊃ . . . ⊃ Mn and minM1 < . . . < minMn, and numbers ε(n) > 0 and
p(n) ∈ N satisfying the following three properties:

(16) For all m ∈Mn we have l(ε(n), xm) = p(n).
(17) For any choice of n ≤ s0 < s1 < . . . < skn+1 and n ≤ t0 < t1 < . . .

< tkn+1 in Mn it follows that (xsj (i, ε(n)))0≤j≤kn+1, i≤p(n) ≈1+ε(n)
(xtj (i, ε(n)))0≤j≤kn+1, i≤p(n).

(18) If n > 1 it follows that
∑n−1

1=i ‖xminMi‖`1 < f(h(ε(n)))2−n and
p(n− 1)ε(n) < 2−n.

For n = 1 we simply choose ε(1) = 1 (thus l(xn, ε(1)) = 1), p(1) = 1, and
using compactness and the usual stabilization argument we can pass to a
subsequence M1 of N so that (17) holds. Assuming we made our choices of
Mj , ε(j), and p(j) for all j < n, we first choose ε(n) so that (18) is satisfied
(recall that h(ε)↗∞ for ε↘ 0), and then again using compactness and the
usual stabilization argument we can pass to an Mn ⊂ Mn−1 \ {minMn−1}
and find a p(n) ∈ N so that ‖xm‖ ≤ ε(n)/2 whenever m ∈ Mn and so that
(16) and (17) are satisfied.

For n ∈ N we now define yn = xmin(Mn) and yn(i, j) = yn(i, ε(j)) if i ≤ n
and j ≤ p(i), and prove the following claim by induction on N ∈ N:

Claim. For every n ∈ N, every K,L ∈ {1, . . . , p(n)}, every (αi)n+N+1
i=0

⊂ R, and every choice of n ≤ s0 < s1 < . . . < sn+N+1 and n ≤ t0 < t1 < . . .
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< tn+N+1 with si, ti ≤ ki+n for i = 0, 1 . . . , n+N + 1, it follows for

x = α0

p(n)∑

j=K

ys0(n, j) +
N∑

i=1

αiysi + αN+n+1

L∑

j=1

ysn+N+1(n, j),(19)

x̃ = α0

p(n)∑

j=K

yt0(n, j) +
N∑

i=1

αiyti + αN+n+1

L∑

j=1

ytn+N+1(n, j)(20)

that

‖x‖ ≤ c(n) max
E<F

[〈〈E(x̃)〉〉+ 〈〈F (x̃)〉〉](21)

where

c(n) =
N∑

i=n

2−i + ε(i).(22)

Since by Lemma 3.3, 〈〈·〉〉 is an equivalent norm on S (and therefore also
the norm c00 3 x 7→ maxE<F 〈〈E(x)〉〉+ 〈〈F (x)〉〉 has this property) the claim
implies the theorem.

For N = 0 the claim follows directly from (17). Assume the claim to be
true for Ñ < N and let x and x̃ be given as in (19) and (20).

We choose l ∈ N so that ‖x‖ = ‖x‖l. If l < p(kn) we let i0 = 0, and
otherwise we choose i0 ∈ N∪{0} so that p(ki0+n) ≤ l < p(ki0+n+1). We split
x into three vectors x(1), x(2) and x(3) as follows. If i0 = 0 we let x(1) = 0,
otherwise we put

x(1) = α0

p(n)∑

j=K

ys0(n, j) +
(i0−1)∧N∑

i=1

αiysi ,(23)

and x̃(1) is defined as x(1), by replacing the si’s by ti’s. From (18) and the
choice of i0 it follows that (note that h(ε(si0−1 + 1)) ≤ h(ε(si0)) ≤ p(si0) ≤
p(kn+i0) ≤ l)

‖x(1)‖l ≤ max
0≤i≤n+N

|αi|
1
f(l)

(i0−1)∧N∑

i=0

‖ysi‖l1 ≤ ‖x̃‖
f(h(ε(si0)))

f(l)
(24)

≤ ‖x̃‖2−n−i0 .
Secondly, if we let

x(2) =





α0

p(n)∑

j=K

ys0(n, j) +
(kn+1)∧N∑

i=1

αiysi if i0 = 0,

(kn+i0+1)∧N∑

i=(i0−1)∧N+1

αiysi if i0 6= 0,

(25)
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and x̃(1) is defined as x(1), by replacing the si’s by ti’s, we deduce from (17)
that

‖x(2)‖ ≤ (1 + ε(si0))‖x̃(2)‖ ≤ (1 + ε(n+ i0))‖x̃(2)‖.(26)

Finally we let

x(3) = x− x(1) − x(2) =
N∑

i=kn+i0+2

αiysi + αN+n+1

p(n)∑

j=L

ysn+N+1(n, j)(27)

and, again, define x̃(3) as x(3), by replacing the si’s by ti’s. Choose E1 <
. . . < El so that

‖x(3)‖l =
1
f(l)

l∑

j=1

‖Ej(x(3))‖.

Note that for any i ≥ kn+i0+2 it follows that si ≥ kn+i0+2+n ≥ kn+i0+2
and by (18) it follows that lε(kn+i0 + 2) ≤ p(kn+i0 + 1)ε(kn+i0 + 2) <
2−kn+i0−1 ≤ 2−n−i0−1. Let n′ = kn+i0 + 2 + n. For each j = 1, . . . , l we can
perturb Ej into a set Fj (by possibly taking some part of the support of
some ysi(n

′, u) away at the beginning of Ej and adding some part of the
support of some ysj (n

′, v) at the end of Ej) so that for each j = 1, . . . , l,
each i ≥ kn+i0 + 2, and each u = 1, . . . , p(n′), the set Fj either contains
supp(ysi(n

′, u)), or is disjoint from it, and so that

‖x(3)‖l =
1
f(l)

l∑

j=1

‖Fj(x(3))‖+ lε(n′) max
0≤i≤N+n+1

|αi|(28)

≤ 1
f(l)

l∑

j=1

‖Fj(x(3))‖+ 2−n−i0−1‖x‖.

To each of the Fj(x(3)) we can apply the induction hypothesis and obtain a
splitting of each

F̃j =
⋃
{supp(yti(n

′, u)) : i ≥ i0 + 3, u ≤ p(n′) and supp(ysi(n
′, u)) ⊂ Fj}

(F̃j is the “x̃(3) version of x(3)”) into G̃j and H̃j , with G̃j < H̃j so that

‖x(3)‖l ≤ 2−n−i0−1‖x‖+
1
f(l)

c(n′)
l∑

j=1

(〈〈G̃j(x̃(3))〉〉+ 〈〈H̃j(x̃(3))〉〉)(29)

≤ 2−n−i0−1‖x‖+ c(n′)〈〈x̃(3)〉〉
(for the last inequality recall the definition of 〈〈·〉〉 and that g(2l) = f(l)).

Finally, putting (24), (26) and (29) together, observing that ‖ · ‖ ≤ 〈〈·〉〉,
and that c(n) ≥ 2−n−i0 + 2−n−i0−1 + ε(n+ 1) + c(n′), we obtain

‖x‖ = ‖x‖l ≤ ‖x(1)‖l + ‖x(2)‖+ ‖x(3)‖l
≤ ‖x̃‖2−n−i0 + (1 + ε(n+ i0))‖x̃(2)‖
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+ 2−n−i0−1‖x̃‖+ c(n′)〈〈x̃(3)〉〉+ c(n′) sup
E<F

(〈〈E(x̃)〉〉+ 〈〈F (x̃)〉〉)

+ [2−n−i0 + 2−n−i0−1 + ε(n+ 1)]‖x̃‖
≤ c(n) sup

E<F
(〈〈E(x̃)〉〉+ 〈〈F (x̃)〉〉),

which finishes the induction step and the proof of the theorem.

Proof of Theorem 3.1. Let (xn) be a seminormalized basic sequence in S
whose closed linear span is complemented in S. Since S is reflexive we can
assume, by passing to an appropriate subsequence, that for some a ∈ S,
xn = a+zn where zn is weakly null. Since a is an element of the closed linear
span of (xn) and (xn) is a seminormalized basic sequence it follows that a=0,
and thus (xn) is seminormalized and weakly null. By applying the usual
perturbation argument we can assume that (xn) is a seminormalized block
sequence and therefore apply Theorem 3.2 with kn = 2n + 1 for n ∈ N to
obtain a subsequence (yn) so that (yn), (y2n+1) and (y2n) are equivalent. In
particular it follows for Y = [yn : n ∈ N] that Y ≈ Y ⊕Y (the complemented
sum of Y with itself). Since S has a subsymmetric basis, it also follows that
S ≈ S ⊕ S. This means that we are in a position to apply Pełczyński’s
decomposition method [13], which is so elegant that we cannot restrain
ourselves from repeating it here. We write S = U ⊕ Y (note that with
[xi : i ∈ N] also Y is complemented in S) and Y = V ⊕ S. Then it follows
that

S ≈ U ⊕ Y ≈ U ⊕ Y ⊕ Y ≈ S ⊕ Y ≈ S ⊕ V ⊕ S ≈ S ⊕ V ≈ Y.
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